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This paper is an exercise in formal and philosophical logic. I will show how intu-
itionistic propositional logic can be extended with a new two-place connective,
not expressible in the traditional language of intuitionistic logic (the language
of conjunction, disjunction, negation and implication). The new system will be
shown to be a conservative extension of intuitionistic logic. After examining the
formal properties of this extension, the task will be to consider whether this is
an `acceptable' extension of intuitionistic logic. It will turn out that on some

intuitionistic considerations the extension is acceptable, and on others it is not.
In this paper I presume that the reader has some idea both of the formal

properties of intuitionistic logic, and some motivating philosophical principles
which inform the development of intuitionistic logic. Readers wanting such an
introduction can do no better than look at some of the excellent, extensive
literature on intuitionism [3, 5, 8, 12].

Other work has been done on extending intuitionistic propositional logic
with new connectives. Gabbay [6] considers extending the logic with propo-
sitional connectives. Our new connective is not one he considers. De Jongh
too considers extending intuitionistic logic by adding arbitrary conjunction and
disjunction. In his interesting paper [2] he shows that once you make such an
addition to the basic logic, you end up with a proper class of propositional
connectives expressible. In what follows we will consider adding just one new
binary connective to the language of intuitintionistic propositional logic.

1 De�ning The Extension

Intuitionistic logic can be introduced in a number of ways. You can de�ne a
Hilbert-style axiomatisation [8] or a Prawitz-style natural deduction system [11].
It can be characterised algebraically through Heyting Lattices, or either Beth
or Kripke-style frame semantics will characterise the logic.

We will examine each of these in turn in what follows. To start, however,
we will present intuitionistic logic by way of a Gentzen-style sequent calculus.
Instead of the usual formulation, however, with sequents of the form `� ` A',
we will use sequents are of the form � ` �, where � and � are sets of formulae.
(We write `�; A;�' as a shorthand for `� [ fAg [ �' as usual). The calculus
has one axiom scheme:

� ` � if � \� 6= ;

This is read `the conjunction of � entails the disjunction of �', if � and � share
a formula.

For each binary connective there are introduction rules for both the left and
the right of the turnstile.

�; A;B ` �

�A ^ B ` �

� ` A;� � ` B;�

� ` A ^ B;�
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�; A ` � �; B ` �

�; A _ B ` �

� ` A;B;�

� ` A _B;�

�; A ` B

� ` A � B

�; B ` � � ` A;�

�; A � B ` �

Instead of a separate rule for negation, we de�ne :A to be A � ?, where ? is
the falsum. Verum and falsum have the following rules.

� ` >;� �;? ` �

The rules are quite simple. The only feature which distinguishes the system
from a Gentzen calculus for classical propositional logic is the implication right

rule. Note that for this rule the consequent must be a single formula. This
ensures that we cannot prove the intuitionistically undesirable

` A _ (A � B)

which would be provable if we allowed more than one formula in the consequent
in the implication rule

A ` A;B

` A;A � B

` A _ (A � B)

This is an example proof. In general, a proof of a sequent � ` � is a �nite tree
with � ` � at the root, with axioms as leaves, and with transitions instances
of the rules.

Gentzen's famous Hauptstatz is the Cut Admissibility (or Elimination) The-
orem, which states that the rule Cut

�1; A ` �1 �2 ` A;�2

�1;�2 ` �1;�2

is admissibile, in the sense that if the premises are provable, so is the conclu-
sion [7]. The result holds in our system of intuitionistic logic. The restrictions
on the implication rule do not complicate the proof.

Our extension to intuitionistic logic will be motivated as follows. Consider
the implication connective. It is related to conjunction by way of the following
rule

A ^ B ` C if and only if A ` B � C

Is there any connective related to disjunction in a similar way? If the disjunction
remains on the left of the turnstile, there is no such connective, since were

A _ B ` C if and only if A ` B �C

to hold for all A, B and C, then we would have, if A and C are ?, then

?_ B ` ? if and only if ? ` B � ?
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The right hand expression is a tautology, since ? entails anything. The left
hand expression is equivalent to B ` ?, so if it is a tautology, then B entails
the falsum. This cannot happen for all B, so you cannot add a connective such
as � to any propositional logic containing ?, on pain of triviality. However, the
de�nition of a two-place connective � with the rule

A ` B _ C if and only if A�B ` C

faces no such problems. We read `A�B' as `A without B' or `A minus B' and we
call the connective \subtraction" since that is roughly the notion it expresses.
If A entails either B or C, then from A without B you can infer C. Conversely,
if A without B gives you C, then if you have A you can infer either A or B. In
the context of classical propositional logic, A � B is de�nable as A ^ :B. In
intuitionistic logic no such de�nition is available. A^:B will not do for A�B,
since you have >^ :B ` :B, but certainly not > ` B _ :B. We will see later
that not only is subtraction not de�nable in intuitionistic propositional logic
from the standard connectives, but the addition of propositional quanti�cation
to intuitionistic logic is not enough to de�ne it in terms of resources available
in the language. However, it can be de�ned with the addition of two new rules
to our Gentzen calculus. The rules are the obvious analogues of the implication
rules.

� ` A;� �; B ` �

� ` A�B;�

A ` B;�

A�B ` �

The Cut Admissibility proof works as before in our new extended system. The
only signi�cant new piece of checking is that a cut on a formula A�B immedi-
ately introduced on both the right and left of the turnstile can be replaced by
a cut on its subformulae. So, we wish to show that the cut in

A ` B;�1

A�B ` �1

�2 ` A;�2 �2; B ` �2

�2 ` A�B;�2

(Cut)

�2 ` �1;�2

can be replaced by cuts on A and B. But this is simple

A ` B;�1 �2; B ` �2

(Cut)

A;�2 ` �1;�2 �2 ` A;�2

(Cut)

�2 ` �1;�2

The rest of the proof of admissibility is just as simple. We leave the details to
the interested reader. It follows that the system with the addition of subtraction
remains well behaved.

The admissibility of cut shows us that subtraction so introduced satis�es our
de�ning condition. If A�B ` C is provable, then we can show that A ` B _C

is provable too.

A ` A;B A;B ` B

A ` B;A�B A�B ` C
(Cut)

A ` B;C

A ` B _ C
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Similarly (dually) from A ` B _ C we can get A�B ` C.

A ` B _ C

B ` B;C C ` B;C

B _ C ` B;C
(Cut)

A ` B;C

A�B ` C

So, the Gentzen calculus gives us an axiomatisation of our notion. The formal-
isation gives us one result immediately.

Theorem 1 Adding subtraction conservatively extends intuitionistic logic.

Proof Suppose we had a proof of � ` � in our new system, where � and �
do not involve subtraction. It follows that any proof will not use the subtraction
rules, for our system has the subformula property. Any formula appearing in
the proof must appear in the conclusion of the proof. So, any proof of � ` �
in the new system is a proof in our original system for intuitionistic logic. /

So, adding subtraction does not disturb what consecutions can be proved in the
original language. In this minimal sense, at least, the addition is intuitionisti-
cally acceptable.

We can use the Gentzen calculus to prove a powerful result, which will be
very useful in exploring the behaviour of subtraction. First, we need to formalise
the notion of duality in our logic.

Definition 1 The duality function d maps formulae to formulae, sets of for-
mulae to sets of formulae and sequents to sequents as follows:

pd = p

>d = ?

?d = >

(A ^B)d = Ad _Bd

(A _B)d = Ad ^Bd

(A � B)d = Bd �Ad

(A�B)d = Bd � Ad

fA1; : : : ; Ang
d = fAd

1
; : : : ; Ad

n
g

(� ` �)d = �d ` �d

Note that d is of period two.

Lemma 2 (Duality) � ` � is provable if and only if its dual is provable.

Proof Note that the dual of an axiom is an axiom, and dualising an instance of
one of the rules results in an instance of another rule. For example, an instance
of the subtraction right rule

� ` A;� �; B ` �

� ` A�B;�

dualised becomes
Ad;�d

` �d �d
` �d; Bd

Bd
� Ad;�d

` �d
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which is an instance of the implication left rule. The other rules are similar.
So, given a proof of � ` �, the result of dualising every node in the tree is a
proof of (� ` �)d. The fact that d is of period two ensures that if (� ` �)d is
provable, so is � ` �, so our result is completed. /

The Duality Lemma is very powerful. We can use it to convert familiar results
about intuitionistic implication to new results about subtraction. For instance,
it is well known that intuitionistic logic is prime, in the sense that if ` A _ B

is provable, then either ` A or ` B is provable. This does not extend to the
system with subtraction, since we can prove ` p _ (> � p) but neither ` p nor
` >� p.

` >; p p ` p

` p;>� p

` p _ (q � p)

Even though primeness fails, the Duality Lemma shows us that there is an
analogue to primeness which holds in the implication-free part of the language.

Lemma 3 If A^B `, and A and B are implication-free then either A ` or B `.

Proof Suppose A and B are implication-free. Then their duals Ad and Bd

are subtraction-free and so, if ` Ad _ Bd then either ` Ad or ` Bd. It follows
that if A ^ B `, then by duality, ` (A ^ B)d, i .e. ` Ad _ Bd. It follows that
either ` Ad or ` Bd, or equivalently, A ` or B `. /

The Hilbert-style axiomatisation of intuitionistic logic is a recursive enumeration
of the theorems of the logic. That is, it is an enumeration of the formulae A
such that ` A. For example, ignoring connectives other than � for the moment,
the axioms are the formulae of the forms

�
A � (B � C)

�
�
�
(A � B) � (A � C)

�
A � (B � A)

and the rule is modus ponens

From A � B and A to derive B

Duality can give us an axiomatisation of the co-theorems of the subtraction
fragment of the logic. That is, we can enumerate the formulae A such that A `,
by dualising the axioms above. You get the co-axioms

�
(C �A)� (B �A)

�
�
�
(C �B)�A

�
(A�B)�B

and the rule

From B �A and A to derive B

There are no formulae constructed out of subtraction alone which are theorems,
dually to the fact that there are no co-theorems constructed out of implica-
tion alone. Why is this? Substitute verum for the propositional constants in
an implication-only formula, and the result is equivalent to verum. So, the
original implication only formula cannot be a co-theorem, lest verum be a co-
theorem. Dually, substitute the falsum for the propositional constants in a
subtraction-only formula, and the result is equivalent to the falsum. So, the
original subtraction-only formula cannot be a theorem. It follows that the
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subtraction-only calculus is another example of a logic (along with Kleene's
three-valued logics) which has derivable rules but no theorems. (Unlike Kleene's
systems, however, the subtraction calculus has co-theorems.)

Just as intuitionistic negation :A can be de�ned as A � ?, a dual form �A

can be de�ned as > � A. This negation has all the dual properties of :. For
example, ` A _ �A is probable, but A ^ �A ` is not. ��A ` A is provable,
but A ` ��A is not.

2 Kripke Models

In the next sections we will examine some models of intiuitionistic logic, to see
to what extent subtraction is \at home" there. We will start with frames.

Definition 2 A frame is a set P of points together with a partial order � of
inclusion on P . The set Prop(P;�) of propositions on a frame is the set of all
the sets X of points which are closed upwards. That is, if x 2 X and x � y

then y 2 X .
A Kripke-evaluation on a frame is a relation 
 between points and atomic

formulae satisfying the following hereditary condition

� If x 
 p and x � y then y 
 p, for atomic formulae p.

This condition ensures that the set of points at which an atomic formula is
forced in the frame is indeed a proposition in the frame. The forcing relation is
then extended to relate points to arbitrary formulae as follows:

� x 
 A ^ B i� x 
 A and x 
 B.

� x 
 A _ B i� x 
 A or x 
 B.

� x 
 > and x 6
 ? for each x.

� x 
 A � B i� for each y � x, if y 
 A then y 
 B.

� x 
 A�B i� for some y � x, y 
 A and y 6
 B.

A frame together with an evaluation is called a Kripke model.

As usual, it's not di�cult to show that for any proposition A the set of points
at which A is forced is a proposition on the frame. The veri�cation is a routine
induction on the complexity of the formula. The only new step is the veri�cation
for subtraction, but this step is simple. If x 
 A�B and x0 � x, then x0 
 A�B

too, since any y � x must also be a y � x0.
Note that the de�ning clause for subtraction is dual to the clause for im-

plication. A � B is true at a point just when for some earlier point we have
A without B. Note too that on any Kripke model for intuitionistic logic we
can de�ne subtraction. It's instructive to show that the de�ning clause for sub-
traction holds in these models. To do this we need to know how to evaluate a
sequent � ` � in a model. We will say that � entails � in a model if the set of
points which each force each element of � is a subset of the set of points which
each force some element of �. Then note that if A entails B _ C in a model, if
x 
 A � B then there is some point y � x where y 
 A but y 6
 B. It follows
that since A entails B _ C, y 
 B _ C, and since y 6
 B we must have y 
 C.
Since the hereditary condition holds for all formulae, x 
 C too, as desired.
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Conversely, if A � B entails C in the model, and x 
 A, we wish to show
that x 
 B _ C. If x 6
 B we have x 
 A � B, since x 6
 B, x 
 A and x � x.
This, with the fact that A�B entails C gives us x 
 C, so we know x 
 B _C

as desired.
It follows that these models are sound for our extension of intuitionistic

logic. The completeness proof involves showing that the canonical model for
our extension of intuitionistic logic satis�es the model conditions. The canonical
model is simply the set of all prime theories | the sets � such that if � ` �
then � \� 6= ;. The relation 
 is de�ned by setting � 
 p if and only if p 2 �.
The inclusion relation � is subsethood of theories.

The complexity arises in showing that the model conditions are satis�ed by

 so de�ned. The distributive lattice operators are trivial to verify. One part
of the implication clause is simple. If A � B 2 � and � � � then if A 2 �
it follows that B 2 �, since A;A � B ` B. The other part is more complex.
It involves showing that if A � B 62 � then there is a prime � � � such that
A 2 � and B 62 �. We use the pair extension lemma to do this.

Lemma 4 (Pair Extension (Belnap, Gabbay) [1]) If ` is a suitable con-

sequence relation on a well-ordered language, then if � 6` �, then there are

�0 � � and �0 � � such that �0 6` �0, and �0 \�0 is the whole language.

For our details it is su�cient for me to assure you that ` in our language is
suitable in Belnap and Gabbay's sense. The proof of this lemma is not too
di�cult. In involves well ordering the language, and at each step adding a
formula whichever of � or � allow us to keep � 6` �. The logic is \suitable" if
it allows us to do one or the other at each step. The endpoint of this process is
the required �0;�0 pair.

Once we have such a pair, �0 must be a prime theory, for if �0 ` 	 for some
	, then we cannot have 	 � �0 since �0 6` �0, so �0 and 	 must intersect, as
�0 and �0 exhaust the language.

We can apply this technique to our completeness theorem, since if A � B 62 �
then � 6` A � B, and hence �; A 6` B. Therefore we can extend �; A and B to
an exclusive pair, the �rst element of which is a prime � � �, where A 2 � and
B 62 �.

The same technique applies to our subtraction condition. We want to show
that A�B 2 � i� for some � � �, A 2 � and B 62 �. One half is easy. If A 2 �

and B 62 �, then A ` A�B;B tells us that A�B 2 �, and hence A�B 2 � as
required. For the more di�cult half, suppose A�B 2 �. We wish to show that
there is a � � � such that A 2 � and B 62 �. We know that A 6` B;�, where �
is the set of all formulae not in �, for if A ` B;�, then A�B ` �, which would
give A � B 62 �, as � is a prime theory. So, since A 6` B;�, we can extend A

and B;� to an exclusive pair. The �rst part of this pair will be a prime theory
(call it �) containing A, the second part will include B and everything not in
�, so � must be a subset of � as desired.

So, we have shown that the canonical model is indeed a model for our exten-
sion of intuitionistic logic. This, with the simpler soundess proof gives us the
following result.

Theorem 5 � ` � is provable if and only if � entails � in every Kripke model.
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Now that we have this theorem, we can consider extensions of the basic system
given by adding conditions on frames. Again, duality aids in our investigations.

Definition 3 Given a model hP;�;
i its dual is the triple hP;�;
di, where
x 
d p i� x 6
 p, for each atomic formula p.

We use 
d rather than 6
, since 
d is extended to relate arbitrary formulae using
the usual rules. For example, x 
d A ^ B if and only if x 
d A and x 
d B. It
would be confusing to write this `x 6
 A ^ B if and only if x 6
 A and x 6
 B,'
thinking of 6
 as a forcing relation and not just as the negation of 
, for this is
not true, in general, when reading `6
' as `does not force'. It's better to have a
new notation, like `
d' for the relation which agrees with 6
 on atomic formulae,
but diverges for more complex ones.

Note that the dual of a model is indeed a model (the hereditary condition
is sats�ed by 
d). The dual of a model is related to the original model by the
following dualtiy lemma

Lemma 6 (Duality for Kripke Models) For any model hP;�;
i, for any

point x 2 P , and for any proposition A, x 
 A if and only if x 6
d Ad. Further-

more, � entails � in a model if and only if �d entails �d in the dual of that

model.

The �rst result is a straightforward induction on the complexity of the propo-
sition A. The second result is a simple corollary of the �rst. The lemma brings
with it correspondence results for extensions of our basic logic.

Here is one example. The validity of > ` (A � B) _ (B � A) corresponds
to no forward branching, in the sense that > ` (A � B) _ (B � A) is valid
in all models with no forward branching, and if you have a frame with forward
branching, then there is an evaluation on that frame which invalidates > `

(A � B) _ (B � A). The duality lemma shows us that the dual condition,
(A�B)^ (B�A) ` ? corresponds to no backward branching. The reasoning is
direct. Consider a model with no backwards branching. Its dual has no forward
branching, so there's no point at which (A � B) _ (B � A) fails. As a result,
in the original model, there's no point at which the dual (A � B) ^ (B � A)
succeeds, by duality. Conversely, suppose you have a frame with backwards
branching. It follows that its dual has forward branching, and you can �nd
an evaluation on that frame which invalidates (A � B) _ (B � A) somewhere.
Dualise that model to construct a model on the original frame. This is a model
with a point at which (A � B) ^ (B � A) succeeds somewhere, invalidating
(A�B) ^ (B �A) ` ? as required.

This procedure is general, so it applies in other cases too. For example,
> ` :A _ ::A corresponds to forwards con
uence (if x � y; z then for some
w, y; z � w) so backwards con
uence (if x � y; z then for some w, y; z � w)
corresponds to �A ^ ��A ` ?.

Depending on your interpretation of Kripke models, you may prefer frames
which allow backwards branching, or those which do not. For example, if you
take the frames to model states of a particular reasoner, with di�erent choices
during the process of reasoning, you might wish to allow forwards branching
but to disallow backwards branching. (You might think you could only get
here through the particular path of reasoning you've actually taken.) If that
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is the case, then subtraction allows you to express that thought in your object
language. You think that (A � B) ^ (B � A) entails ?. That is, you can't get
both A before B and B before A.

3 Propositional Quanti�cation

Now, if we extend the system with 8p with the following rules:

� ` Ap;�

� ` 8pA;�
where p is not free in � [�

�; Ap ` �

�;8pA ` �

it follows that all intuitionistic connectives can be de�ned in terms of implication
and univeral propositional quanti�cation. (These rules might be too strong
for your taste. For example, you can prove 8p(A _ B) � 8pA _ 9pB this
way. You can restrict the rules, so that the universal right rule allows no �
in the consequent, to get a more intuitionistically palatable 
avour of universal
propositional quanti�cation. That is irrelevant for our purposes, for we will
show that subtraction cannot be de�ned using 8p as given here | it will follow
that it cannot so be de�ned using any weaker connective.) The de�nition of the
connectives are as follows:

? = 8pp

A ^ B = 8p
�
(A � (B � p)) � p

�

A _ B = 8p
�
(A � p) � ((B � p) � p)

�

The natural question arises. Can subtraction be de�ned in these terms too?

Theorem 7 Subtraction cannot be de�ned in terms of propositional quanti�ca-

tion and intuitionistic propositional logic.

Proof The universal quanti�er rules given above are valid in Kripke models
in which we interperet univeral propositional quanti�cation with a constant
domain of propositions. In other words, given a frame hP;�i, the propositions
quanti�ed over are the members of the set Prop(P;�). Given the set PV of
propositional variables, an assignment is a function a from PV to Prop(P;�).
A for any propositional variable p and any propositionX , themodi�cation on an
assignment a, written `a(p := X)', is the function which returns X when given
p, but agrees with a otherwise. A model is determined by a relation 
 between
atomic formulae (propositional constants) and points as before. However now
the relation is extended to relate points, formulae and assignments in order to
model formulae with free propositional variables. The recursive de�nition is as
follows.

� a; x 
 p i� x 
 p, if p is a propositional constant.

� a; x 
 p i� x 2 a(p), if p is a propositional variable.

� a; x 
 A � B i� for each y � x, if y 
 A then y 
 B.

� a; x 
 8pA i� a(p := X); x 
 A for each X 2 Prop(P;�).
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It is quite simple to show that the rules given above for the universal quanti�er
are valid in these models.

Note that the rules given above care only about the descendents of points
(that is, they care only about the points appearing further on in the model).
There is nothing which looks backwards down the relation �. We will formalise
this notion, and use it to show that subtraction cannot be de�ned using these
connectives.

Given the model hP;�;
i, the submodel generated from x is the triple,
hPx;�x;
xi de�ned by restricting your attention to the set of descendents of x.
We will show by induction on A, that for each y � x, a; y 
 A i� ax; y 
x A.

� The result holds true when A is either a propositional constant. If y � x

then y 
 p i� y 
x p.

� If A is a propositional variable p, then a; y 
 p i� ax; y 
x p, since y 2 a(p)
i� y 2 ax(p), as y � x.

� For implication, whenever y � x, a; y 
 A � B i� for each z � y, if
a; z 
 A then a; z 
 B, i� for each z � y, if ax; z 
x A then ax; z 
x B

(by hypothesis) i� ax; y 
x A � B, since z � y only if z � x.

� For universal quanti�cation, a; y 
 8pA i� a(p := X); y 
 A for each
X 2 Prop(P;�), i� a(p := X)x; y 
x A for each X 2 Prop(P;�) (by
hypothesis) i� ax(p := X); y 
x A for each X 2 Prop(Px;�x), i� ax; y 
x
8pA, as desired.

It follows that subtraction is not de�nable in the language of propositional
quanti�cation and implication. Consider the following two models on the one
frame.

A;B

A;B

A

A;B

y

x

These models agree at point x (at which A and B are both true) but not at the
earlier point y. By the generated submodel result, any proposition expressible
in terms of the universal quanti�er and implication will have the same value at
x in both models. (Since the models restricted to x agree.) However, A� B is
true at x in the �rst model, but not the second. So, the subtraction cannot be
expressed in terms of universal quanti�cation and implication. /

What does this mean for subtraction? If your only resources at hand are those
of implication and propositional quanti�cation and those de�nable in terms
of these notions, then you cannot de�ne subtraction. Does this mean that
subtraction is not an intuitionistic connective? That depends on what resources
you have at hand.

4 Embeddings

It is possible to embed classical logic into intuitionistic logic by way of the
famous double negation translation. A is a classical theorem if and only if ::A
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is an intuitionistic theorem. By duality, ::A is a theorem if and only if ��Ad

is a co-theorem. It is simple to show that A is a classical theorem if and only if
Ad is a classical co-theorem. It follows that ��A is a co-theorem of our logic
if and only if A is a classical co-theorem. So, for example, ��(A ^ �A) is a
co-theorem, since A ^ �A is a classical co-theorem, dually to the intuitionistic
theoremhood of ::(A _ :A).

The embedding works in the other direction too. It is well known that
intuitionistic logic can be modelled inside S4 by the translation

pt = �p

>t = >

?t = ?

(A ^ B)t = At ^ Bt

(A _ B)t = At _ Bt

(A � B)t = �(At � Bt)

The veri�cation is a straightforward mapping between the possible worlds mod-
els for S4 and those for intuitionistic logic. An inspection of the semantics for
the implication-free fragment shows that a similar mapping will work here:

pt = �p

>t = >

?t = ?

(A ^ B)t = At ^ Bt

(A _ B)t = At _ Bt

(A�B)t = �(At ^ :Bt)

However this time, the intuitionistic accessiblity relation � is modelled by the
converse of the relation R in the S4 frame, since propositions of the form �A

are not closed upwards in frames but rather, closed downwards. If x 
 �A and
yRx, it follows that y 
 �A (when R is transitive, at least). The veri�cation
that this translation models the implication-free fragment is routine. The more
interesting result is the modelling of the whole language. For this we need two
modal operators, a necessity which looks up the relation R, and a possibility
which looks down the relation. In other words, we need the temporal logic TS4,
which extends S4 with another modal operator �, with the following rule

�A ` B
======
A ` �B

The logic is sound and complete with respect to the expected class of models.
The frame conditions are as you would expect:

� x 
 �A if and only if for each y where xRy, y 
 A.

� x 
 �A if and only if for some y where yRx, y 
 A.

The translation of our logic into TS4 is as follows:

pt = �p

>t = >

?t = ?

(A ^B)t = At ^Bt

(A _B)t = At _Bt

(A � B)t = �(At � Bt)
(A�B)t = �(At ^ :Bt)
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The intuitionistic propositions according to this translation are still the sets
of formulae which are closed upwards. It is simple to show that not only are
formulae of the form �A closed upwards, but so are formulae of the form �A,
so we could have decided to translate p by �p instead of �p, the translation
would have the same results.

5 Algebra and Topology

It's well known that logics can be studied using algebraic techniques. The
algebras appropriate to intuitioinistic logic are well-known. Heyting algebras are
distributive lattices with relative pseudocomplementation. That is, in addition
to binary operators ^ and _ satisfying the usual distributive lattice axioms,
there is a two-place operator � such that for every elements a, b and c of the
algebra, a ^ b � c if and only if a � b � c, where � is the natural partial order
de�ned in terms of the lattice operations.

Subtraction can be de�ned analagously | it is the operator de�ned on the
algebra by setting a� b � c i� a � b _ c.

It is well known that in any topological space, the set of open sets, under
the natural order, union and intersection is a Heyting algebra. In particular,
A � B can be de�ned as the interior of the set A _ B. It is simple to show
that subtraction can not be de�ned on all topological spaces. Consider the
standard topology on the real line, and take the two open sets (0; 1) and (0; 2).
Can the subtraction (0; 2) � (0; 1) be selected as an open set? We know that
(0; 2) � (0; 1) [ (x; 2) whenever x < 1. So, if (0; 2) � (0; 1) is de�ned, we have
(0; 2) � (0; 1) � (x; 2) whenever x < 1. So, (0; 2) � (0; 1) �

T
x<1

(x; 2) =
[1; 2). However, (0; 2)� (0; 1) 6� (1; 2), as (0; 2) 6� (0; 1) [ (1; 2). Therefore the
subtraction (0; 2)� (0; 1) is not an open set.

However, dually, the implication-free logic is the logic of closed sets in a
topological space, just as the subtraction-free logic (standard intuitionistic logic)
is the logic of open sets. (This is a straightforward consequence of our duality
lemma.)

It would be a mistake, however, to infer from this that the logic of both
implication and subtraction was the logic of clopen sets in a topological space.
The natural structure is a set with two topologies, hX;O1;O2i. We'll call such
structures bi-topologies.

Let's talk about these in terms of closure and interior operators Cl1 and Int2.
They are tied together by the following rules. For each Y; Z � X

Cl1Y � Z if and only if Z � Int2Y

It follows that the closed1 sets are the open2 sets.
Consider frames. In frames, Cl1Y = fz : 9y 2 Y; y � zg. It turns out that

any bi-topology is isomorphic to such a frame. Why? Set y � z to mean z 2

Cl1fyg. It's transitive and re
exive. (Not necessarily antisymmetric, however.)
We'll show that Cl1Y = fz : 9y 2 Y; z 2 Cl1fygg. Why is this? The closed1 sets
are the open2 sets. It follows that the closed1 sets are closed under arbitrary
unions. So, fz : 9y 2 Y; z 2 Cl1fygg is closed1, as it's a union of closed sets.
So, it must be the closure of Y , as it's closed, and it's contained in any closure
of Y .

This is a known topological result. The topology we have de�ned on a frame
is the Alexandrov topology on a partially ordered set ([9] page 45). We have
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shown that a topology is appropriate for intuitionisitic logic with subtraction
if and only if it is a frame. So frames are a very good model for our logic. A
topology is a model for subtraction only if it is isomorophic to a frame.

6 Beth Models

Now that we have our results from topology and algebra, it's simple to see how
subtraction behaves in Beth models.

Definition 4 Given a frame hP;�i, a bar through a point x 2 P is a set B of
points such that any path through x must intersect B at least once. A set X is
closed under bars if and only if for each x 2 P if X bars x then x 2 X .

The set Prop(P;�) of Beth propositions on a frame hP;�i is the set of all
the sets X of points which are both closed upwards and closed under bars.

A Beth-evaluation on a frame is a relation 
 between points and atomic
formulae satisfying the following hereditary and bar conditions.

� If x 
 p and x � y then y 
 p, for atomic formulae p.

� If x is barred by a set Y such that for each y 2 Y , y 
 p, then x 
 p too.

These conditions ensure that the set of points at which an atomic formula is
forced in the frame is indeed a proposition in the frame. The forcing relation is
then extended to relate points to arbitrary formulae as follows:

� x 
 A ^ B i� x 
 A and x 
 B.

� x 
 A _ B i� for some bar B of x, for each y 2 B, y 
 A or y 
 B.

� x 
 > and x 6
 ? for each x.

� x 
 A � B i� for each y � x, if y 
 A then y 
 B.

A frame together with an evaluation is called a Beth model.

Beth frames di�er from Kripke frames by introducing the notion of a bar, and
the modi�ed condition for disjunction. The idea is this: a disjunction can be
true at a point without either disjunction being true at that point, provided
that no matter how things turn out, one or other disjunct is eventually made
true.

As in the Kripke case, it's not di�cult to show that for any proposition A the
set of points at which A is forced is a proposition on the frame. The veri�cation
is a routine induction on the complexity of the formula.

These frames can be extended to model subtraction, because propositions
in Beth models are closed under in�nite intersection. If you have a family of
propositions (closed upwards and closed under bars) then the intersection must
be closed upwards and under bars, so it is a proposition too. Therefore, we
can de�ne the subtraction of two propositions using intersection. Given two
propositions X and Y , the subtraction of Y from X is the intersection of all
propositions Z such that X entails (that it, is a subset of) the closure of Y [Z.
In other words, X minus Y is the smallest proposition Z such that Y [ Z bars
all elements of X .
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To make this look a little more like the traditional evaluation clauses, x 

A�B i� x 
 C for each C where A 
 B_C, or A�B is the smallest proposition
C where A 
 B _ C. So, x 
 A�B i�

8X8z(z 
 A) z is barred by jjBjj [X)) x 2 X)

(where jjBjj is the set of all points y where y 
 B). This is by no means a
�rst-order condition on points in the model, but then, neither is the disjunction
condition in Beth models. Both conditions quantify over not only points in the
model but also sets of points.

The more simple and perspicuous condition for subtraction in Kripke models,
alas, won't do in Beth models, as there are simple counterexamples. Consider
the following model

x : A

y : A;B z : A;C

In this model, x 
 B _ C. In particular we have A ` B _ C. So, we'd wish to
have A�B ` C. C is true only at z, so it follows that we cannot have x 
 A�B.
The point x would support A�B were we to use a Kripke evaluation (but then,
x would not support B _ C, so the subtraction condition is still satis�ed). In
this model, A�B is true only at z, as the set fzg is a proposition and it is the
smallest such proposition that with fyg bars fx; y; zg.

Before moving on to other topics, we should note that the dualisation results
from Kripke frames do not transfer to Beth frames, because of the way disjunc-
tion and conjunction are treated di�erently. However, if you desired, you could
dualise the whole construction anyway | but in the dual frame, disjunction has
the traditional clause, and conjunction has a clasue referring to bars of points.
Subtraction has the simple clause from Kripke frames, but implication has a
very complex clause. The points in Beth models are not theories (closed under
conjunction and logical consequence) but they are closed under disjunction (if
A _ B 2 a then A 2 a or B 2 a) and logical consequence, but not conjunction
(you can have A 2 a and B 2 a but not yet A^B 2 a). Do such strange models
for intuitionistic logic have any use? That remains to be seen.

7 Further Work

There's more work to look at than could �t in this paper.

� The �-calculus corresponds to intuitionistic implication quite nicely. The
types of closed terms are the theorems of intuitionistic implication. Is
there a subtraction analogue?

� Functional Completeness: Is there a sense in which the connectives of in-
tuitionistic propositional logic capture all of the propositional connectives
on some domain of propositions?

� Forcing: It is known that intuitionistic logic has a connection with forc-
ing [4]. Does subtraction add anything to our understanding of this con-
nection?
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� Topos Theory: Intuitionistic logic is modelled in toposes, which are nat-
urally occurring category-theoretic structures. Does subtraction have a
place in these structures? Work in closed set logic in categories is no
doubt relevant here [10], though of course you will need a combination of
closed and open set logic to model subtraction in intuitionistic logic.

� Quanti�ers: Of course, propositional logic is not the only game in town.
We ought to consider �rst-order quanti�ers. Are the universal and exis-
tential quanti�ers of intuitionistic logic also naturally extended to include
other quanti�ers in an analagous way?

8 Is the Extension Acceptable?

Intuitionistic logic can be interpreted in many di�erent ways. In this section
we will consider just three di�erent understandings of the formal system of
intiuitionistic logic to see whether subtraction emerges as an appropriate con-
nective.

8.1 Incomplete Information

One reason to be interested in intuitionistic logic might be a concern to appro-
priately incomplete information. If your interest is in formal semantics which
allow incomplete information, then a natural way to model this is in structures
like Kripke frames. We model propositions as upwardly closed sets of points |
where these points can be stages of reasoning, theories, times, precisi�cations,
or something else again. Given such a modelling, then subtraction seems alto-
gether as appealing as intuitionistic implication. It is de�nable on such frames,
and and has an obvious interpretation. (A�B means \A came before B").

8.2 The Constructive Reasoner

One particular intepretation of incomplete interpretations is the notion of the
constructive reasoner, which has been so important for the interpretation of
intuitionistic logic. We think of points in models as stages of reasoning (or
construction, or veri�cation) of an ideal reasoner. In such an interpretation,
subtraction may or may not be meaningful. If the model is a Kripke model, and
if the reasoner is, in fact, an ideal reasoner, then it seems that subtraction is an
acceptable connective. All that is necessary is that the reasoner can remember
what she has reasoned. Not simply the facts that she has veri�ed up until
now, but also when one proposition came before another. If the reasoner is
like this, then subtraction is an acceptable connective. A veri�cation of A �B

is given by noting that in the past A came at some stage when B was not
present. For constructivists, the relation of \A is veri�ed at x" is a decidable
one, so provided that at any stage it may be decided which stages came earlier,
then the subtractions true at a stage can be decided too. So subtraction seems
acceptable on this account.

However, the addition of subtraction brings with it the failure of an impor-
tant intuitionistic meta-theorem | the primeness theorem. In the context of
subtraction we no longer have ` A _ B only if ` A or ` B. We can have a
proof of A _ B without having a proof of A or a proof of B. This might be a
serious problem, or it might not. On a Kripke frame, primeness is preserved in
the sense that at any point in the model, a disjunction is true if and only if at
least one disjunct is true. In this sense, a disjunction is veri�ed (constructed,
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demonstrated, whatever) if and only if one disjunct is veri�ed (or constructed or
demonstrated). Primeness in this weak sense is preserved. Of course, primeness
is preserved in completely classical models too | after all, A _ B is true in a
possible world i� in that world either A is true or B is true. That isn't enough
for the interpretation to be particularly constructive. What makes the Kripke
models at least more of a model of construction is the fact that the models
allow for increasing information. This is not possible in classical possible worlds
models. The only prime theories (classically) are the complete theories. And
these brook of no addition under pain of inconsistency. In intuitionistic logic
with subtraction, prime theories can be increased as more information comes
in. Intuitionistic logic with subtraction varies from its subtractionless parent
because in our extended logic, the set of theorems is not a prime theory. You
cannot construct a Kripke model in which the theorems of the logic alone are
veri�ed in a point in that model. If you want this to be the case, you must
move to Beth models, where the propositions true at a point need no longer be
a prime theory.

If, your favoured interpretation of the constructive reasoner is a Beth model,
then it is not clear that subtraction is an acceptable connective. True, subtrac-
tion can be de�ned on Beth models, in the sense that for any two propositions
on the frame, their subtraction is also a proposition on the frame. However, this
does not mean in and of itself that subtraction is an acceptable connective on
this interpretation. It depends on the way the model is read. Given a particular
point x, and particular propositions A and B, it may not be decidable whether
A � B is true at x or not. This is not something which can be read o� the
modelling condition for subtraction | for the modelling condition for disjunc-
tion involves second-order quanti�cation. There is no obvious way to determine
whether or not A_B is true at a point x. Similarly, there is no obvious way to
determine whether A � B is true at x or not. Subtraction may or may not be
a meaningful connective in Beth models.

8.3 Propositions as Open Sets

Topology also provides a setting for the understanding of intuitionistic logic.
Subtraction is de�nable on a topological model only if a dual topology can
be de�ned on the intended topological space. While we have seen that there
are many of examples where this can be done (the topology on any frame).
However, these mightn't be the topologcal models you prefer. If the space is
one of \possibilities" in some sense, and a topology is de�ned by some kind
of metric of perceptual similiarity, then open sets on such a space are good
models of \in principle discriminable" propositions. Every possible state of
a�airs included in a proposition is surrounded by a set of other possibilities
which are like it. There is no case of a proposition which discriminates between
a possibility and all others,no matter how similar. On this reading, the logic
of open sets is natural. However, metric spaces (like, for example Rn , but also
less well known spaces) have no dual topologies whenever they are interesting
topological spaces. Why is this? We know that bi-topologies are isomorphic to
frames. In particular, x � y can be de�ned as y 2 Cl(fxg). In a metric space,
y 2 Cl(fxg) only when the disntace of y from x is zero, which happens only
when y = x. So the ordering relation on frames is identity, and the logic is
classical.

So, if the motivating idea for intuitionisim is that propositions are all open
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sets, because we do not have the powers to discriminate properly any set which
is not open then only a more extensive understanding of the `space' in which
propositions reside will give us an answer on subtraction, one way or another. In
particular, subtraction is de�nable only when there is a sense of \precisi�cation"
on the space, which will model the ordering � on the frame on the topology.
Otherwise, the open sets will be closed under the connectives of intuitionistic
logic, but not subtraction.1
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