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Abstract: I give an account of proof terms for derivations in a sequent calculus for classical propositional
logic. The term for a derivation δ of a sequent Σ � ∆ encodes how the premises Σ and conclusions
∆ are related in δ. This encoding is many–to–one in the sense that different derivations can have the
same proof term, since different derivations may be different ways of representing the same underlying
connection between premises and conclusions. However, not all proof terms for a sequent Σ � ∆ are
the same. There may be different ways to connect those premises and conclusions.

Proof terms can be simplified in a process corresponding to the elimination of cut inferences in se-
quent derivations. However, unlike cut elimination in the sequent calculus, each proof term has a unique
normal form (from which all cuts have been eliminated) and it is straightforward to show that term reduc-
tion is strongly normalising—every reduction process terminates in that unique normal form. Further-
more, proof terms are invariants for sequent derivations in a strong sense—two derivations δ1 and δ2

have the same proof term if and only if some permutation of derivation steps sends δ1 to δ2 (given a rela-
tively natural class of permutations of derivations in the sequent calculus). Since not every derivation of
a sequent can be permuted into every other derivation of that sequent, proof terms provide a non-trivial
account of the identity of proofs, independent of the syntactic representation of those proofs.

outline

This paper has six sections: Section 1 motivates the problem of proof identity, and reviews the
reasons that the question of proof identity for classical propositional logic is difficult.

Section 2 defines the sequent system to be analysed, showing that the standard structural rules
of Contraction and Weakening, and a less familiar structural rule—Blend—are height-preserving
admissible. It also introduces proof terms annotating sequent derivations, by analogy to the
well-understood sense in which λ terms annotate intuitionist natural deduction proofs. This
defines for a derivation δ a proof term τ(δ), a connection graph on the sequent derived by δ.

Section 3 covers an independent criterion for when a connection graph annotates some deriva-
tion. This can be seen as a kind of soundness and completeness result for proof terms.

*Thanks to the Melbourne Logic Group, Gothenburg University’s Logic Seminar, the DIP Colloquium and LiRa Sem-
inars at the University of Amsterdam, and Maria Aloni, Alexandru Baltag, Johan van Benthem, Franz Berto, Taus
Brock-Nannestad, Rohan French, Yoichi Hirai, Lloyd Humberstone, Mark Jago, Dave Ripley, Sonja Smets and es-
pecially to Shawn Standefer for comments and feedback on earlier versions of this material. ¶ This research is
supported by the Australian Research Council, through Grant dp150103801.
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In Section 4, we define a family of permutations of inferences in sequent derivations, and show
that if a permutation sends δ1 to δ2 then τ(δ1) = τ(δ2). This is followed by the converse result—
if τ(δ1) = τ(δ2) then some permutation of inference steps sends δ1 to δ2. It follows that proof
terms a strong kind of invariant for derivations under those permutations.

The sequent derivations considered in Sections 1 to 4 may involve Cut inferences. The terms
corresponding to these inferences involve what we call ‘cut points’, marking locations a Cut
formula is used in a proof. In Section 5 we define a reduction process for proof terms, eliminating
these cut points. This reduction procedure is both confluent and strongly normalising.

Then in the final section, Section 6, we will explore the connection between the reduction process
for terms and to cut elimination steps for derivations, and revisit the problem of proof identity
and cut reduction in the light of reduction for terms.

Together, the results of Section 2 to 6 provide an answer to the problems of Section 1, a natural
account of proof identity for classical propositional logic.

1 proof identity

To prove a conclusion from some premises, you show how that conclusion follows from those
premises. Sometimes, the same conclusion can be proved in a number of different ways, from
the same collection of premises. We see this all the time in mathematics. Mathematicians give
very different proofs of the one theorem, from the same basic set of mathematical principles.
Think, for example, of the different proofs that

?
2 is irrational [16].

The fact of distinctions between proofs for the one argument is not restricted to complex math-
ematical proofs: It is present at the very foundations of logic, in very simple proofs in basic
propositional logic—even in proofs very simple tautologies. For example, we can prove the tau-
tology p Ą (p Ą (p ∧ p)) in a number of different ways. One way is to prove the conjunction
p ∧ p from a single assumption p (conjoining that assumption with itself ), then discharging
that assumption of p to derive p Ą (p ∧ p), and then vacuously discharging the assumption
of p again. A second proof goes differently. We could make two assumptions of the premise
p and then discharge each assumption at different stages. We could use the first assumption
to derive the first conjunct of p ∧ p, and discharge that first. The second assumption, used to
derive the second conjunct of p ∧ p could be discharged second.

Using the conventions of Prawitz and his Natural Deduction [25], the two proofs look like this:1

(p)1 (p)1

∧I
p ∧ p

ĄI1
p Ą (p ∧ p)

ĄI2
p Ą (p Ą (p ∧ p))

(p)1 (p)2

∧I
p ∧ p

ĄI1

p Ą (p ∧ p)
ĄI2

p Ą (p Ą (p ∧ p))

1These proof uses the convention that the superscripted numbers indicate the steps in a proof where a formula
is discharged. So, in the first proof, the bracketed p assumptions are both discharged at the first ĄI step. No as-
sumptions are discharged at the second ĄI step—none are marked with a 2—which is why that discharge is vacuous.

Greg Restall, restall@unimelb.edu.au june 13, 2017 Version 0.922

http://consequently.org/writing/proof-terms-for-classical-derivations/
mailto:restall@unimelb.edu.au


http://consequently.org/writing/proof-terms-for-classical-derivations/ 3

These two proofs look very similar. They differ only in the way that the assumptions are dis-
charged. A proof of the same of shape as the proof on the left could prove the more general
formula q Ą (p Ą (p ∧ p)), since there is no requirement that the vacuously discharged p be
at all connected to the p in the rest of the formula. And a proof of the same shape as the proof
on the right could prove q Ą (p Ą (p ∧ q)), since there is no requirement in this proof that
the first assumption (giving the first conjunct) and the second assumption (giving the second)
be the same formula, since they are discharged separately.

One straighforward and perspicuous way to represent the different structures of these proofs
is by way of Church’s λ-terms [5, 15, 20]. We annotate the proofs with terms as follows:2

(x : p)1 (x : p)1

∧I
xx, xy : p ∧ p

ĄI1

λxxx, xy : p Ą (p ∧ p)
ĄI2

λyλxxx, xy : p Ą (p Ą (p ∧ p))

(x : p)1 (y : p)2

∧I
xx, yy : p ∧ p

ĄI1

λxxx, yy : p Ą (p ∧ p)
ĄI2

λyλxxx, yy : p Ą (p Ą (p ∧ p))

Variables annotate assumptions, and the term constructors of pairing and λ-abstraction cor-
respond to the introduction of conjunctions and conditionals respectively. Now the terms cor-
responding to the proofs bear the marks of the different proof behaviour. The first proof took
an assumption p to p∧p (pairing x with itself), and discharged an unneeded extra assumption
of p. The second assumed p twice (tagging these assumptions with x and y), conjoined their
result (in that order) and disharged them in turn (also in that order). Seeing this, you may re-
alise that there are two other proofs of the same formula. One where the conjuncts are formed
in the other order (with term λyλxxy, xy) and the other, where the first discharged assumption
of p is vacuous, not the second (with term λxλyxx, xy). Each of these terms describe a proof of
p Ą (p Ą (p ∧ p)), and each proves that tautology in a distinctive way.

We have already seen two different ways to represent the same underlying “way of proving”—
Prawitz’s natural deduction proofs, and its associated λ-term. This should at least hint at the
idea that identity of “proof” in this sense is something deeper than any particular syntactic rep-
resentation. It’s one thing to say that something may be proved in different ways because it
could be proved in English, or in French or in some other language. (Or on a blackboard or a
whiteboard or a paper or screen.) It’s another to say that the underlying proofs may differ in a
deeper sense than their representations. Here is another hint of why this might be the case:
These propositional proofs may be represented in yet another way, in Gentzen’s sequent calcu-
lus. The two proofs can be seen to correspond to the following sequent derivations, which we
annotate with λ-terms to display the parallel structure:

x : p � x : p x : p � x : p
∧R

x : p � xx, xy : p ∧ p
ĄR� λxxx, xy : p Ą (p ∧ p)

ĄR� λyλxxx, xy : p Ą (p Ą (p ∧ p))

x : p � x : p y : p � y : p
∧R

x : p, y : p � xx, yy : p ∧ p
ĄR

y : p � λxxx, yy : p Ą (p ∧ p)
ĄR� λyλxxx, yy : p Ą (p Ą (p ∧ p))

2Here, and elsewhere in the paper, terms are coloured red while formulas and derivations are black, to depict the
two different levels of abstraction.
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In both derivations pairing goes with the ∧R rule, and λ abstraction, with ĄR. In the first, the
assumed p is tagged with the variable x in both branches, so when the branches join, one single
instance of the assumption remains, and it is discharged in the next step, and the remaining
discharge is vacuous. The variable y is is not present in � λxxx, xy : p Ą (p ∧ p), so the dis-
charge at the next ĄR step is vacuous. In the second derivation, the p assumptions are tagged
with different variables, so they are discharged in different lines of the derivation, and neither
is vacuous.

These two sequent derivations are different representations of the same underlying logical
proof structure as the corresponding natural deduction proofs. Proof structure at this level of
analysis is not to be identified with the syntactic representation of the proofs. It is some kind
of invariant, shared by the diffrent representations.

This paper’s focus is proof terms as invariants for derivations in the classical sequent calculus,3

and before we attend to the distinctives of the classical system, it is important to attend to some
of the distinctives of sequent systems as such. What is possible to do in parallel in natural de-
duction and in proof terms is sometimes linearised in the sequent calculus. Let’s weaken our
target formula to (p ∧ q) Ą (p Ą (p ∧ p)) and consider two different derivations, using ∧L,
and the first projection fst on terms.

x : p � x : p

z : p � z : p
∧L

y : p ∧ q � fst y : p
∧R

x : p, y : p ∧ q � xx, fst yy : p ∧ p
ĄR

y : p ∧ q � λxxx, fst yy : p Ą (p ∧ p)
ĄR� λyλxxx, fst yy : (p ∧ q) Ą (p Ą (p ∧ p))

x : p � x : p z : p � z : p
∧R

x : p, z : p � xx, zy : p ∧ p
ĄR

z : p � λxxx, zy : p Ą (p ∧ p)
∧L

y : p ∧ q � λxxx, fst yy : p Ą (p ∧ p)
ĄR� λyλxxx, fst yy : (p ∧ q) Ą (p Ą (p ∧ p))

The ∧L rule has the following general form

Σ, z : A, z 1 : B � M(z, z 1) : C
∧L

Σ, y : A ∧ B � M(fst y, snd y) : C

and it allows one to transform a sequent appealing to (either or both of) z : A and z 1 : B, to derive
some consequent C with term M(z, z 1) into a sequent using y : A ∧ B, to derive the same con-
sequent C, but now instead of transforming the information z and z 1 using M , we transform
y, by taking the first projection fst y (to extract A from A ∧ B) and the second projection snd y

(to extract B from A ∧ B) and then proceeding to apply M as before.
Notice that the two different derivations have the same term—λyλxxx, fst yy—despite ap-

plying the rules in different orders. The term λyλxxx, fst yy carries no information about the
3One reason for the focus on the classical sequent calculus and not classical natural deduction is that there is

no well understood and well behaved natural deduction system for classical logic that has all of the symmetries
present in the classical sequent calculus. The closest we can get is to use systems of proof with multiple premises and
multiple conclusions [30,31,36], either of a traditional natural deduction sort, or more sophisticated proof nets [14,29],
but introducing one of these systems would be too much trouble for what it would be worth in this paper—and the
details of how such systems incorporate the structural rules of weakening and contraction is a delicate matter— so
the focus remains on the sequent calculus, which much better understood.
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relative order of application of the rules ∧L and ∧R. This is a general feature of the sequent
calculus. Different derivations represent the same underlying proof structure.

Another feature of this sequent calculus with terms is the way that the structural rules of con-
traction and weakening interact with the discipline of labelling. Consider the general structure
of the sequent rule ∧R.

X � A Y � B
∧R

X, Y � A ∧ B

If we take X and Y to be lists or multisets of formulas, then any formulas appearing in both X

and Y will appear more than once in the sequent X, Y � A∧B. If we wish to discharge them in
one go in a ĄR inference, we apply the rule of contraction to reduce the many instances to one.
This explicit appeal to a contraction inference can be avoided if you think of X and Y as sets of
formulas, with no duplicates. But this choice makes it difficult to discharge different instances
of the same formula in different inference steps, as we did in our proof with term λyλxxx, yy, in
which two instances of p are discharged in two successive inferences. The term sequent calculus
avoids the explicit inference steps of contraction (and weakening) on the one hand, and allows
for duplicate copies of the one formula discharged at different stages of the proof by making
use of variables labelling formulas. In a term sequent calculus, sequents are composed of sets
of labelled formulas. In the case of ∧R here, formulas occurring Σ1 and Σ2 sharing a variable
are immediately contracted into the one instance in the union Σ1, Σ2, and those tagged with
different variables remain distinct.4 Terms for proofs contain explicit structure corresponding
to the operational rules of the sequent calculus. The structural rules are implicit in the identity
and difference of the variables in those terms.

The Cut rule in the sequent calculus is also not an operational rule. It corresponds in λ-terms
to substitution, in the following way:

Σ1 � M : A Σ2, x : A � N(x) : C
Cut

Σ1, Σ2 � N(M) : C

Substitution of this form gives scope for simplification in proofs. Take the case where the cut
formula is a complex formula—here, a conjunction—introduced on both premises of the Cut:5

Σ1 � M1 : A Σ2 � M2 : B
∧R

Σ1,2 � xM1,M2y : A ∧ B

Σ3, y : A, z : B � N(y, z) : C
∧L

Σ3, x : A ∧ B � N(fst x, snd x) : C
Cut

Σ1−3 � N(fst xM1,M2y, snd xM1,M2y) : C

Trading in this complex Cut for Cuts on the subformulas A and B) corresponds to evaluating the
complexes fst xM1,M2y and snd xM1,M2y to M1 and M2 respectively.

4You can think of the variables in the different sequents Σ1 � A and Σ2 � B in the ∧R inference as their
‘interface,’ dictating how they are to interact when combined. Where is data to be shared between Σ1 and Σ2, and
where is it kept apart? The same goes for any rule in which sequents are is combined.

5In this derivation, and elsewhere in the paper, I use the shorthand notation: Σ1,2 for Σ1 Y Σ2, and Σ1−3 for
Σ1 Y Σ2 Y Σ3, etc., to save space in sequent derivations.
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Σ1 � M1 : A Σ3, y : A, z : B � N(y, z) : C
Cut

Σ1,3, z : B � N(M1, z) : C Σ2 � M2 : B
Cut

Σ1−3 � N(M1,M2) : C

If we think of fst xM1,M2y as identical to M1 and snd xM1,M2y as identical to M2, then there
is a sense in which N(fst xM1,M2y, snd xM1,M2y) is just N(M1,M2),6 and these two deriva-
tions have the same invariant. Simplifying this Cut preserves the underlying connection from
premises to the conclusion.

So much is well understood in the case of intuitionistic natural deduction, the intuitionistic
sequent calculus and λ-terms.7 Cut elimination in the classical sequent calculus brings with it a
number of complications, primarily due to the availability of the structural rules of contraction
and weakening on both sides of the sequent. Consider this simple derivation with a single Cut.8

p � p p � p
∨L

p ∨ p � p, p
W

p ∨ p � p

p � p p � p
∧R

p, p � p ∧ p
W

p � p ∧ p
Cut

p ∨ p � p ∧ p

We can eliminate the Cut by commuting it past the ∨L step on the left, or past the ∧R on the
right. This results in the following two derivations:

p � p p � p
∧R

p, p � p ∧ p
W

p � p ∧ p

p � p p � p
∧R

p, p � p ∧ p
W

p � p ∧ p
∨L

p ∨ p � p ∧ p, p ∧ p
W

p ∨ p � p ∧ p

p � p p � p
∨L

p ∨ p � p, p
W

p ∨ p � p

p � p p � p
∨L

p ∨ p � p, p
W

p ∨ p � p
∧R

p ∨ p, p ∨ p � p ∧ p
W

p ∨ p � p ∧ p

and these derivations are different. If we think of the process of eliminating cuts as evaluating
complex terms to a canonical result, it is more than puzzling to have two different answers,
depending on the order of evaluation.9

Having weakening on both sides of the sequent separator has more drastic consequences for cut
elimination. Suppose we have two different derivations of the one sequent Σ � ∆. We can
combine them, using weakening and Cut as follows.10

6One should attempt to hold these two opposing thoughts at once. The number 2 + 2 is identical to the number
4, while the term 2 + 2 is not the same as the term 4. Philosophers may be reminded of the Fregean distinction
between sense and reference, while computer scientists may be reminded of the difference between call by name and
call by value. The term fst xM1, M2y has the same value (referent) as the term M1, while they remain different names
(have different senses).

7This is not to say that it is straightforward or simple. The rules for disjunction and the existential quantifier in
intuitionistic natural deduction introduce complications of their own [15, Chapter 10].

8 ‘W ’ is for contraction here, following Curry’s notation for the combinators [6, 28].
9Unless, of course, those two different derivations are different presentations of the same underlying answer.

There is no conflict when one calculation returns the decimal number 2, while another returns the binary value 10.
Do these derivations present the same underlying proof ? That remains to be seen.

10 ‘K’ is Curry’s name for the weakening combinator [6, 28].
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δ1...
Σ � ∆

K
Σ � C,∆

δ2...
Σ � ∆

K
Σ,C � ∆

Cut
Σ � ∆

The standard procedure for eliminating the Cut gives us a choice: We can simplify the deriva-
tion by choosing δ1 as the derivation of Σ � ∆, or we could choose δ2. If reduction is identity of
the underlying logical connection between Σ and ∆, then distinctions between different deriva-
tions collapse—if the whole derivation is, to all intents and purposes, identical to δ1, and it is,
to all intents and purposes, identical to δ2—then to all intents and purposes any derivation for
Σ � ∆ is identical to any other. Distinctions between derivations collapse.

This paper will address these issues. I will introduce a proof invariant for classical sequent
derivations that shares many features with λ-terms for intuitionist derivations or natural de-
duction proofs. Proof terms for derivations with Cut involve explicit ‘cut points’ which may
be evaluated to generate a proof term for a Cut-free derivation. This process of evaluation is
strongly normalising (any procedure for evaluating cut points will terminate) and confluent
(different reduction processes result in the same reduced proof term).

Proof terms give rise to an analysis of permutations of rules in derivations, and distinct
derivations with the same proof term may be permuted into each other by rearranging infer-
ence steps which operate on different parts of the sequent. On this analysis, the two different
Cut-free derivations of p∨p � p∧p are distinct representations of the same underlying proof,
and one can be permuted into the other by permuting the ∧R above or below the ∨L.11 Cut re-
duction on derivations need not be confluent, since many derivations correspond to the one
proof term, even in the intuitionist case. Cut reduction on the underlying proof terms remains
confluent, and different derivations are different representations of the same underlying logi-
cal connection.

For the triviality argument, in which a Cut on a weakened-in Cut-formula C leads to reduc-
tions to two distinct derivations, δ1 and δ2, the proof terms introduced here motivate a more
sensitive analysis of Cut reduction steps for derivations. Instead of choosing between the deriva-
tions δ1 and δ2 of Σ � ∆, the reduction procedure chooses both. This motivates a different kind
of structural rule, here called ‘Blend’12 which is natural at the level of proof terms, is well suited
to classical logic,13 and which allows reduction on terms to be confluent and non-trivial.

Σ1 � ∆1 Σ2 � ∆2
Blend

Σ1,2 � ∆1,2

11When we permute a rule above a rule with two premises, it may duplicate, as happens here. In this case, the only
way to make a derivation with one ∧R and one ∨L step is to take those steps intependently and to compose them
with a Cut.

12In the literature on linear logic this is called ‘Mix’ [14, page 99]. This name is used for a different structural rule
in the literature on relevant logic, so I have opted for this new name.

13The Blend rule is not well suited to sequents for intuitionist logic, which have only one formula on the rhs. We
cannot straightforwardly blend Σ1 � A and Σ2 � B because we only have one slot on the rhs in which to put both
A and B.
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Now, we can eliminate the Cut on the weakened-in C in a natural way, blending the two deriva-
tions δ1 and δ2, and not making an arbitrary choice between them.

δ1...
Σ � ∆

K
Σ � C,∆

δ2...
Σ � ∆

K
Σ,C � ∆

Cut
Σ � ∆

becomes

δ1...
Σ � ∆

δ2...
Σ � ∆

Blend
Σ � ∆

The remainder of this paper defines proof terms and examines their basic properties. We start
with the definition of the sequent calculus and proof terms. In the process of defining the term
calculus, we will face a number of choice points, and I will attempt to be explicit about these
choices, and indicate where alternative paths could have been taken.

2 derivations and terms

Proof terms are to stand to derivations of classical sequents in a similar way to λ-terms for intu-
itionist sequents. However, there must be differences and distinctive features for the classical
case. The classical sequent calculus is highly symmetric, with an underlying duality between
premise and conclusion, the left hand side (lhs) and right (rhs). There is no principled differ-
ence in logical power between formulas on the lhs and those on the rhs. This differs deriva-
tions in the intutionist sequent calculus which have some number of formulas on the lhs (per-
haps none) and always single formula on the rhs—-and intuitionist natural deduction proofs,
which have some number (perhaps zero) of assumptions and a single conclusion. In an intu-
itionist derivation (proof) the formulas at the left (assumptions) are tagged with variables, and
the formula on the right (conclusion) is tagged with a term, carrying the structure of the proof.
This must be modified if we are to analyse the classical sequent calculus, and that is our first
choice point: we will attempt to analyse the full range of classical sequent derivations.

choice 1: Terms encode derivations for the full range of classical sequents of the form X � Y

with zero or more formulas in X (the lhs) and zero or more formulas in Y (the rhs).

This choice is not forced upon us. You could restrict attention to a smaller class of proofs, such
as sequents with a single side (for sequents of the form � Y, or X �), or even restrict your
attention to proofs of single formulas. However, if we can find a perspective from which proofs
for sequents of such disparate forms as (1) � A (showing that A is a tautology) (2) B � (showing
that B is a contradiction) (3) A � B (showing that B follows from A) (4) A,B � (showing that
A and B are jointly inconsistent) and (5) � A,B (showing that one of A and B must hold) are
on equal footings, with none any more fundamental than the other, then this would seem to be
consonant with the expressive power of the classical sequent calculus.

Consider, for example, the following two simple sequent derivations, and how we might repre-
sent these with something like λ terms:

p � p
¬L

p, ¬p �
∧L

p ∧ ¬p �
p � p

¬R� p, ¬p
∨R� p ∨ ¬p
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If at the end of the first derivation we tag the premise p ∧ ¬p with a variable, then there is no
formula in the sequent p ∧ ¬p � to tag with the term of the proof. In the second derivation
we have two formulas in the rhs. If one formula in the rhs is to be tagged with the term of the
proof, which is it to be? There seems to be no principled option to choose. Instead of tagging
a conclusion formula with a term, we tag the sequent separator itself, and tag the formulas on
the lhs and rhs with variables. Term sequents, then, will have this structure:14

π(x1, . . . , xn)[y1, . . . , ym]

x1 : A1, . . . , xn : An � y1 : B1, . . . , ym : Bm

where the proof term π(x1, . . . , xn)[y1, . . . , ym] relates the inputs x1, . . . , xn and the outputs
y1, . . . , ym. The proof term π shows how the atoms in the derived sequent A1, . . . , An �
B1, . . . Bm are related, and how information flows inside the underlying proof. So, we have
made the following choice:

choice 2: A proof term for the sequent X � Y shows how the formulas in X and Y are related
in the proof of that sequent. The premises and conclusions are treated in the same way,
encoded as variables, and the proof term encodes their relationship.

We can represent proof terms in a number of different ways. The representation that we will
mostly use in this paper is a collection of links between nodes, where the nodes in a proof term
are representations of instances of atomic formulas in a sequent, in a way that we will make
precise soon. Here are two examples of derivations annotated with these proof terms:

xñy

x : p � y : p
¬L

xñ¬̀z

x : p, z : ¬p �
∧L

∧́wñ¬̀∧̀w

w : p ∧ ¬p �

xñy

x : p � y : p
¬R

¬̀zñy� y : p, z : ¬p
∨R

¬̀∨̀vñ∨́v� v : p ∨ ¬p

Here, ∧́zñ¬̀∧̀w is a proof term with two nodes, ∧́w (picking out the first conjunct of w, in
this case the first ‘p’ in ‘p ∧ ¬p’), and ¬̀∧̀w (picking out the negand of second conjunct of w,
which is the second ‘p’ in ‘p ∧ ¬p’). In the proof term ∧́wñ¬̀∧̀w, the variable w occurs as an
input, and it has no outputs. (This corresponds to the fact that the variable w occurs on the left
side of the sequent we derived.) For the second derivation, ¬̀∨̀vñ∨́v is a proof term with v as
an output (and no inputs).

In the first derivation, the terms work like this, as the derivation is built up: xñy, the ax-
iom, tells us that the input formula (p, tagged with x) matches the output formula (tagged with
y). At the second stage, xñ¬̀z tells us that of the two inputs x and z, the x input is the same
as the thing negated in the z input. So, in ¬̀z, the ‘¬̀’ unpacks the negation to return the ne-
gand. Then, the final term ∧́wñ¬̀∧̀w says that the left conjunct of the input w matches as
thing negated in the right conjunct of the input w. So here, ∧́w and ∧̀w select the left and right

14I first learned of annotated sequents with this structure in Philip Wadler’s typescript “Down with the bureau-
cracy of syntax! Pattern matching for classical linear logic” [38], which introduces terms of this kind for classical
linear logic. I since learned that the idea at least dates back to Frank Pfenning’s work on structural cut elimination
in linear logic [24, page 9].
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conjuncts respectively of the conjunction formula tagged with w—and hence the orientation
of the accents. The same goes for the term ¬̀∨̀vñ∨́v for the derivation of v : p ∨ ¬p. Here, the
thing negated in the right disjunct of v is the same as the left disjunct of v.

A proof term shows how information flows in the derivation it annotates. Proof terms can also
be represented graphically, as a directed graph on the atoms of each sequent in the derivation:

p � p
¬L

p, ¬p �
∧L

p ∧ ¬p �
p � p

¬R� p, ¬p
∨R� p ∨ ¬p

(In this representation, I have elided the variables, though they still play a role in the man-
agement of contractions.) Either representation of the underlying flow of information is pos-
sible, though in the rest of the paper, I will use the term definition, as the parallel with well-
understood λ-terms is most clear. Nonetheless, the heritage in Sam Buss’s flow graphs for classi-
cal derivations is important to acknowledge [2–4], as is Došen’s work on generality [7] in proofs,
and Lamarche and Straßburger’s work on classical proof nets [19].

Enough of examples and motivation—now for the definitions.

definition 1 [formulas] The formulas in our language are constructed from a countable col-
lection p0, p1, p2, . . . of atomic formulas, closed under the binary connectives ∧, ∨ and Ą, the
unary operator ¬ and the two constants J and K, in the usual manner.15 We use p, q, r, etc., as
schematic letters ranging over atomic formulas, and A, B, C, etc., as schematic letters ranging
over formulas.

This definition reflects another choice.

choice 3: Each logical constant, ∧, ∨, Ą, ¬, J, K is treated as primitive, and not defined in
terms of other logical constants. Furthermore, the proof term system is designed to be
separable and modular. Rules for a concept will use that concept and will not appeal to
other logical constants, so we could take the collection of rules for (as an example) the
fragment of the language involving ∧, ∨, J and K, in which ¬ and Ą are not defined,
and attend to proofs in this restricted vocabulary.

Other options are psossible: We could take ¬ and ∧ (for example), as primitive, and define the
other connectives in terms of them. To do this, however, would be to make the relationship
between the defined connective and the concepts in terms of which it is defined invisible to
proof analysis, and it would make it impossible to reason about fragments of the language.

definition 2 [variables and cut nodes] For each formula A, we have countably many vari-
ables of type A. To be specific xA

1 , xA
2 , . . . xA

n , . . . are variables of type A, and we use u, v, w,
x, y, z as schematic letters ranging over variables, omitting the type annotation except where

15We could extend things further, to include separate connectives for every definable connective in the proposi-
tional language. The only reason for not doing this space. This paper is long enough as it is.
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it is useful to mention it. In addition, for each formula A we have a cut node of type A. For
definiteness, we use ‚A for the cut node of type A, and we use ‚, ⋆, ˚, ♯, ♭ as schemas ranging
over cut nodes, again, omitting the type annotation except for where it is helpful.

Cut nodes and variables are both kinds of nodes. We use n, m as schemas ranging over nodes.

definition 3 [nodes and subnodes] A node is either a variable or a cut node, or a com-
plex node defined as follows:

• If n has type ¬A, then ¬̀n, the negand of n, has type A.

• If n has type A ∧ B, its first and second conjuncts ∧́n and ∧̀n, have type A and B respectively.

• If n has type A ∨ B, its first and second disjuncts ∨́n and ∨̀n have type A and B respectively.

• If n has type A Ą B, its antecedent and consequent Ą́n and Ą̀n have type A and B respectively.

For each complex node ∨́n, ∨̀n, ∧́n, ∧̀n, Ą́n, Ą̀n and ¬̀n, we say that n is one of its subnodes
(its immediate subnode), and the subnodes of n are the other subnodes of that complex node.

The node/subnode relation is, in a sense, a converse of the formula/subformula relation. For
example, if n has type A ∧ B, it is a subnode of the complex node ∧́n of type A, while A is a
subformula of the formula A ∧ B. A complex node is a path into a constituent of a formula.

definition 4 [links and input/output positions] A link is a pair of nodes nñm of the same
type, or a single node nñ (where n has type K), or a single node ñm (where m has type J).
In the link nñm, or in nñ, or ñm, we say that left node n is in input position and the right
node m is in output position. The type of the link is the type of the nodes in the link.

We generalise positions to subnodes in a link as follows:

• If ∨́n, ∨̀n, ∧́n, ∧̀n or Ą̀n are in input position in a link, the indicated immediate subnode
n is also in input position in that link. If ∨́n, ∨̀n, ∧́n, ∧̀n or Ą̀n are in output position, the
indicated immediate subnode n is also in output position in that link. We say that ∨́, ∨̀, ∧́, ∧̀
and Ą̀ each preserve position.

• If Ą́n or ¬̀n is in input position in a link, the indicated immediate subnode n is in output posi-
tion in that link. If Ą́n or ¬̀n is in output position in a link, the indicated immediate subnode
n is in input position. We say that Ą́ and ¬̀ reverse position in that link.

Finally we say that the inputs in the link (if any) are the variables in input position in that link,
and the outputs (if any) are the variables in output position in that link. Notice that since each
link contains either zero, one or two (occurrences of) variables, each link has at most two inputs
and outputs in total.
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example 1 [a link] Consider, for example, the following link

Ą́Ą́Ą́x
((pĄq)Ąp)Ąp

1
ñĄ̀x

((pĄq)Ąp)Ąp

1

This satisfies the conditions to be a link. The node in output position, Ą̀x
((pĄq)Ąp)Ąp

1 , picks
out the consequent of the formula ((p Ą q) Ą p) Ą p, so it has type p. The inpu t node
Ą́Ą́Ą́x

((pĄq)Ąp)Ąp

1 also has type p, since p is the antecedent of the antecedent of the antecedent
of ((p Ą q) Ą p) Ą p. Dropping the superscripted type, we have Ą́Ą́Ą́x1 is in input position,
Ą̀x1 is in output position. The x1 in Ą̀x1 is also in output position since Ą̀ preserves position,
while in Ą́Ą́Ą́x1 (in input position), Ą́Ą́x1 (of type (p Ą q) Ą p) is in output position, Ą́x1

(of type p Ą q) is in input position, and x1 is in output position. So, the variable x1 is the only
output of the link Ą́Ą́Ą́x1

ñĄ̀x1, and the link has no inputs.
Were we to replace the variable x1 in the output node Ą̀x1 by a different variable of the same

type (or any variable of type A Ą p for some formula A), the the link would have two outputs. If
we were to replace the variable in Ą̀x1 by a cut node of a suitable type, to result in Ą́Ą́Ą́x1

ñĄ̀‚,
the result would still be a link with the sole output x1.

Derivations will be annotated by sets of links satisfying certain conditions—they are the con-
nections between parts of formulas that account for information flow in the derivation. Before
explaining those conditions, we will see some examples and develop the notation for represent-
ing and working with proof terms.

definition 5 [preterms, their inputs, outputs and types] A preterm is any finite set of
links. The inputs of a preterm are the inputs of any of its links, and its outputs are the outputs
of any of its links. We use π, π 1, etc., as schematic letters ranging over preterms.

If π is a preterm, x is a variable of type A and n is an input node of the same type, then π(x := n)

is the result of replacing any occurrences of the variable x in input position in π by n. Instead
of π and π(x := n) we may, as usual, represent these preterms as π(x) and π(n).16 We may
generalise this to allow for more input variables. Given a preterm π(x1, . . . , xm), the preterm
π(n1, . . . , nm) is the result of replacing the variables x1, . . . , xm in π by n1, . . . , nm.

If π is a preterm, y is a variable of type A and m is an output node of the same type, then
π[y := m] is the result of replacing any occurrences of the variable y in output position in π by
m. Instead of π and π[y := m] we may, as usual, represent these preterms as π[y] and π[m].17

We may generalise this to allow for more input variables. Given a preterm π[y1, . . . , yn], the
preterm π[m1, . . . , mn] is the result of replacing the variables y1, . . . , yn in π by m1, . . . , mn.

Finally if π is a preterm and its inputs are among the variables x1, . . . , xn of types A1, . . . , An

respectively, and its outputs are among the variables y1, . . . , ym of types B1, . . . , Bm respec-
tively, then we say that π is a preterm of type x1 : A1, . . . , xn : An � y1 : B1, . . . , ym : Bm. A
preterm of type Σ � ∆ is a candidate for describing a derivation of Σ � ∆.18

16This is intended to include cases where x does not actually occur in π(x) in input position, in which case the
preterm will be identical to π(n).

17This is intended to include cases where y does not occur in π[y] in output position, in which case the preterm
will be identical to π[m].

18Not all preterms succeed in describing a derivation, no more than all formulas assert truths. In the next section,
we give an independent characterisation of those preterms that describe derivations—the terms.
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So, consider the preterm
∧́xñ¬̀∨́y ∧̀xñ¬̀∨̀y

where x has type p∧q and y has type ¬p∨¬q (so ∧́x and ¬̀∨́y have type p, and ∧̀x and ¬̀∨̀y

have type q). In this term, x and y both occur as inputs. So, the term has type

x : p ∧ q, y : ¬p ∨ ¬q �
If we think of this term as π(x), singling out x as an input, and if z has type ¬(p ∧ q), then ¬̀z

has type p ∧ q, the same type as x, so π(¬̀z) is the following preterm

∧́¬̀zñ¬̀∨́y ∧̀¬̀zñ¬̀∨́y

which still has y as an input, but now has z as an output, since ¬̀ reverses position.

definition 6 [complexity for preterms] The complexity of a node is defined as follows. The
complexity of a variable is 0. The complexity of a cut node is 1. If n is an complex node, its
complexity is the complexity of its immediate subnode plus one. The complexity of a link nñm

is the sum of the complexities of n and of m. Finally, the complexity of a preterm is the sum of
the complexities of its links.

With preterms defined, we can now define the rules of the sequent calculus, alongside their
annotations with terms.

definition 7 [labelled sequents] A labelled sequent has the form

π

Σ � ∆

where π is a preterm of type Σ � ∆. As is usual in the classical sequent calculus, one of Σ or ∆

may be empty.

As is usual in the sequent calculus, the sequent Σ � ∆ can be seen as claiming that ∆ follows
from Σ. Here, the labels are added so that the proof term π has some way to express how that
logical connection is made, connecting the constituents of the formulas in Σ and ∆.

Now we have the resources to provide the rules for derivations in the labelled sequent calculus,
along with their proof terms. We start with the axioms.

definition 8 [basic axioms] The basic axioms of the sequent calculus are the labelled se-
quents of the following three forms: KL, Identity, and JR:

xñ

Σ, x : K � ∆

xñy

Σ, x : p � y : p,∆

ñy

Σ � y : J, ∆
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Each kind of sequent follows the general scheme for labelled sequents. In KL and Identity se-
quents, the variable x appears on the lhs, and it is the input variable in the proof term (either
xñy or xñ). In Identity and JR sequents, the variable y appears on the rhs, and it is the out-
put variable in the proof term (either xñy or ñy). The other variables present in the sequent
(those tagging formulas in Σ or ∆ play no role in this justification of the claim to consequence
made by the sequent, and do not appear in the proof term—they are irrelevant bystanders).

As mentioned in at the end of the first section of this paper, the proof calculus is closed
under the structural rule Blend.

π1

Σ1 � ∆1

π2

Σ2 � ∆2
Blend

π1 π2

Σ1,2 � ∆1,2

This structural rule is not a primitive rule of the system, but will be shown (after the whole sys-
tem is introuced) to be an admissible rule. (We show that if there are derivations of the premise
sequents, there is also a derivation of the concluding sequent.) At the level of derivability, Blend
is a consequence of the weakening rule. (If there is some derivation of Σ1 � ∆1 then we can
weaken it to the derivation of Σ1,2 � ∆1,2, by the addition of the irrelevent and unused side
formulas Σ2 and ∆2.) But in the proof term calculus, this is not enough to meet our ends, for
the resulting derivation would appeal only to the connections established in the proof π1, and
not to those in π2. To properly blend the two proofs, we want to use both of them. This is possi-
ble with one minor emendation to how the sequent calculus is interpreted. We expand our set
of basic axioms just a little, including no new axiomatic sequents, but expanding our family of
axiomatic proof terms.

definition 9 [blended sequents] Given a family
πi

Σi � ∆i

of labelled sequents for each i in some finite index set I, their blend is the labelled sequent
Ť

iPI πi
Ť

iPI Σi � Ť

iPI ∆i

which collects together the lhs and rhs formulas of the basic axioms and combines their proof
terms.

With this definition in hand, we fill out the family of axioms.

definition 10 [axioms] The axioms of the sequent calculus are each of the blends of the basic
axioms.

Notice that the blend of a finite set of axiomatic sequents is a sequent which appears in a basic
axiom. (All axiomatic sequents, whether basic or not, either has a K on the left, or an atomic
proposition on both sides, or a J on the right.) However, the non-basic axioms differ from their
basic cousins by having proof terms with more than one link. Here is a non-basic axiom.

xñx ñw

x : p, y : q, z : r ∧ ¬s � x : p, y : q, w : J
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It is, for example, the blend of these two basic axioms:

xñx

x : p, z : r ∧ ¬s � x : p

ñw

y : q � y : q, w : J

in which z : r ∧ ¬s and y : q are irrelevant and unused bystanders. Notice that the sequent
y : q � y : q, w : J is also the blend of two axioms, and could have been annotated with the
proof term ñw yñy. In this proof calculus, that is a different axiom, though the underlying
sequent is the unchanged. You can think of different proof terms as giving different (axiomatic)
justifications of the same underlying sequent. One way to justify y : q � y : q, w : J is to point
out that q occurs on the left and the right (that is the link yñy). Another is to note the presence
of J on the right (that is the link ñw). Yet another is to give both justifications. These three
justifications differ in that they generalise in different ways. One (yñy) would suffice to ground
sequents in which J does not occur. Another (ñw) justifies sequents in which q does not occur.
The combined ground (ñw yñy) does neither. With that understanding of the axioms in
place, we can move to the rules of inference.

definition 11 [inference rules] The rules of inference are transitions between labelled se-
quents, or from a pair of labelled sequents to another labelled sequents. The inference rules are
presented in Figure 1. Each rule is given schematically, specifying labelled inference schemata
for the premises of the rule, and defining the appropriate substitutions to make to construct
the concluding sequent of the rule.

For example, the conjunction right rule:

π1[x]

Σ1 � x : A,∆1

π2[y]

Σ2 � y : B,∆2
∧R

π1[∧́z] π2[∧̀z]

Σ1,2 � z : A ∧ B,∆1,2

is read as follows: where Σ1 � x : A,∆1 is a labelled sequent with proof term π1[x], and Σ2 �
y : B,∆2 is a labeled sequent with proof term π2[y], then we can conclude Σ1,2 � z : A ∧ B,∆1,2

with the proof term π1[∧́z] π2[∧̀z], where z is a variable (possibly already occurring in one of
the premise sequents, but also possibly fresh), and π1[∧́z] is the proof term found by replacing
the output occurrences of x in π1[x] by ∧́z, and π2[∧̀z] is the proof term found by replacing the
output occurrences of y in π2[y] by ∧̀z. Recall, Σ1, Σ2, ∆1, ∆2 are all sets of labelled formulas,
and Σ1,2 is the union of the two sets Σ1 and Σ2, so some contractions of formulas may occur in
this rule, if they share the same label in Σ1 and Σ2 (or ∆1 and ∆2).

Some caveats in order. In π1[x] and π2[y], the output variables x and y may not actually
appear in π1[x] and π2[y]—consider the case where the sequent Σ1 � x : A,∆1 is an axiom,
grounded in some feature of Σ1 and ∆1, where A is an unused bystander. In that case, the
variable x will not appear in the proof term. This is why the substitution π1[∧́z] π2[∧̀z] is to
be understood as replacing all output instances of x in π1[x] and y in π2[y] by ∧́z and ∧̀z re-
spectively, even when the number of those instances is zero. With that understanding in place,
we can proceed to some derivations. Here are two different derivations of the same labelled
sequent.

Greg Restall, restall@unimelb.edu.au june 13, 2017 Version 0.922

http://consequently.org/writing/proof-terms-for-classical-derivations/
mailto:restall@unimelb.edu.au


http://consequently.org/writing/proof-terms-for-classical-derivations/ 16

conjunction:

π(x, y)

Σ, x : A, y : B � ∆
∧L

π(∧́z, ∧̀z)

Σ, z : A ∧ B � ∆

π1[x]

Σ1 � x : A,∆1

π2[y]

Σ2 � y : B,∆2
∧R

π1[∧́z] π2[∧̀z]

Σ1,2 � z : A ∧ B,∆1,2

disjunction:

π1(x)

Σ1, x : A � ∆1

π2(y)

Σ2, y : B � ∆2
∨L

π1(∨́z) π2(∨̀z)

Σ1,2, z : A ∨ B � ∆1,2

π[x, y]

Σ � x : A, y : B,∆
∨R

π[∨́z, ∨̀z]

Σ � z : A ∨ B,∆

conditional:

π1[x]

Σ1 � x : A,∆1

π2(y)

Σ2, y : B � ∆2
ĄL

π1[Ą́z] π2(Ą̀z)

Σ1,2, z : A Ą B � ∆1,2

π(x)[y]

Σ, x : A � y : B,∆
ĄR

π(Ą́z)[Ą̀z]

Σ � z : A Ą B,∆

negation:

π[x]

Σ � x : A,∆
¬L

π[¬̀z]

Σ, z : ¬A � ∆

π(x)

Σ, x : A � ∆
¬R

π(¬̀z)

Σ � z : ¬A,∆

cut:

π1[x]

Σ1 � x : A,∆1

π2(y)

Σ2, y : A � ∆2
Cut

π1[‚] π2(‚)

Σ1,2 � ∆1,2

Figure 1: Inference Rules of the Sequent Calculus

example 2 Two derivations of the sequent � u : (p ∧ q) Ą (p Ą (p ∧ p)), with the term
Ą́Ą̀uñ∧́Ą̀Ą̀u ∧́Ą́uñ∧̀Ą̀Ą̀u.

xñx

x : p � x : p

zñz

z : p � z : p
∧L

∧́yñz

y : p ∧ q � z : p
∧R

xñ∧́w ∧́yñ∧̀w

x : p, y : p ∧ q � w : p ∧ p
ĄR

Ą́vñ∧́Ą̀v ∧́yñ∧̀Ą̀v

y : p ∧ q � v : p Ą (p ∧ p)
ĄR

Ą́Ą̀uñ∧́Ą̀Ą̀u ∧́Ą́uñ∧̀Ą̀Ą̀u� u : (p ∧ q) Ą (p Ą (p ∧ p))

xñx

x : p � x : p
zñz

z : p � z : p
∧R

xñ∧́w zñ∧̀w

x : p, z : p � w : p ∧ p
ĄR

Ą́vñ∧́Ą̀v zñ∧̀Ą̀v

z : p � v : p Ą (p ∧ p)
∧L

Ą́vñ∧́Ą̀v ∧́yñ∧̀Ą̀v

y : p ∧ q � v : p Ą (p ∧ p)
ĄR

Ą́Ą̀uñ∧́Ą̀Ą̀u ∧́Ą́uñ∧̀Ą̀Ą̀u� u : (p ∧ q) Ą (p Ą (p ∧ p))

These two derivations use the same inference rules but appeal to them in different orders. They
end with the same proof term, in which the antecedent of the consequent of the formula (the
second occurrence of p) is linked to the first conjunct of the consequent of the consequent of the
formula (the third occurrence of p), and the first conjunct of the antecedent of the formula (the
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first occurrence of p) is linked to the second conjunct of the consequent of the consequent of the
formula (the last occurrence of p). This is an example of how proof terms collapse the merely
syntactic difference between two derivations differing in inessential order of application of the
rules. On the other hand, we can have different proof terms annotating the same sequent, when
the sequent is derived in a manner grounded in an appeal to different linkings between the
atoms, such as the proof term given in this derivation.

xñx

x : p � x : p

zñz

z : p � z : p
∧L

∧́yñz

y : p ∧ q � z : p
∧R

xñ∧̀w ∧́yñ∧́w

x : p, y : p ∧ q � w : p ∧ p
ĄR

Ą́vñ∧̀Ą̀v ∧́yñ∧́Ą̀v

y : p ∧ q � v : p Ą (p ∧ p)
ĄR

Ą́Ą̀uñ∧̀Ą̀Ą̀u ∧́Ą́uñ∧́Ą̀Ą̀u� u : (p ∧ q) Ą (p Ą (p ∧ p))

Here, the linkings are swapped: the second p is linked to the fourth p and the first p is linked
to the third.

When reasoning about derivations and inference rules, it will help to follow a distinction intro-
duced by Raymond Smullyan in the 1960s, between α (linear) rules, and β (branching) rules [32,
33]. The α rules for binary connectives (conjunction on the left, and disjunction and the con-
ditional on the right) takes a sequent in which two formulas (the subformulas) occur in their
specified position (the left or right), tagged with a variable. The output of the rule is that same
sequent, in which those tagged formulas are deleted, and replaced by the result in its specified
position, tagged with a specified variable. In the proof term, the the variables for the specified
subformulas are replaced by new nodes, using the specified constructors applied to the given
variable. So, to characterise the rule, we need to specify the variables, formulas and position
of the premise formulas, and the variable, position, formula and constructors for the output
sequent.

The same holds for the negation rule, which is an α rule for a unary connective. Following
Smullyan, I will treat this as a degenerate case of an α rule for a binary connective, in which the
two subformulas (and corresponding variables and positions) are the same. This means that
we can specify each of the five rules by giving the information in this single table:

rule {a1 : α1} {a2 : α2} {a : α} ά ὰ

∧L left A left B left A ∧ B ∧́ ∧̀

∨R right A right B right A ∨ B ∨́ ∨̀

ĄR left A right B right A Ą B Ą́ Ą̀

¬L right A right A left ¬A ¬̀ ¬̀

¬R left A left A right ¬A ¬̀ ¬̀
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where, for example, in ĄR, one subformula (the antecedent) A occurs on the left, while the
other (the consequent) B occurs on the right of the premise sequent, while the result has the
formula A Ą B occurring on the right. The variables for the premises are prefixed by the con-
structors Ą́ and Ą̀ respectively. Given the information on the row of this table, each rule can be
characterised as follows:

π{a1}{a2}

S{a1 : α1}{a2 : α2}

π{άa}{ὰa}

S{a : α}

where the premise sequent S{a1 : α1}{a2 : α2} has variable a1 tagging formula α1 in its speci-
fied position (given in the table, represented here by the curly braces), and variable a2 tagging
formula α2 in its specified position. The resulting sequent replaces those occurrences (leaving
the rest) and replaces them by variable a tagging formula α in its specified position. The proof
term π{a1}{a2} for the premise sequent is transformed into π{άa}{ὰa}, in which the appropri-
ate occurrences (input or output) of the variables a1 and a2 are replaced by the nodes άa and
ὰa respectively. Inspecting each of the α rules shows them to all be of this form.

The remaining rules are branching, β, rules, with two premises. Each inference has two premise
sequents, each with one of the two formulas (the subformulas, in the case of connective rules, the
Cut formula in the case of the Cut rule) occurring in a specified position in each premise se-
quents, and tagged with a variable. The concluding sequent of the rule collects together the side
formulas of both sequents, deletes the given tagged formulas (the subformulas or cut formu-
las) and replaces them with the resulting formula in its specified position, tagged by the specified
variable—except in the case of the Cut rule, where there is no resulting formula. The proof term
collectes together the proof terms of the premise sequents, where the appropriate variables for
the specified subformulas are replaced by new nodes—using the specified constructors applied
to the given variable in the case of a connective rule, or using the specified cut point of the type
of the cut formula, in the case of the Cut rule. As before, we can specify each of the four β rules
in a single table:

rule {b1 : β1} {b2 : β2} {b : β} β́ β̀

∧R right A right B right A ∧ B ∧́ ∧̀

∨L left A left B left A ∨ B ∨́ ∨̀

ĄL right A left B left A Ą B Ą́ Ą̀

Cut right A left A — ‚ ‚

Each β inference then has the following shape, given the choice of variables, positions and for-
mulas:

π1{b1}

S1{b1 : β1}

π2{b2}

S2{b2 : β2}

π1{β́b} π2{β̀b}

S1,2{b : β}

Characterising rules at this level of abstractness simplifies the presentation of our results about
the proof calculus. We start with the following theorem for the structural rules.
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theorem 1 [admissibility of structural rules] The structural rules of weakening, contraction
and blend are admissible. For the single premise rules of weakening and contraction

π

Σ � ∆
KL

π

Σ, x : A � ∆

π

Σ � ∆
KR

π

Σ � x : A,∆

π(x, y)

Σ, x : A, y : A � ∆
WL

π(x, x)

Σ, x : A � ∆

π[x, y]

Σ � x : A, y : A,∆
WR

π[x, x]

Σ � x : A,∆

if there is a derivation δ of the premise of the rule, of height h(δ), then there is a derivation δ 1 of the
conclusion of the rule, of the same height, h(δ). For the two premise rule of blend

π

Σ � ∆
π 1

Σ 1 � ∆ 1

Blend
π π 1

Σ,Σ 1 � ∆,∆ 1

if there is a derivation δ of the premise Σ � ∆ (with term π) and size s(δ) and a derivation δ 1 of the
premise Σ 1 � ∆ 1 (with term π 1) and size s(δ 1) then there is a derivation of the conclusion Σ,Σ 1 � ∆,∆ 1

(with term π π 1) with size s(δ) + s(δ 1) − 1.

For this theorem, we need to make the height and the size of derivations precise.

definition 12 [derivation height and size] The height of a derivation is the length of its
longest branch, counting the number of applications of application of inference rules along
that branch. (The height of an axiom is 0.) Its size is the number of occurrences of sequents in
the derivation. (The size of an axiom is 1.) So, given a derivations δ, δ1 and δ2 with heights and
sizes h(δ), h(δ1) and h(δ2) and s(δ), s(δ1) and s(δ2), respectively the derivation

δ...
π{a1}{a2}

S{a1 : α1}{a2 : α2}

π{άa}{ὰa}

S{a : α}

δ1...
π1{b1}

S1{b1 : β1}

δ2...
π2{b2}

S2{b2 : β2}

π1{β́b} π2{β̀b}

S1,2{b : β}

have heights h(δ) + 1 and max(h(δ1), h(δ2)) + 1, and sizes s(δ) + 1 and s(δ1) + s(δ2) + 1

respectively.

Proof: We can prove Theorem 1 by induction on the heights of derivations. For weakening, the
result is trivial. If Σ � ∆ is an axiom with term π, then the addition of x : A on the left or the
right of the sequent gives us another axiom with the same proof term. If the derivation is not an
axiom, then it ends in either an α or a β rule, and we may assume that the hypothesis holds for
all shorter derivations, including the derivation of the premise(s) of that rule. The derivations
end in either an α or a β rule, as follows:

δ...
π{a1}{a2}

S{a1 : α1}{a2 : α2}

π{άa}{ὰa}

S{a : α}

δ1...
π1{b1}

S1{b1 : β1}

δ2...
π1{b2}

S2{b2 : β2}

π1{β́b} π2{β̀b}

S1,2{b : β}
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By hypothesis, we can transform derivations δ, δ1 and δ2 with the addition of x : A as a new
premise or conclusion without disturbing the proof term. Let those derivations be δ 1, δ 1

1 and δ 1
2

respectively, and let S 1, S 1
1 and S 1

2 be the sequents with x : A added on the left (or the right).
The new derivations

δ 1

...
π1{a1}{a2}

S 1{a1 : α1}{a2 : α2}

π{άa}{ὰa}

S 1{a : α}

δ 1
1...

π1{b1}

S 1
1{b1 : β1}

δ 1
2...

π2{b2}

S 1
2{b2 : β2}

π1{β́b} π2{β̀b}

S 1
1,2{b : β}

are instances of exactly the same α or β rules, and the resulting derivations have the same
height as before.

For contraction, we reason in a similar way. If Σ, x : A, y : A � ∆ is an axiomatic sequent with
proof term π(x, y), then Σ, x : A � ∆ is an axiomatic sequent with term π(x, x): If A is neither
an atom nor K, so it is unlinked in the axiomatic proof term, so x and y don’t appear as output
variables in π(x, y), hence this term is π(x, x), or A is an atom or K and we replace the y-input
links in the axiom with x-input links. The same holds for x and y in the rhs instead of the lhs.
The result is another axiom, and the derivation has the same height: 0.

If the derivation not an axiom, then it ends in either an α or a β rule, and we may assume
that the hypothesis holds for all shorter derivations, including the derivations of the premise(s)
of that rule. By hypothesis, we have derivations in which all y variables in the conclusion of
those derivations are shifted to x. Now consider the conclusion of the α or β inference. If y was
not introduced as a variable in the inference, we are done: the conclusion has all appropriate ys
shifted to x. If y is introduced as a variable in that inference, then we transform the inference
to introduce x instead, and we are done. (We can choose the variable to be introduced in an α

or β rule at will—it need not be fresh.)

For blend, we proceed as follows. The blend of two axiomatic sequents (of size 1) is itself an
axiom (also of size 1, which is 1 + 1 − 1, as desired). Now consider the case where one of the
two sequents in the premise of the blend is derived in a derivation of size ą 1. In this case it
ends in either an α or a β rule. So, the derivation has one of the following two forms (where
without loss of generality we consider the case where the second premise of the blend ends in
the α or β inference):

δ1...
π1

S1

δ2...
π2{a1}{a2}

S2{a1 : α1}{a2 : α2}
α

π2{άa}{ὰa}

S2{a : α}
Blend

π1 π2{άa}{ὰa}

S1,2{a : α}

δ1...
π1

S1

δ2...
π2{b2}

S2{b2 : β2}

δ3...
π3{b3}

S3{b3 : β3}
β

π2{β́b} π3{β̀b}

S 1
2,3{b : β}

Blend
π1 π2{β́b} π3{β̀b}

S 1
1−3{b : β}

Greg Restall, restall@unimelb.edu.au june 13, 2017 Version 0.922

http://consequently.org/writing/proof-terms-for-classical-derivations/
mailto:restall@unimelb.edu.au


http://consequently.org/writing/proof-terms-for-classical-derivations/ 21

For the α case, the derivation is a blend of the left premise derivation of size s(δ1) and the right
premise derivation, of size s(δ2)+1. For the β case, the derivation is a blend of the left premise
derivation of size s(δ1) and the right premise derivation, of size s(δ2) + s(δ3) + 1.

In either case, we can blend the result of derivation δ1 with one of the premises of the in-
ference, applying the induction hypothesis on the shorter derivation, and then apply the rule
after the blend. The only subtlety in this transformation is the possibility that the deferred α or
β rule might now capture variables in the proof term π1 and the sequent S1. To avoid this, we
transform the derivations δ2 and δ3, shifting the variables a1, a2, or b2 and b3 to new variables
(of the same type), not present in S1, namely a 1

1, a 1
2, or b 1

2 and b 1
3 respectively. In this way, no

extra variables are captured in the deferred inference step, and the derivations end in the same
labelled sequent,

δ1...
π1

S1

δ2{a
1
1{a1}{a

1
2{a2}

...
π2{a 1

1
}{a 1

2
}

S2{a
1
1 : α1}{a

1
2 : α2}

Blend
π1 π2{a 1

1
}{a 1

2
}

S1,2{a
1
1 : α1}{a

1
2 : α2}

α
π1 π2{άa}{ὰa}

S1,2{a : α}

δ1...
π1

S1

δ2{b
1
2{b2}

...
π2{b 1

2
}

S2{b
1
2 : β2}

Blend
π1 π2{β́b}

S1,2{b
1
2 : β2}

δ3{b
1
3{b3}

...
π3{b 1

3
}

S3{b
1
3 : β3}

β
π1 π2{β́b} π3{β̀b}

S 1
1−3{b : β}

in which (in either case) the Blend occurs higher in the derivation. In the α case, by hypothesis,
the blend of δ1 and δ2{a

1
1{a1}{a

1
2{a2} has size s(δ1)+s(δ2)−1 when this blend is eliminated—

the substitution does not change the size of the derivation—and so, the whole derivation has
size s(δ1) + s(δ2), as desired. The reasoning for the β case has the same form.

The proof of the admissibility of Blend required the transformation of derivations by replacing
free variables. This notion can be formally defined as follows:

definition 13 [variable shifting] Given variables x and x 1 of the same type, and a specified
position (input or output) the x 1-for-x-shift of the derivation δ — δ{x 1{x} — is defined induc-
tively on the construction of δ as follows.

• If δ is an axiom then δ{x 1{x} is found by replacing any instances of x in δ in the appropriate
position by x 1. If there are no such instances, then δ{x 1{x} is identical to δ.

• If we extend δ by an α step or a β step as follows:

δ...
π{a1}{a2}

S{a1 : α1}{a2 : α2}

π{άa}{ὰa}

S{a : α}

δ1...
π1{b1}

S1{b1 : β1}

δ2...
π1{b2}

S2{b2 : β2}

π1{β́b} π2{β̀b}

S1,2{b : β}
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and x does not appear in the end sequent of the extended derivation (in the appropriate po-
sition), then the x-to-x 1 shift of that derivation is that derivation itself. (There is no variable
in the end sequent that needs shifting. So, x may have been used in the derivation up to that
point, but that does not need to shift, as it is not free in the conclusion.) If, on the other hand,
x is in the end sequent of the extended derivation (in its appropriate position), then the x-to-x 1

shift of the new derivation is defined as follows:

δ{x{x 1}
...

π 1{a1}{a2}

S 1{a1 : α1}{a2 : α2}

π 1{άa 1}{ὰa 1}

S 1{a 1 : α}

δ1{x{x 1}
...

π 1
1
{b1}

S 1
1{b1 : β1}

δ2{x{x 1}
...

π 1
1
{b2}

S 1
2{b2 : β2}

π 1
1
{β́b 1} π 1

2
{β̀b 1}

S 1
1,2{b

1 : β}

where in the α inference step, a 1 is the same as the variable a, unless a is identical to x (in the
required position), in which case a 1 is x 1. Similarly, in the β inference step, b 1 is b, unless b is
x (in the required position), in which case b 1 is x 1.

The effect of this definition is that in any derivation δ in which the variable x appears in the
nominated position in the endsequent, it is replaced by x 1 in all of the derivation leading up to
that use of x—either from axioms or from α or β rules where it is introduced into a derivation.
Other uses of that variable, absorbed by α or β rules are left unchanged. The result is a derivation
of exactly the same shape, but with an end sequent in which the variable x is replaced by x 1 in
the nominated position.

This is the term sequent calculus. It is a relatively standard sequent calculus for classical propo-
sitional logic in which the standard structural rules of weakening and contraction—and the
novel structural rule Blend—are admissible. The explicit inference rules are the left and right
rules for the connectives and Cut.

This proof system incorporates one other choice that has not been mentioned so far. The re-
striction of the identity axioms to atomic formulas is intentional. Of course, one can derive
identity sequents of the form x : A � x : A for each complex formula A.

definition 14 [identity sequents] For each formula A and variable x of type A, the identity
derivation Id(x)[y](A) with term xññy is defined inductively in terms of the structure of A, with
clauses given in Table 2.

The presence of identity derivations like Id(x)[y](A) raises a question concerning proof identity.
What is the relationship between this proof for A � A and the axiomatic derivation consisting
of A � A itself—if that is included as an axiom? We will not spend time in this paper examining
the categorical structure of proof terms (that is reserved for a sequel), but a comment is worth
making at this point. The category of proof terms (if it is to be a category) will have for each
formula A a canonical identity arrow (proof) idA : A → A. Given proofs f : A → B and
g : C → D, it is straightforward (in the manner we have seen above) to canonically define a
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Id(p)
xñy

x : p � y : p

Id(J)

ñy

x : J � y : J Id(K)
xñ

x : K � y : K

Id(A ∧ B)

Id(x1)[y1](A)

x1
ññy1

x1 : A � y1 : A

Id(x2)[y2](B)

x2
ññy2

x2 : B � y2 : B
∧R

x1
ññ∧́y x2

ññ∧̀y

x1 : A, x2 : B � y : A ∧ B
∧L

∧́xññ∧́y ∧̀xññ∧̀y

x : A ∧ B � y : A ∧ B

Id(A ∨ B)

Id(x1)[y1](A)

x1
ññy1

x1 : A � y1 : A

Id(x2)[y2](B)

x2
ññy2

x2 : B � y2 : B
∨L

∨́xññy1 ∨̀xññy2

x : A ∨ B � y1 : A, y2 : B
∨R

∨́xññ∨́y ∨̀xññ∨̀y

x : A ∨ B � y : A ∨ B

Id(¬A)

Id(x1)[y1](A)

x1
ññy1

x1 : A � y1 : A
¬R

¬̀yññy1� y1 : A, y : ¬A
¬L

¬̀yññ¬̀x

x : ¬A � y : ¬A

Id(A Ą B)

Id(x1)[y1](A)

x1
ññy1

x1 : A � y1 : A

Id(x2)[y2](B)

x2
ññy2

x2 : B � y2 : B
ĄL

x1
ññĄ́x Ą̀xññy2

x : A Ą B, x1 : A � y2 : B
ĄR

Ą́yññĄ́x Ą̀xññĄ̀y

x : A Ą B � y : A Ą B

Figure 2: The definition of identity terms and derivations

proof f∧g : A∧C → B∧D—and similarly for the other connectives. This raises the question:
what is the relationship between idA∧B and idA ∧ idB? In the proof term calculus, we identify
idA∧B and idA ∧ idB by defining idA∧B to be idA ∧ idB. The reason for this is twofold. First, it
simplifies cut reduction in the term calculus. Second, the problem of classical proof identity is
primarily due to the power of natural identities between proofs. To show as much as possible
to be safe without collapse, we admit as many natural identities between proofs as possible,
without collapse.

choice 4: There are no primitive identity axioms for complex formulas. We identify the iden-
tity proof for the complex formula A∧B to itself with the natural composition of identity
proofs on A and B (and similarly for all complex formulas).

One consequence of this choice is that in proof terms (those terms generated by derivations),
all links have atomic type.19 If x is a term of type p ∧ q, then xñx is a perfectly acceptable
link—and an acceptable preterm, according to Definition 5—but such a link will never appear

19To be more precise, a link mñn has type p for some atomic formula p, a link mñ has type K and a link ñn

has type J. In what follows, we will call these atomic links.
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in a derivation. Not every preterm will label a derivation. In the next section we give an in-
dependent characterisation of exactly which preterms are describe proofs. We will answer the
question: Which preterms are proof terms?

3 terms and correctness

We have seen one way that a preterm can fail to be a proof term—by containing non-atomic
links. Here is another example of a preterm that will not annotate a derivation. If x has type
p ∨ q and y has type p ∧ q, then

∨́xñ∧́y ∨̀xñ∧̀y

is a set of links—and in this case, a set of links with atomic type. The link ∨́xñ∧́y has type p

and ∨̀xñ∧̀y has type q. This is never going to be generated by any derivation, for if it were
generated by some derivation, that would be a derivation of the labelled sequent x : p ∨ q �
y : p ∧ q, and this sequent is has no derivation at all.

It turns out that there is an independent characterisation of those preterms that count as
proof terms, and this characterisation can give us some insight into the behaviour of proof
terms. One natural way to understand proof terms is to think of them as describing how infor-
mation flows from the inputs of a sequent to its outputs. The input of ∨́xñ∧́y ∨̀xñ∧̀y has
the disjunctive type (p ∨ q) and the output has the conjunctive type (p ∧ q). Successful infor-
mation flow requires more than just some link between input and output (there are two links
from input to output), but for a disjunctive input, we require not only a link from one disjunct,
but from both. (We want the link to be maintained if the input information is p, or if it is q.)
For a conjunctive output, we require not only a link to one conjunct, but to both. (We want the
link to be maintained for the p conjunct, as well as for q.) And we need this to hold in arbitrary
combinations. This is what fails in the case of our preterm: there is no route from the p input
to the q output.

What is common between conjunction nodes in output position and disjunction nodes in
input position in a preterm? They both arise out of branching (β) rules in a derivation. The
other nodes in arising out of β rules are conditional nodes input position, and cut points. These
are the said to be the switch nodes in a preterm.

definition 15 [switch pairs and switchings] The switch pairs for a preterm τ are the pairs
[∧́n][∧̀n] in output position, (∨́n)(∨̀n) in input position, [Ą́n](Ą̀n) in output and input po-
sition respectively, and [‚](‚) in output and input position respectively, such that at least one of
the nodes in the pair is a subnode of τ in its nominated position. The switchings of preterm τ

are given by selecting one node for each switch pair for τ and deleting each link in τ containing
that node as a subnode in the required position.

Consider the following preterm:

∧́uñ∧́∨́t ∨́∧̀uñ∧̀∨́t ∨̀∧̀uñ∨̀t

where u has type p ∧ (q ∨ r) and t has type (p ∧ q) ∨ r. It has two switch pairs [∧́∨́t][∧̀∨́t]

and (∨́∧̀u)(∨̀∧̀u). The nodes ∧́u and ∧̀u could occur in a switch pair, but only when they are
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present in output position. Here they are in input position, so they are not switched. So, the
four switchings of this proof term are found by making the following deletions:

1. delete [∧́∨́t], delete (∨́∧̀u) — result: ������
∧́uñ∧́∨́t ((((((

∨́∧̀uñ∧̀∨́t ∨̀∧̀uñ∨̀t

2. delete [∧́∨́t], delete (∨̀∧̀u) — result: ������
∧́uñ∧́∨́t ∨́∧̀uñ∧̀∨́t ������

∨̀∧̀uñ∨̀t

3. delete [∧̀∨́t], delete (∨́∧̀u) — result: ∧́uñ∧́∨́t ((((((
∨́∧̀uñ∧̀∨́t ∨̀∧̀uñ∨̀t

4. delete [∧̀∨́t], delete (∨̀∧̀u) — result: ∧́uñ∧́∨́t ((((((
∨́∧̀uñ∧̀∨́t ������

∨̀∧̀uñ∨̀t

definition 16 [spanned preterms] A preterm is said to be spanned if and only if every switch-
ing of that term is is non-empty.

definition 17 [atomic preterms] A preterm is said to be atomic if and only if every link in that
preterm is either of type p (for some atomic proposition p) or of type K or of type J.

theorem 2 [terms are atomic and spanned] For every derivation δ, the term τ(δ) is atomic and
spanned.

Proof: This is shown by an easy induction on the height of the derivation δ. If δ has height
0, then it is an axiom, and the proof term for each axiom is clearly atomic, and it is spanned
because it is nonempty and it has no switched pairs.

Now suppose δ has height n+1 and the induction hypothesis holds for derivations of height
n and smaller. First, the term τ(δ) remains atomic because each inference rule preserves the
type of links from premise to conclusion.

Second, consider last inference in δ. If it is an α inference, then this inference adds no
switched pairs to the proof term, and if any switching of the proof term of the premise is spanned,
so is any switching of the proof term of the conclusion, because the terms differ only in non-
switched subnodes.

If the last step in δ is a β inference, then its conclusion contains one switched pair, the
subnodes β́b and β̀b as presented below:

δ1...
π1{b1}

S1{b1 : β1}

δ2...
π2{b2}

S2{b2 : β2}

π1{β́b} π2{β̀b}

S1,2{b : β}

By hypothesis, the terms π1{b1} and π2{b2} are both spanned. The switched pairs in the term
π1{β́b} π2{β̀b} are the pair {β́b}{β̀b}, together with the switched pairs in π1{b1} and those in
π2{b2}. In any selection of deletions from the pairs other than {β́b}{β̀b}, π1{b1} and π2{b2}

are nonempty, and therefore, so do π1{β́b} and π2{β̀b}. When we delete one of {β́b}{β̀b}, at
most of π1{β́b} and π2{β̀b} is deleted, and the other remains. So, π1{β́b} π2{β̀b}, that is, τ(δ)

is spanned.
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In the rest of this section, we devote ourselves to the proof of the converse of this theorem.

theorem 3 [spanned preterms are terms] If a preterm is spanned and atomic, then it is the term
of some derivation.

The proof for this theorem will be more complex than the straightforward induction on the
derivation, but not condsiderably so. Since we have the preterm in our hands, the induction will
be on the complexity of the preterm. We show that preterms with no complex nodes correspond
to derivations (these correspond to axioms), and that complex terms can be decomposed from
the outside in. To do this, we need to pay a little more attention to the structure of preterms.
Consider the following (spanned and atomic) preterm

∧́xñ‚ ‚ñ¬̀∨́y ∧̀xñ¬̀∨̀y

where x has type p ∧ q, ‚ has type p and y has type ¬p ∨ ¬q. This is a complex preterm, with
complex nodes ∧́x, ∧̀x (in input position) ¬̀∨́y, ¬̀∨̀y (in output position) ∨́y, ∨̀y (in input
position) as well as the Cut node, ‚ (occurring in both input and output position). It follows that
any derivation with this term involves at least one ∧L inference, at least one ∨L inference, two
¬L inferences, and at least one Cut. However, there is some flexibility in the order in which such
inferences can occur. There is some flexibility, but not complete freedom. The nesting inside
the nodes—in particular, in ¬̀∨́y and ¬̀∨̀y demands that the negation rules occur above the
disjunction rule, which stands to reason, as the result will be the construction of the formula
¬p ∨ ¬q, where the negations occur inside the scope of the disjunction. So, no derivation
having this term can end in application of a negation rule. These considerations motivate the
following definition:

definition 18 [surface subnodes in a preterm] The surface subnodes in a preterm τ are
the cut points occurring in τ, as well as all complex subnodes in τ whose immediate subnodes
are variables.

So, the surface subnodes in our preterm are indicated by underlining.

∧́xñ‚ ‚ñ¬̀∨́y ∧̀xñ¬̀∨̀y

The surface subnodes indicate points in the preterm that may have been introduced in the last
step of a derivation. The last step of this derivation could be ∧L, ∨L or Cut. Figure 3 contains
three derivations with this term—ending with ∧L, ∨L and with Cut, respectively.

Our proof for Theorem 3 will go by way of an induction on the complexity of the preterm. If
it has no surface subnodes, it will correspond to an axiom. If it has a surface subnode, then
this corresponds either to an α rule or a β rule. Consider the ∧́x and ∧̀x in the term we are
discussing. These correspond to the α rule ∧L. If we replace ∧́x and ∧̀x by new variables (say
t and u) of the same types, p and q respectively, then the resulting preterm:

tñ‚ ‚ñ¬̀∨́y uñ¬̀∨̀y

Greg Restall, restall@unimelb.edu.au june 13, 2017 Version 0.922

http://consequently.org/writing/proof-terms-for-classical-derivations/
mailto:restall@unimelb.edu.au


http://consequently.org/writing/proof-terms-for-classical-derivations/ 27

tñt

t : p � t : p

zñz

z : p � z : p
¬L

zñ¬̀v

z : p, v : ¬p �
Cut

tñ‚ ‚ñ¬̀v

t : p, v : ¬p �
uñu

u : q � u : q
¬L

uñ¬̀w

u : q, w : ¬q �
∨L

tñ‚ ‚ñ¬̀∨́y uñ¬̀∨̀y

t : p, u : q, y : ¬p ∨ ¬q �
∧L

∧́xñ‚ ‚ñ¬̀∨́y ∧̀xñ¬̀∨̀y

x : p ∧ q, y : ¬p ∨ ¬q �
tñt

t : p � t : p

zñz

z : p � z : p
¬L

zñ¬̀v

z : p, v : ¬p �
Cut

tñ‚ ‚ñ¬̀v

t : p, v : ¬p �
∧L

∧́xñ‚ ‚ñ¬̀v

x : p ∧ q, v : ¬p �

uñu

u : q � u : q
¬L

uñ¬̀w

u : q, w : ¬q �
∧L

∧̀xñ¬̀w

x : p ∧ q, w : ¬q �
∨L

∧́xñ‚ ‚ñ¬̀∨́y ∧̀xñ¬̀∨̀y

x : p ∧ q, y : ¬p ∨ ¬q �

tñt

t : p � t : p
∧L

∧́xñt

x : p ∧ q � t : p

zñz

z : p � z : p
¬L

zñ¬̀v

z : p, v : ¬p �

uñu

u : q � u : q
¬L

uñ¬̀w

u : q, w : ¬q �
∧L

∧̀xñ¬̀w

x : p ∧ q, w : ¬q �
∨L

zñ¬̀∨́y ∧́xñ¬̀∨̀y

t : p, x : p ∧ q, y : ¬p ∨ ¬q �
Cut

∧́xñ‚ ‚ñ¬̀∨́y ∧̀xñ¬̀∨̀y

x : p ∧ q, y : ¬p ∨ ¬q �
Figure 3: Three derivations with the term ∧́xñ‚ ‚ñ¬̀∨́y ∧̀xñ¬̀∨̀y

has a lower complexity, and it is still spanned and atomic, so by hypothesis, it is the term of some
derivation. Our target term is then the term of that derivation, extended with one application
of ∧L, replacing t and u by ∧́x and ∧̀x.

The case for β rules is a little more complex. Consider the preterm xñ‚ ‚ñ‚ ‚ñx (where
all nodes have type p). The preterm is atomic (all links have type p). The only surface nodes are
the ‚ nodes. Its only switch pair is [‚](‚), so there are two switchings. Making the deletions, we
have

1. delete [‚] — result: ���xñ‚ ���‚ñ‚ ‚ñx

2. delete (‚) — result: xñ‚ ���‚ñ‚ ���‚ñx

So, the preterm is spanned: all switchings are nonempty. So, if our Theorem 3 is to hold, this
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must be the result of some derivation. Since it contains a ‚, the derivation must contain at least
one Cut, on p, since ‚ has type p in input and output positions. However, it is not hard to see
that any such derivation must contain more than one Cut. If π and π 1 are terms from Cut free
derivations, then applying a cut gives us a new proof term, in which the cut point is insterted
in output position to links from π and input position to links from π 1. There is no way to insert
cut points into a link with one Cut with result ‚ñ‚, for here, one Cut point is input position,
and the other is in output position. This link must have been involved in two Cuts. This is one
simple derivation with the required effect:

xñx

x : p � x : p
yñy

y : p � y : p
Cut

xñ‚ ‚ñy

x : p � y : p
xñx

x : p � x : p
Cut

xñ‚ ‚ñ‚ ‚ñx

x : p � x : p

Tracing the link ‚ñ‚ in the conclusion of the derivation, it appears as ‚ñy in the left premise
of the second Cut, where it came from the yñy in the second axiom.

This feature, where two applications of a rule are required to account for the nodes in a
term is perhaps starkest in the case of Cut, but it holds for other β rules too. Here is an example
replacing the Cut with a ¬R/∧R combination.

xñx

x : p � x : p

yñy

y : p � y : p
¬R

¬̀zñy� z : ¬p, y : p
∧R

xñ∧́w ¬̀∧̀wñy

x : p � w : p ∧ ¬p, y : p

xñx

x : p � x : p
¬R

¬̀zñx� z : ¬p, x : p
∧R

xñ∧́w ¬̀∧̀wñ∧́w ¬̀∧̀wñx

x : p � w : p ∧ ¬p, x : p

As with other β rules, ∧R introduces ∧́ nodes to links from the left premise of the rule, and ∧̀

nodes to links from the right premise of the rule. Here, the link ¬̀∧̀wñ∧́w contains both kinds
of nodes, and therefore must have passed through a ∧R rule twice in any derivation.

Let’s consider, then, how one might decompose a pair of β surface subnodes in a preterm,
such as a cut point, ‚ in antecedent and consequent position. Take a spanned, atomic preterm
τ(‚)[‚] in which ‚ occurs as a cut point, with the indicated positions in which ‚ occurs in input
and output position marked. Consider the links in τ(‚)[‚], and let’s call τ(‚)[−] the preterm
containing all links in τ(‚)[‚] except for those in which ‚ occurs in output position. Similarly,
τ(−)[‚] the preterm containing all links in τ(‚)[‚] except for those in which ‚ occurs in input
position. If the preterm contains no links in which ‚ occurs in both input and output position,
then τ(‚)[‚] is identical to the union τ(−)[‚] Y τ(‚)[−]. Notice, too, that if we replace ‚ by a
fresh variable x in each position, then τ(−)[x] and τ(x)[−] are both atomic and spanned, and
so, by hypothesis, they correspond to derivations. We can compose these derivations in a Cut
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to construct a derivation for τ(‚)[‚].

τ(−)[x]

Σ1 � x : A,∆1

τ(x)[−]

Σ2, x : A � ∆2
Cut

τ(−)[‚] τ(‚)[−]

Σ1,2 � ∆1,2

If τ(−)[‚] Y τ(‚)[−] is τ(‚)[‚] we are done, we have decomposed the Cut. If not, we must do a
little more work, and use two Cuts. For this, we use the fact that τ(‚)[‚] is still identical to the
union τ(−)[‚] Y τ(‚)[‚] Y τ(‚)[−].

τ(−)[x]

Σ1 � x : A,∆1

τ(x)[y]

Σ2, x : A � y : A,∆2

τ(−)[y]

Σ3, y : A � ∆3
Cut

τ(x)[‚] τ(‚)[−]

Σ2,3, x : A � ∆2,3
Cut

τ(−)[‚] τ(‚)[‚] τ(‚)[−]

Σ1,2,3 � ∆1,2,3

The terms τ(−)[x], τ(x)[y], τ(−)[y] are each atomic, spanned and of lower complexity than
τ(‚)[‚],20 and by hypothesis, they are constructed by derivations. So, successive Cuts suffice to
construct a derivation for τ(−)[‚] Y τ(‚)[‚] Y τ(‚)[−], which is τ(‚)[‚].

The cases we have seen are enough to motivate the general structure of the proof of Theorem 3.
Here is the proof in its full generality.

Proof: Suppose τ is a spanned atomic preterm with no surface subnodes. Then each of its links
contain variables alone, and it is the term annotating some axiom. For each variable x occurring
as an input of a link of type A (where A is either an atomic formula or K), add x : A to the lhs of
the sequent. For each variable y occurring as the output of a link of type B (where B is either an
atomic formula or J), add y : B to the rhs of the sequent. The result is an axiomatic sequent,
annotated by this term.

Now suppose τ is a spanned atomic preterm with a surface subnode, and suppose, for an in-
duction that all simpler spanned atomic preterms are terms constructed by some derivation.

If τ has a surface subnode of some α type, it has the form τ{άa}{ὰa}. Choose fresh variables
a1 and a2 of the same types as άa and ὰa. The preterm τ{a1}{a2} is simpler than τ{άa}{ὰa},
and it is atomic and spanned (άa and ὰa do not introduce any switch pairs), so it corresponds
to some derivation. We can then extend this by one application of the relevant α rule as follows:

τ{a1}{a2}

S{a1 : α1}{a2 : α2}

τ{άa}{ὰa}

S{a : α}

On the other hand, if τ has a surface subnode of some β type, it has the form τ{β́b}{β̀b}. Choose
fresh variables b1 and b2 of the same types as β́b and β̀b respectively. The preterms τ{b1}{−},

20Remember, cut points have complexity 1 and variables have complexity 0.
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τ{b1}{b2} and τ{−}{b2} are each simpler than τ{β́b}{β̀b}, they are each atomic and spanned—
since {β́b}{β̀b} is a switch pair and in each of the term’s switchings, one of {β́b} and {β̀b} is
deleted—so each of these preterms corresponds to some derivation. We can then extend these
derivations by two applications of the relevant β rule as follows:

τ{b1}{−}

S1{b1 : β1}

τ{b1}{b2}

S2{b1 : β1}{b2 : β2}

τ{−}{b2}

S3{b2 : β2}
β

τ{β́b}{b2} τ{−}{β̀b}

S2,3{b : β}{b2 : β2}
β

τ{β́b}{−} τ{β́b}{β̀b} τ{−}{β̀b}

S1,2,3{b : β}

In either case (α rule or β rule), the result is a derivation ending in our preterm τ, so we have
proved that τ is generated by a derivation, and this gives our result in full generality.

We have shown, therefore, that the spanned atomic preterms are exactly the terms that describe
derivations. We have two independent characterisations of our proof invariants.

4 permutations and invariants

We have seen that there are many different derivations constructing the same proof term. In
many cases, the difference between these derivations can be seen as a simple matter of the order
of application of the rules. A simple and straightforward permutation will send one derivation
into the other. For example, the different derivations in Figure 3 on page 27 can be seen to
be simple permutations of each other, differing only in the order of application of the rules
contained in them. Our aim in this section is to generalise that observation and to prove the
following theorem.

theorem 4 [proof terms are invariants] δ1 « δ2 if and only if τ(δ1) = τ(δ2). That is, some
permutation sends δ1 to δ2 if and only if the δ1 and δ2 have the same proof term.

To prove this, we need to isolate the appropriate class of permutations for derivations. Some
permutations are straightforward. They are the permutations that shift the order between suc-
cessive rule applications. We have seen examples of these transformations in Figure 3. An-
other straightforward permutation for derivations is relabelling of interior variables.21 Con-
sider these two derivations:

xñy

x : p � y : p
¬L

xñ¬̀z

x : p, z : ¬p �
∧L

∧́wñ¬̀∧̀w

w : p ∧ ¬p �

uñv

u : p � v : p
¬L

uñ¬̀x

u : p, x : ¬p �
∧L

∧́wñ¬̀∧̀w

w : p ∧ ¬p �
21This is the notion for proof terms analogous to α equivalence, or relabelling of bound variables in the λ calculus.

However, it would be a mistake to think of variables as being bound in α and β inference steps. In a β rule where we
step from S1{b1 : β1} and S2{b2 : β2} to S1,2{b : β}, the variable b1 is not necessarily absent from S2{b2 : β2} or
from the conclusion of the derivation, nor need b1 be absent from S1. Don’t think of the inference step as binding
b1 or b2 in the derivation. They are merely substituted for in the step to the conclusion.
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These two derivations prove the same sequent, with the same term. The only difference is the
variables used in the interior of each derivation. (We used x, y and z for the first; u, v, x for
the second.) Shuffling around interior variables in a derivation (those no longer present in the
concluding sequent of that derivation) will count as another kind of permutation of derivations.

definition 19 [interior relabelling] The equivalence relation of relabelling equivalence for
derivations is defined inductively on the structure of the derivation.

• An axiom is relabelling equivalent only to itself. (It has no ‘interior’ in which to reshuffle vari-
ables.)

• If δ (a derivation of S{a1 : α1}{a2 : α2} with term π{a1}{a2}) is relabelling equivalent to δ 1 (a
derivation of the same sequent with the same term), and a 1

1 and a 1
2 are also variables of type

α1 and α2 respectively, distinct if and only if a1 and a2 are distinct, then the following two
derivations are also relabelling equivalent:22

δ...
π{a1}{a2}

S{a1 : α1}{a2 : α2}

π{άa}{ὰa}

S{a : α}

δ 1{a 1
1{a1}{a

1
2{a2}

...
π{a 1

1
}{a 1

2
}

S{a 1
1 : α 1

1}{a
1
2 : α 1

2}

π{άa}{ὰa}

S{a : α}

• If δ1 (a derivation of S1{b1 : β1} with term π1{b1}) is relabelling equivalent to δ 1
1 (a derivation

of the same sequent with the same term), and δ2 (a derivation of S2{b2 : β2} with term π2{b2})
is relabelling equivalent to δ 1

2 (a derivation of the same sequent with the same term), and b 1
1

and b 1
2 are also variables of type β1 and β2 respectively, then the following two derivations are

also relabelling equivalent:

δ1...
π1{b1}

S1{b1 : β1}

δ2...
π2{b2}

S2{b2 : β1}

π{β́b}{β̀b}

S1,2{b : β}

δ 1{b 1
1{b1}

...
π{b 1

1
}{b 1

2
}

S1{b
1
1 : β 1

1}

δ 1{b 1
2{b2}

...
π{b 1

1
}{b 1

2
}

S2{b
1
2 : β 1

2}

π{β́b}{β̀b}

S1,2{b : β}

The effect of this definition of relabelling equivalence is to allow for arbitrary relabelling of
interior variables in a derivation, without changing the free variables in the endsequent. As
you can see by inspection of the definition, if δ and δ 1 are relabelling equivalent, then they are
derivations of the same endsequent, with the same proof term.

So, relabelling equivalence is one component of the equivalence relation « between deriva-
tions. Two derivations that are relabelling equivalent make the same logical connections. They

22Recall Definition 13 on page 21, where the substitution {x 1{x} is defined for labelled derivations.
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represent them in only marginally different ways. The next component of the relation of per-
mutation equivalence will be permutation of the order of different rules in the derivation. Given
that every inference rule in a derivation is either an α or a β rule, we will have three kinds of per-
mutations. Exchanging two α inferences, exchanging an α and a β inference, and exchanging
two β inferences. We take these three kinds of permutations in turn. The first kind of permu-
tation is most straightforward.

definition 20 [α{α 1 permutations] If, in a derivation, an α rule is followed by another α rule
(here labelled with α 1), the derivation is said to be (α{α 1) permutation equivalent with the
derivation in which the order of the two inferences is reversed, as follows:

π{a1}{a2}{a 1
1
}{a 1

2
}

S{a1 : α1}{a2 : α2}{a
1
1 : α 1

1}{a
1
2 : α 1

2}
α

π{άa}{ὰa}{a 1
1
}{a 1

2
}

S{a : α}{a 1
1 : α 1

1}{a
1
2 : α 1

2}
α1

π{άa}{ὰa}{ά1a 1}{ὰ1a 1}

S{a : α}{a 1 : α 1}

«

π{a1}{a2}{a 1
1
}{a 1

2
}

S{a1 : α1}{a2 : α2}{a
1
1 : α 1

1}{a
1
2 : α 1

2}
α1

π{a1}{a2}{ά1a 1}{ὰ1a 1}

S{a1 : α1}{a2 : α2}{a
1 : α 1}

α
π{άa}{ὰa}{ά1a 1}{ὰ1a 1}

S{a : α}{a 1 : α 1}

The only side condition on the application of this permutation is that the subformulas of both
α and α 1 rules are present in the first sequent—that is, the second α rule does not operate on
the result of the first α rule.

You can see, by construction, swapping the order between two α rules leaves no mark on the
proof term of the conclusion. That proof term is unchanged. We simply process the two inde-
pendent parts of the initial sequent in different orders, and end up in the same place.23

Similarly we can swap the order of an α and a β rule.

definition 21 [α{β permutations] If, in a derivation, a β inference is followed by an α infer-
ence, the derivation is said to be (α{β) permutation equivalent with the derivation in which
the order of the two inferences is reversed, as follows:

π1{a1}{a2}{b1}

S1{a1 : α1}{a2 : α2}{b1 : β1}

π2{a1}{a2}{b2}

S2{a1 : α1}{a2 : α1}{b2 : β2}
β

π1{a1}{a2}{β́b} π2{a1}{a2}{β̀b}

S1,2{a1 : α1}{a2 : α2}{b : β}
α

π1{άa}{ὰa}{β́b} π2{άa}{ὰa}{β̀b}

S1,2{a : α}{b : β}

23Since there are 5 different α rules in the calculus, there are 52 = 25 different permutations of rules of this
form. Thanks to Smullyan’s categorisation of the rules in the calculus, we can see the essential form of these 25 rule
permutations in one go.
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«

π1{a1}{a2}{b1}

S1{a1 : α1}{a2 : α2}{b1 : β1}
α

π1{άa}{ὰa}{b1}

S1{a : α}{b1 : β1}

π2{a1}{a2}{b2}

S2{a1 : α1}{a2 : α1}{b2 : β2}
α

π2{άa}{ὰa}{b2}

S2{a : α}{b2 : β2}
β

π1{άa}{ὰa}{β́b} π2{άa}{ὰa}{β̀b}

S1,2{a : α}{b : β}

Here, again, the proviso is only that the rules operate on independent parts of the intial se-
quents.

The equivalence is symmetric, and if α inferences of the same shape occur above the β rule, they
may be permuted back, to reverse the order. However, it may be that we have an α inference
above one premise of a β inference and not the other. We may still reverse the order in that
case, with another (α{β) permutation equivalence.

π1{a1}{a2}{b1}

S1{a1 : α1}{a2 : α2}{b1 : β1}
α

π1{άa}{ὰa}{b1}

S1{a : α}{b1 : β1}

π2{b2}

S2{b2 : β2}
β

π1{άa}{ὰa}{β́b} π2{β̀b}

S1,2{a : α}{b : β}

«

π1{a1}{a2}{b1}

S1{a1 : α1}{a2 : α2}{b1 : β1}

π2{b2}

S2{b2 : β2}
β

π1{a1}{a2}{β́b} π2{β̀b}

S1,2{a1 : α1}{a2 : α2}{b : β}
α

π1{άa}{ὰa}{β́b} π2{β̀b}

S1,2{a : α}{b : β}

Notice that here the α rule may be repeated in both premises of the β rule, while it occurs only
once if it is after the β step. (However, the permutation is still possible of the α rule occurs
only over one premise of the β rule (say the left) and the α components do not occur in the
right sequent.). The same holds yet again with two β rules. Notice, too, that in each case the
proof term is identical for the conclusion of this part of the derivation, regardless of the order
in which the rules are applied.

definition 22 [β{β 1 permutations] For β{β 1 permutation equivalence, consider first the
case where the same β rule occurs in both premises above a β 1 rule (with the usual proviso that
the rules operate on different components of the premise sequents).

π1{b1}{b 1
1
}

S1{b1 : β1}{b
1
1 : β1

1}

π2{b2}{b 1
1
}

S2{b2 : β2}{b
1
1 : β1

1}
β

π1{β́b}{b 1
1
} π2{β̀b}{b 1

1
}

S1,2{b : β}{b 1
1 : β1

1}

π3{b1}{b 1
2
}

S3{b1 : β1}{b
1
2 : β1

2}

π4{b2}{b 1
2
}

S4{b2 : β2}{b
1
2 : β1

2}
β

π3{β́b}{b 1
2
} π2{β̀b}{b 1

2
}

S3,4{b : β}{b 1
2 : β1

2}
β1

π1{β́b}{β́1b 1} π2{β̀b}{β́ 1b 1} π3{β́b}{β̀1b 1} π4{β̀b}{β̀1b 1}

S1−4{b : β}{b 1 : β1}
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«

π1{b1}{b 1
1
}

S1{b1 : β1}{b
1
1 : β 1

1}

π3{b1}{b 1
2
}

S3{b1 : β1}{b
1
2 : β 1

2}
β 1

π1{b1}{β́ 1b 1} π3{b1}{β̀ 1b 1}

S1,3{b1 : β1}{b
1 : β 1}

π2{b2}{b 1
1
}

S2{b2 : β2}{b
1
1 : β 1

1}

π4{b2}{b 1
2
}

S4{b2 : β2}{b
1
2 : β 1

2}
β 1

π2{b2}{β́ 1b 1} π4{b2}{β̀ 1b 1}

S2,4{b2 : β2}{b
1 : β 1}

β
π1{β́b}{β́ 1b 1} π2{β̀b}{β́ 1b 1} π3{β́b}{β̀ 1b 1} π4{β̀b}{β̀ 1b 1}

S1−4{b : β}{b 1 : β 1}

Consider now the case where the β rule occurs in only one of the premises of the β 1 inference.
We have the following permutation:

π1{b1}{b 1
1
}

S1{b1 : β1}{b
1
1 : β1

1}

π2{b2}{b 1
1
}

S2{b2 : β2}{b
1
1 : β1

1}
β

π1{β́b}{b 1
1
} π2{β̀b}{b 1

1
}

S1,2{b : β}{b 1
1 : β1

1}

π3{b 1
2
}

S3{b
1
2 : β1

2}
β1

π1{β́b}{β́1b 1} π2{β̀b}{β́ 1b 1} π3{β̀1b 1}

S1−3{b : β}{b 1 : β1}

«

π1{b1}{b 1
1
}

S1{b1 : β1}{b
1
1 : β 1

1}

π3{b 1
2
}

S3{b
1
2 : β 1

2}
β 1

π1{b1}{β́ 1b 1} π3{b1}{β̀ 1b 1}

S1,3{b1 : β1}{b
1 : β 1}

π2{b2}{b 1
1
}

S2{b2 : β2}{b
1
1 : β 1

1}

π3{b 1
2
}

S3{b
1
2 : β 1

2}
β 1

π2{b2}{β̀ 1b 1} π3{β́1b 1}

S2,3{b2 : β2}{b
1 : β 1}

β
π1{β́b}{β́ 1b 1} π2{β̀b}{β́ 1b 1} π3{β̀1b 1}

S1−3{b : β}{b 1 : β1}

and as before, the concluding sequent has the same proof term, though in this case.

The next example of a proof manipulation is when an inference includes two instances of the
same inference rule, operating on the same labelled formula. Consider a case where an infer-
ence uses two α rules, in this case introducing the labelled formula {a : α} in both steps, once
from the labelled subformulas {a1 : α1} and {a2 : α2}, and then from the same formulas with dif-
ferent labels, {a 1

1 : α1} and {a 1
2 : α2}. In that case, we could have instead done the two inferences

at once, had we relabelled the second instances of the variables:

definition 23 [α{α expansion and retraction] The following two derivations are α{α ex-
pansion/retraction equivalent.

δ...
π{a1}{a2}{a 1

1
}{a 1

2
}

S{a1 : α1}{a2 : α2}{a
1
1 : α1}{a

1
2 : α2}

α
τ{άa}{ὰa}{a 1

1
}{a 1

2
}

S{a : α}{a 1
1 : α1}{a

1
2 : α2}

α
τ{άa}{ὰa}{άa}{ὰa}

S{a : α}

«

δ{a1{a 1
1}{a2{a 1

2}...
π{a1}{a2}{a1}{a2}

S{a1 : α1}{a2 : α2}{a1 : α1}{a2 : α2}
α

τ{άa}{ὰa}{άa}{ὰa}

S{a : α}

Greg Restall, restall@unimelb.edu.au june 13, 2017 Version 0.922

http://consequently.org/writing/proof-terms-for-classical-derivations/
mailto:restall@unimelb.edu.au


http://consequently.org/writing/proof-terms-for-classical-derivations/ 35

Expansion and retraction for stacked β rules is more complex.

definition 24 [β{β expansion and retraction] Stacked instances of β rules which intro-
duce the same labelled formula but with different variables can similarly be simplified into the
one pair of variables:

π1{b1}{b 1
1
}

S1{b1 : β1}{b
1
1 : β1}

π2{b2}{b 1
1
}

S2{b2 : β2}{b
1
1 : β1}

β
π1{β́b}{b 1

1
} π2{β̀b}{b 1

1
}

S1,2{b : β}{b 1
1 : β1}

π3{b 1
2
}

S3{b
1
2 : β2}

β
π1{β́b}{β́b} π2{β̀b}{β́b} π3{β̀b}

S1−3{b : β}

«
π1{b1}{b1}

S1{b1 : β1}

π2{b2}{b1}

S2{b2 : β2}{b1 : β1}

π3{b2}

S3{b2 : β2}
β

π2{b1}{β́b} π3{β̀b}

S2,3{b : β}{b2 : β2}
β

π1{β́b}{β́b} π2{β̀b}{β́b} π3{β̀b}

S1−3{b : β}

however, as we saw in the previous section, sometimes it is essential for there to be two stacked
β rules in order to produce the required proof terms. More stacked β rules (in this case, three)
can be collapsed into the stack of 2, as follows:

π1{b1}

S1{b1 : β1}

π2{b1}{b2}

S2{b1 : β1}{b2 : β2}
β

π1{β́b} π2{b1}{β̀b}

S1,2{b : β}{b1 : β1}

π3{b1}{b2}

S3{b1 : β1}{b2 : β2}

π4{b2}

S4{b2 : β2}
β

π3{β́b}{b2} π2{β̀b}{b2}

S3,4{b : β}{b2 : β2}
β

π1{β́b} π2{β̀b}{β́b} π3{β́b}{β̀b} π4{β̀b}

S1−4{b : β}

«
π1{b1}

S1{b1 : β1}

π2{b1}{b2}

S2{b1 : β1}{b2 : β2}

π3{b1}{b2}

S3{b1 : β1}{b2 : β2}
Blend

π2{b1}{b2} π3{b1}{b2}

S2,3{b1 : β1}{b2 : β2}

π4{b2}

S4{b2 : β2}
β

π2{β́b}{b2} π3{β́b}{b2} π4{β̀b}

S2−4{b2 : β2}{b : β}
β

π1{β́b} π2{β̀b}{β́b} π3{β́b}{β̀b} π4{β̀b}

S1−4{b : β}

and this process can be extended in a natural way—any stack of β inferences can be permuted
down into the triangle of two β steps, where the left premise contains the blend of those premise
sequents in which only the left component of the β rule is processed (here, {b1 : β1}), the right
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premise contains the blend of those premise sequents in which only the right component is
processed (here, {b2 : β2}) and the middle premise contains the blend of all those sequents where
both components are processed. Then, the triangle of two applications of the β rule produce
the concluding proof term, and we are done.

The final β{β permutation is the expansion from one to two inferences, which will ensure
that all applications of a β rule can have the stacked form we have seen:

δ1...
π1{b1}

S1{b1 : β1}

δ2...
π2{b2}

S2{b2 : β2}
β

π1{β́b} π2{β̀b}

S1,2{b : β}

«
δ1...

π1{b1}

S1{b1 : β1}

δ1...
π1{b1}

S1{b1 : β1}

δ2...
π2{b2}

S2{b2 : β2}
Blend

π1{b1} π2{b2}

S1,2{b1 : β1}{b2 : β2}

δ2...
π2{b2}

S2{b2 : β2}
β

π1{β́b} π2{b2} π2{β̀b}

S1,2{b : β}{b2 : β2}
β

π1{β́b} π2{β̀b}

S1,2{b : β}

so here, in this derivation as in others, the leftmost premise of the β rules contains β1, the
rightmost premise of the β rules contains β2, and the middle premise contains both β1 and
β2.

All of the derivation transformations all have the property that the premises of a derivation are
unchanged (up to relabelling of variables). Not all natural derivation transformations have this
property. In particular, the following two derivations have the same proof term, but they have
different premises:

xñx vñv

x : p, v : r � x : p, v : r
yñy

y : q � y : q
∧R

xñ∧́z yñ∧̀z vñv

x : p, y : q, v : r � z : p ∧ q, v : r

xñx

x : p � x : p
yñy vñv

y : q, v : r � y : q, v : r
∧R

xñ∧́z yñ∧̀z vñv

x : p, y : q, v : r � z : p ∧ q, v : r

Here we have a single application of a conjunction right rule (a β rule) which involve the xñx

and yñy link, to form xñ∧́z and yñ∧̀z. However, there is an ‘innocent bystander’ vñv

link, which comes down from the left premise in the case of the first derivation, and the right
premise, in the case of the second. These derivations generate the same proof term, and they
both generate the same proof term as the following derivation:

xñx vñv

x : p, v : r � x : p, v : r
yñy vñv

y : q, v : r � y : q, v : r
∧R

xñ∧́z yñ∧̀z vñv

x : p, y : q, v : r � z : p ∧ q, v : r

in which the uninvolved vñv (and the corresponding v : r on both sides of the sequent separa-
tor) is included on both sides of the sequent.
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definition 25 [copying uninvolved links over β steps]

δ1...
π1{b1} cñd

S1{b1 : β1}

δ2...
π2{b2}

S2{b2 : β1}

π{β́b}{β̀b} cñd

S1,2{b : β}

«

δ1...
π1{b1} cñd

S1{b1 : β1}

δ 1
2...

π2{b2} cñd

S 1
2{b2 : β1}

π{β́b}{β̀b} cñd

S1,2{b : β}

We could impose the same kind of permutation for larger pieces of proof terms, with complex
nodes uninvolved with b1 and b2. However, we do not need to do so, as the following lemma
will show.

lemma 5 [β filling] In for any pair of derivations δ1 and δ2 extended with a β inference as follows

δ1...
π1{b1}

S1{b1 : β1}

δ2...
π2{b2}

S2{b2 : β1}

π1{β́b} π2{β̀b}

S1,2{b : β}

using the class of permutations defined up to now, there are derivations δ 1
1 and δ 1

2 such that the following
derivation is permutation equivalent to the original derivation.

δ 1
1...

π1{b1} π2{−}

S 1
1{b1 : β1}

δ 1
2...

π1{−} π2{b2}

S 1
2{b2 : β1}

π1{β́b} π2{β̀b}

S1,2{b : β}

Proof: The process of generating δ 1
1 and δ 1

2 is straightforward. Consider the each link nñm in
π2{−} (each link in π2{b2} not inovlving b2, in its designated position) and each link in π1{−}

(each link in π1{b1} not inovlving b1 in its designated position). Each such link is generated
from an axiom link and built up by way of connective rules—those connective rules generating
parts of the nodes in n and m. Since b2 (or b1) is not involved in the link in any way, the rule
for the application of that connective may be permuted below the β rule, using and α{β or β{β 1

permutation. Do so, until only the axiom link remains above the β rule, and then use the per-
mutation of copying uninvolved links over β steps to copy the atomic link over the inference.
Now permute the connective rules to generate the nodes in nñm back over the β rule and now
the link is created on both sides of the β inference. This process suffices to duplicate all of π2{−}

on the left premise of the β rule, and π1{−} on the right premise of the β rule, generating the
required derivation.
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This is enough to generate or our class of transformations to define permutation of derivations.

definition 26 [permutation equivalence] δ1 « δ2 if some series of the following permu-
tations sends δ1 to δ2. (1) interior relabelling, (2) α{α 1 permutation, (3) α{β permutation, (4) β{β 1

permutation, (5) α{α expansion and retraction, (6) β{β expansion and retraction, (7) Copying unin-
volved links over β steps.

Now we have the capacity to prove Theorem 4 (see page 30), to the effect that If δ1 « δ2 if and
only if τ(δ1) = τ(δ2).

Proof: One direction, soundness, is straightforward. If δ1 « δ2 then τ(δ1) = τ(δ2). By construc-
tion, each basic permutation preserves proof term, so any series of them keeps proof terms
fixed.

The other direction, completeness, is a little more involved. We show, by induction on the com-
plexity of the term τ(δ1) that if τ(δ1) = τ(δ2) then there is some derivation δ where δ1 « δ «

δ2. The general strategy is simple to describe. If δ1 is an axiom, it is equivalent ot δ2 immedi-
ately. Otherwise, suppose that the induction hypotheiss holds for derivations with terms of a
lower complexity. Consider the last inference in δ1. It corresponds to surface nodes in τ(δ1)

Perhaps there are other inferences in δ1 which also introduce that same node. Permute those
inferences down to the bottom of the derivation (using the relevant α{α 1, β{β 1 or α{β permu-
tations), then use relabelling and retraction moves to collapse them as far as possible, to find
δ, another proof with the same term which ends in one α rule introducing this node, or two β

rules introducing that node. Do the same with δ2, permuting the inferences that introduce this
node to the bottom. The result is two derivations ending in the same rule, with the same proof
term. If the ending rule is an α rule, we can reason as follows: both derivations ending in the
α rule has the following shape:

δ...
π{a1}{a2}

S{a1 : α1}{a2 : α2}
α

π{άa}{ὰa}

S{a : α}

where the variable a is introduced in the α rule, and is absent from the sequent in the premise
of that rule. It follows that the premise of the rule in both cases are derived with derivations with
the proof term π{a1}{a2}, which, by induction, are permutation equivalent.

If the ending rules are β rules, the reasoning is only slightly more complex. Using β{β expan-
sions and contractions, we can transform both derivations into derivations with the following
shape
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δl...
πl{b1}

Sl{b1 : β1}

δm...
πm{b1}{b2}

Sm{b1 : β1}{b2 : β2}

δr...
πr{b2}

Sr{b2 : β2}
β

πm{β́b}{b2} πr{β̀b}

Sm,r{b2 : β2}{b : β}
β

π{β́b}{β̀b}

S{b : β}

where the final proof term π{β́b}{β̀b} is identical to

πl{β́b} πm{β́b}{β̀b} πr{β̀b}

given the particular split ‘left’, ‘middle’, ‘right’ in each particular derivation. Using β filling, we
can transform both derivations into a permutation equivalent derivations with the following
shape:

δ 1
l...

π{b1}{−}

S 1
l{b1 : β1}

δ 1
m...

π{b1}{b2}

S 1
m{b1 : β1}{b2 : β2}

δ 1
r...

π{−}{b2}

S 1
r{b2 : β2}

β
π{β́b}{b2} π{−}{β̀b}

S 1
m,r{b2 : β2}{b : β}

β
π{β́b}{β̀b}

S{b : β}

but now, the sequents and the proof terms at the conclusions of the three derivations, δ 1
l , δ 1

m and
δ 1

r are fixed by the proof term π{β́b}{β̀b}, and are the same in both derivations. So, these sub-
derivations are simpler derivations, to which the induction hypothesis applies, and hence, they
are permutation equivalent. This completes the induction, and the theorem is proved. If two

derivations have the same proof term, some combination of interior relabellings, α{α 1, α{β

and β{β 1 permutations, α{α and β{β expansions and retractions, and copying uninvolved
links over β steps transforms one derivation into the other.

We have, therefore, an independent characterisation of proof terms in terms of permutations
of derivations. There are two independent characterisations of what it is for two derivations
to have the same essential underlying structure. (1) They have the same proof term. (2) Some
series of permutations sends one into the other.

5 terms and reductions

Now we turn to cut elimination. For terms, this corresponds to the elimination of cut points.
In this section I define a procedure for eliminating cut points and prove it to be strongly nor-
malising (every reduction path terminates) and confluent.
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definition 27 [‚-reduction for terms] Given an atomic preterm τ containing the cut point
‚, we say that τ ‚-reduces to τ 1 (written τ ù‚ τ 1) where τ 1 is defined in the following way,
depending on the type of the cut point ‚.

• Type A ∧ B: replace ∧́‚ and ∧̀‚ in τ by the cut points of type A and B respectively.

• Type A ∨ B: replace ∨́‚ and ∨̀‚ in τ by the cut points of type A and B respectively.

• Type A Ą B: replace Ą́‚ and Ą̀‚ in τ by the cut points of type A and B respectively.

• Type ¬A: replace ¬̀‚ in τ by the cut point of type A.

• Atomic type: For each pair of links nñ‚ and ‚ñm in τ (where n and m are not ‚), add nñm to
τ and then delete all links involving ‚.

• Type K: Delete all links of type ‚ñ. These are the only links in τ involving this cut point.

• Type J: Delete all links of type ñ‚.

The one-step reduction relation from τ is defined as the union of all reduction relations
applying to τ. That is, τ one-step reduces to τ 1 (written τ ù τ 1) if and only if there is some
cut point ‚ in τ where τ ù‚ τ 1. The reduction relation ù˚ is the transitive closure of the
one-step reduction relation. We say that τ 1 is a normal form for τ if τ ù˚ τ 1, and τ 1 has no
cut points.

It is straightforward to show that reduction corresponds intuitively to the process of cut reduc-
tion in derivations when the cut formula is either atomic, or principal in both premises. Here
is the case for conjunction. The cut on the conjunction:

π1[x]

Σ1 � x : A,∆1

π2[y]

Σ2 � y : B,∆2
∧R

π1[∧́z] π2[∧̀z]

Σ1,2 � z : A ∧ B,∆1,2

π3(x, y)

Σ3, x : A, y : B � ∆3
∧L

π3(∧́z, ∧̀z)

Σ3, z : A ∧ B � ∆3
Cut

π1[∧́‚] π2[∧̀‚] π3(∧́‚, ∧̀‚)

Σ1−3 � ∆1−3

is here replaced by cuts on the conjuncts.

π1[x]

Σ1 � x : A,∆1

π2[y]

Σ2 � y : B,∆2

π3(x, y)

Σ3, x : A, y : B � ∆3
Cut

π2[♭] π3(x, ♭)

Σ2,3, x : A � ∆2,3
Cut

π1[♯] π2[♭] π3(♯, ♭)

Σ1−3 � ∆1−3

The resulting change in the proof terms is replacing the cut point for A ∧ B—which can only
occur in the scope of ∧́ and ∧̀, since each link in the term has an atomic type, and A ∧ B is
not itself an atom—by the cut point for A (when in the scope of ∧́) and B (in the scope of ∧̀)
respectively. The same holds for Cuts on other kinds of complex formulas.
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For cuts on identities, the behaviour is similar. Consider this concrete example of a deriva-
tion ending in two Cuts:

v1
ñx

v1 : p � x : p
v2

ñx

v2 : p � x : p
∨L

∨́vñx ∨̀vñx

v : p ∨ p � x : p
yñy

y : p � y : p
Cut

∨́vñ‚ ∨̀vñ‚ ‚ñy

v : p ∨ p � y : p

zñw1

z : p � w1 : p
zñw2

z : p � w2 : p
∧R

zñ∧́w zñ∧̀w

z : p � w : p ∧ p
Cut

∨́vñ‚ ∨̀vñ‚ ‚ñ‚ ‚ñ∧́w ‚ñ∧̀w

v : p ∨ p � w : p ∧ p

The reduction for the concluding term ∨́vñ‚ ∨̀vñ‚ ‚ñ‚ ‚ñ∧́w ‚ñ∧̀w is

∨́vñ∧́w ∨́vñ∧̀w ∨̀vñ∧́w ∨̀vñ∧̀w

—we delete the ‚ñ‚ term, and compose all other links through ‚. This corresponds neatly to
the result of eliminating the Cuts in the derivation:

v1
ñw1

v1 : p � w1 : p
v2

ñw1

v2 : p � w1 : p
∨L

∨́vñw1 ∨̀vñw1

v : p ∨ p � w1 : p

v1
ñw2

v1 : p � w2 : p
v2

ñw2

v2 : p � w2 : p
∨L

∨́vñw1 ∨̀vñw1

v : p ∨ p � w2 : p
∧R

∨́vñ∧́w ∨́vñ∧̀w ∨̀vñ∧́w ∨̀vñ∧̀w

v : p ∨ p � w : p ∧ p

Now we prove that the reduction relation is strongly normalising and confluent. These results
are extremely simple, unlike the case for cut reduction in the classical sequent calculus [11,21,37].

theorem 6 [cut reduction is strongly normalising] For a preterm τ, there is no infinite chain

τ ù τ1 ù τ2 ù ¨ ¨ ¨

of reductions. On the contrary, every reduction path from τ terminates.

Proof: If τ ù τ 1 then τ 1 is less complex than τ.24 If the cut reduced in τ is complex, a cut node
together with a prefix is replaced by a new cut node, resulting in a less complex preterm. If the
cut reduced is atomic, we replace links with the cut node (with complexity 1) with links with
atomic variables (with complexity 0). In every case, complexity reduces. The complexity of a
preterm is finite, and bounded below by 0, so the process can take no more than n steps where
n is the complexity of τ.

24Recall the definition of complexity for preterms, Definition 6 on page 13.
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theorem 7 [cut reduction is confluent] In fact, it is confluent in a very strong sense: If τ ù‚

τ 1 and τ ù⋆ τ2 where ‚ ‰ ⋆ then there is some τ3 where τ 1 ù⋆ τ3 and τ2 ù‚ τ3. It follows
that every reduction path for τ terminates in the same normal preterm τ˚.

Proof: Suppose τ ù‚ τ 1 and τ ù⋆ τ2 for distinct cut points ‚ and ⋆ in τ. If both are of com-
plex type, then τ3 is found by replacing both cut points by the cut points for the subformulas
of their type, and the result is in the same regardless of order. If one is atomic and the other is
complex, then τ3 is found by replacing the complex one by cut points for the subformulas of its
type, and links involving the other cut point are deleted (in the case of the cut point appearing
in both sides) or composed (threading a link leading to a cut point into a link leading from that
cut point). Again, these can be done in either order with the same result. Finally, if both are
atomic, then again, the result can be done in any order. The only possible complication is if a
link involves both cut points, but this is impossible unless the two cut points are identical—for
there is only one cut point of each type.

The reduction process ù has the diamond property, and hence, so does ù˚. Since ù˚

is also strongly normalising, it follows that it terminates in a unique normal form.

Let us use the convention that τ˚ is the unique normal form of the preterm τ, the result of
eliminating all cut points from τ. The function sending τ to τ˚ gives us a new cut elimination
algorithm for derivations.

1. Take a derivation δ, and find its term τ(δ).

2. Reduce τ to its normal form τ˚.

3. Use Theorem 3 to construct a derivation with term τ˚.

For this to serve as a cut elimination procedure, we need to verify that τ˚ is actually a term (and
not merely a preterm) and that the derivation for its normal form τ˚ is a derivation for the same
sequent.

theorem 8 [reduction preserves meaning for terms] If τ is a term of type Σ � ∆ and τ ù

τ 1, then τ 1 is also a term of type Σ � ∆.

Proof: First we show that if τ ù τ 1 and τ is atomic, then so is τ 1. This is immediate. By
inspection you can verify that the types of the links in τ 1 are unchanged from those in τ.

Next, we show that if τ is spanned, then so is τ 1. If the cut point reduced was of complex
type, it’s straightforward to see that the switch pairs of τ correspond neatly to the switch pairs
of τ 1. Consider the case where ‚ is of conjunctive type, and the introduced cut points in τ 1 are
♯ and ♭. So τ has the form τ(∧́‚, ∧̀‚)[∧́‚, ∧̀‚], and τ 1 is then τ(♯, ♭)[♯, ♭]. Then one switch pair
in τ [‚](‚), and another is [∧́‚][∧̀‚]. It follows that for any choice τs of switches the remainder
of τ. the following preterms themselves are non-empty:

τs(−, −)[∧́‚, −] τs(−, −)[−, ∧̀‚] τs(∧́‚, ∧̀‚)[−, −]
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The four switch settings for τ 1 are

τs(−, −)[♯, ♭] τs(−, ♭)[♯, −] τs(♯, −)[−, ♭] τs(♯, ♭)[−, −]

and these must all be nonempty, given that the switchings for τ are. The same holds for the
other β rules with switched nodes, which have the same shape.

If the cut point reduced was of atomic type, then if τ is spanned, so is τ 1. Suppose τ 1

isn’t spanned. Then it disappears under some switching. Consider all of the links of the form
ni

ñmj in τ 1 where ni
ñ‚ and ‚ñmj are in τ. If there is some switching in which all of the links

of the form ni
ñmj disappear (along with the rest of τ 1), then either on that switching all of the

nodes ni dissapear, or on that switching, all of the nodes in mj disappear, (If some ni and some
mj survives under that switching, then the link ni

ñmj survives too, but no link survives.) If all
of the ni terms disappear, then consider that switching, and also switch off ‚ in input position.
Under this switching each ni

ñmj disappears since ni disappears. Eachg ‚ñmi disappears
because ‚ is deleted. The link ‚ñ‚ disappears (if present), and the remaining links (if any) are
unchanged from τ 1, so they disappear too. So in this case, τ would have to be empty. The same
goes for the case where each mj disappears from τ 1. In that case, consider the switching for τ

where ‚ is deleted from output position. That would make τ empty, but our assumption is that
it isn’t. So, if τ is spanned and it reduces in one step to τ 1, then τ 1 is spanned too.

Finally, the reduction process does not introduce any input or output variables. It may
delete them, but it does not introduce them. So, if τ has type Σ � ∆, and τ ù τ 1, then τ 1

also has type Σ � ∆.

As hinted at in this proof process of cut reduction may change the input or output variables
present in a term. For example, the term xñx ‚ñy, where x has type p and ‚ and y have type
q, is a term of type x : p � x : p, y : q. It reduces, on the other hand, to the term xñx, which has
lost its output variable y. The cut reduction step is straightforward:

xñx

x : p � x : p, y : q
yñy

y : q � y : q
Cut

xñx ‚ñy

x : p � x : p, y : q

reduces to
xñx

x : p � x : p, y : q

but in this case, the term xñx also has type x : p � x : p, without y making an appearance.25

25This kind of ‘weakened in’ output variable y in xñx ‚ñy is a curious feature of the proof term. The variable
y is certainly there, but is in not an output variable under every switching of the term. (If we switch the input ‚ off,
then y disappears.) This trick can be turned with the use of switched nodes other than Cut nodes, too. Consideer
this derivation:

xñx

x : p, u : r � x : p
vñy

v : q � y : q
∨L

xñx ∨́zñy

x : p, z : q ∨ r � x : p, y : q

Here, z and y (and any connection between them) play only a weak role in the concluding sequent. They are present,
but not in every switching. Perhaps it makes sense to say that an input (or output) variable strongly present in a
preterm if it is present as input (or output) in every switching of that preterm. In the switching example given on
page 25, notice that the input and output variables are present in every switching.
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6 derivations and cuts

In the remaining section we will revisit the considerations on classical cut reduction broached
in the first section of the paper, and explore the relationship between cut reduction for terms
and classical cut elimination arguments in the sequent calculus.

Consider again the so-called triviality argument for classical cut reduction (from page 6),
which considers a cut on a weakened-in formula C, to allow for the merging of two arbitrary
sequents. Annotating the results with terms, we see something important:

δ1...
π1

Σ � ∆
K

π1

Σ � x : C,∆

δ2...
π2

Σ � ∆
K

π2

Σ, y : C � ∆
Cut

π1 π2

Σ � ∆

In this derivation, there is no cut point for the cut formula C. We have displayed the derivation
with a weakening step in both branches, but this is redundant. The derivation δ1 with term
π1 could be systematically modified to be a derivation with the same term π1 but with the extra
conclusion x : C, in the manner of Theorem 1. The same is true for δ2 and π2. The weakened-in
Cs which are cut out play no role in the proof term, so acccording to the term, there is no Cut
there to eliminate. Instead, we have a Blend of the two derivations. Let’s consider what this
means in a concrete case, so we can see how the Blend of two derivations looks in practice. Here
is a cut on two different derivations of the one sequent x : p ∧ p � y : p.

x1
ñy

x2 : p � y : p, u : C
∧L

∧́xñy

x : p ∧ p � y : p, u : C

x2
ñy

x2 : p, v : C � y : p
∧L

∧̀xñy

x : p ∧ p, v : C � y : p
Cut

∧́xñy ∧̀xñy

x : p ∧ p � y : p

In this case, the term ∧́xñy ∧̀xñy is already in normal form, and it corresponds to this Cut-
free derivation:

x1
ñy x2

ñy

x1 : p, x2 : p � y : p
∧L

∧́xñy ∧̀xñy

x : p ∧ p � y : p

among others. We can eliminate Cuts in the presence of weakening on both sides of a sequent
without collapsing distinctions between proofs (or proof terms). The terms ∧́xñy, ∧̀xñy and

I will not make this paper any longer by stopping to analyse the difference between those variables that are
strongly present in a term and those which are not, but it seems to me that this notion is worth further consid-
eration.
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their union, ∧́xñy ∧̀xñy are all distinct proof terms which describe different ways one could
prove the sequent x : p ∧ p � y : p.

Now consider the case of supposed divergence in Cut elimination, due to contraction on both
sides of a sequent, introduced on page 6. Here the derivation is as follows, when annotated
with proof terms.

x1
ñy

x1 : p � y : p
x2

ñy

x2 : p � y : p
∨L

∧́xñy ∧̀xñy

x : p ∨ p � y : p

yñz1

y : p � z1 : p
yñz2

y : p � z2 : p
∧R

yñ∨́z yñ∨̀z

y : p � z : p ∧ p
Cut

∧́xñ‚ ∧̀xñ‚ ‚ñ∨́z ‚ñ∨̀z

x : p ∨ p � z : p ∧ p

The concluding term can be reduced. Its ‚-reduction is

∧́xñ∨́z ∧̀xñ∨́z ∧́xñ∨̀z ∧̀xñ∨̀z

And this, indeed, is the term of both of the derivations proffered as the result of eliminating the
Cut from our derivation, using standard procedures. The first is:

x1
ñz1

x1 : p � z1 : p
x1

ñz2

x1 : p � z2 : p
∧R

x1
ñ∨́z x1

ñ∨̀z

x : p � z : p ∧ p

x2
ñz1

x2 : p � z1 : p
x2

ñz2

x2 : p � z2 : p
∧R

x2
ñ∨́z x2

ñ∨̀z

x : p � z : p ∧ p
∨L

∧́xñ∨́z ∧̀xñ∨́z ∧́xñ∨̀z ∧̀xñ∨̀z

x : p ∨ p � z : p ∧ p

where we choose to process the conjunctions before the disjunctions. The second is:

x1
ñz1

x1 : p � z1 : p
x2

ñz1

x2 : p � z1 : p
∨L

∧́xñz1 ∧̀xñz1

x : p ∨ p � z1 : p

x1
ñz2

x1 : p � z2 : p
x2

ñz2

x2 : p � z2 : p
∨L

∧́xñz1 ∧̀xñz2

x : p ∨ p � z2 : p
∧R

∧́xñ∨́z ∧̀xñ∨́z ∧́xñ∨̀z ∧̀xñ∨̀z

x : p ∨ p � z : p ∧ p

where we process the rules in the opposite order. These are, to be sure, different derivations,
but they differ only up to permutation. A straightforward permutation (in this case, a single
β{β permutation) sends one derivation to the other. They are, in this sense, two different pre-
sentations of the one underlying connection between the premise p ∨ p and the conclusion
p ∧ p.

Now, consider the relationship between elimination of cut points in terms and procedures for
the elimination of cuts in derivations. If a cut elimination process for derivations follows the
cut reduction process for terms (that is, if δ reduces to δ 1, then τ(δ) ù τ(δ 1)), then it follows
that the cut reduction process is also strongly normalising. All reduction paths will terminate
in a normal form. And since, all reduction paths for terms reduce to a single normal form, then
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the resulting derivations will be identical—up to permutation. However, most cut elimination
procedures do not necessarily correspond directly to cut reduction for terms. Cut reduction for
terms eliminates all the cut points of a given type in one step. The elimination of a Cut in a
derivation may leave behind other instances of cuts on the same formula in different parts of
the proof. This reduction in cuts, on a local level in a derivation may indeed produce a larger
term on the way to eliminating all of the cuts and ending up in a smaller term. Here is a concrete
example:

xñx

x : p � x : p
yñy

y : q � y : q
∧R

xñ∧́w yñ∧̀w

x : p, y : q � w : p ∧ q

uñu

u : p � u : p
∧L

∧́wñu

w : p ∧ q � u : p
Cut

xñ∧́‚ yñ∧̀‚ ∧́‚ñu

x : p, y : q � u : p

xñx

x : p � x : p
yñy

y : q � y : q
∧R

xñ∧́w yñ∧̀w

x : p, y : q � w : p ∧ q

vñv

v : q � v : q
∧L

∧̀wñv

w : p ∧ q � v : q
Cut

xñ∧́‚ yñ∧̀‚ ∧̀‚ñv

x : p, y : q � v : q
∧R

xñ∧́‚ yñ∧̀‚ ∧́‚ñ∧́z ∧̀‚ñ∧̀z

x : p, y : q � z : p ∧ q

Cut reduction for the term results in xñ♯ yñ♭ ♯ñ∧́z ♭ñ∧̀z, and then xñ∧́z yñ∧̀z, as
expected, each step resulting in a term less complex than the one before. This is not the case if
we simplify one of the Cuts in the derivation before the other.

yñy

y : q � y : q
xñx

x : p, y : q � x : p
Cut

xñx yñ♭

x : p, y : q � x : p
uñu

u : p � u : p
Cut

xñ♯ yñ♭ ♯ñu

x : p, y : q � u : p

xñx

x : p � x : p
yñy

y : q � y : q
∧R

xñ∧́w yñ∧̀w

x : p, y : q � w : p ∧ q

vñv

v : q � v : q
∧L

∧̀wñv

w : p ∧ q � v : q
Cut

xñ∧́‚ yñ∧̀‚ ∧̀‚ñv

x : p, y : q � v : q
∧R

xñ♯ yñ♭ ♯ñ∧́z xñ∧́‚ yñ∧̀‚ ∧̀‚ñ∧̀z

x : p, y : q � z : p ∧ q

The resulting term is longer, not shorter. So proof terms do not provide an immediate way for
proving strong normalisation for all classical cut reduction strategies.

A second observation is worth underlining. Not all classical cut reduction strategies correspond
to term reduction. As we have seen in the discussion of the reduction of cuts with weakened-
in formulas, classical cut reduction on the blended cut of two derivations δ1 and δ2 typically
chooses either δ1 or δ2 as the result of the reduction. In either case, the term may be consid-
erably changed—connections present in the initial derivation (using the Cut) may be sundered
apart in the new derivation. This is not just a feature of the interaction between weakening and
Cut in the sequent calculus. It is there, too, in the connective rules in Gentzen’s original calcu-
lus. In the reduction case for conjunction in Gentzen’s original paper [13, Paragraph 3.113.31],
the reduction process for a conjunction is effectively26 as follows: we transform

26Translated into the current context—I annotate with proof terms, elide structural rules, and translate into mod-
ern notation. The rest is unchanged.
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πl
1
[x]

Σ1 � x : A,∆1

πr
1
[y]

Σ1 � y : B,∆1
∧R

πl
1
[∧́z] πr

1
[∧̀z]

Σ1 � w : A ∧ B,∆1

π2(z)

Σ2, z : A � ∆2
∧L

π2(∧́w)

Σ2, w : A ∧ B � ∆2
Cut

πl
1
[∧́‚] πr

1
[∧̀‚] π2(∧́‚)

Σ1,2 � ∆1,2

this Cut in a derivation (or, in general, this Mix, but the difference is not important here) into
the following simpler Cut.

πl
1
[x]

Σ1 � x : A,∆1

π2(z)

Σ2, z : A � ∆2
Cut

πl
1
[♯] π2(♯)

Σ1,2 � ∆1,2

In this transformation, the entire derivation of Σ1 � y : B,∆1 in the left branch of the original
Cut is deleted, and the connections present in πr

1[∧̀‚] are deleted from the proof term. This kind
of reduction step violates local preservation of proof terms. It could, of course, be repaired. The
reduction procedure for conjunctions shown on page 40 does not needlessly delete material,
and corresponds more closely to cut reduction for terms. There seems to be considerable scope
for understanding the dynamics of different cut elimination procedures in terms of way they
transform proof terms.

epilogue

We have answered some questions concerning classical proof identity, and shown that there is
a robust and independently characterisable sense in which there are different ways to prove a
sequent. Proof terms and permutations of derivations give rise to a natural non-trivial proof
identity relation. However, many questions remain.

• As mentioned at the end of the previous section, different classical cut elimination strate-
gies would seem to merit closer examination in terms of the dynamics of proof terms.
Some cut elimination strategies (like Gentzen’s) discard components of proof terms that
are kept in others. Can new—and simpler—strong normalisation proofs be given in
terms of proof term complexity?

• Proof terms are not essentially tied to the sequent calculus. It would be straightforward to
define proof terms for tableaux proofs for classical logic, and it would be not too difficult
to define proof terms for natural deduction proofs, resolution proofs and even Hilbert
proofs, in a natural way. A question which arises is the expressive power of each differ-
ent proof system. Proof systems may be complete (in the sense that they allow for the
derivation of every valid argument) without being complete for proofs—not providing a
proof for every proof term. Perhaps the conceptual vocabulary of proof terms can provide
new insight into the expressive power of different systems.
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• It is easy to construct a category of proofs on the set of formulas. The objects are the for-
mulas, and an arrow between A and B is a reduced (cut-free) proof term π(x)[y] of type
x : A � y : B. The identity arrow is the canonical identity proof IdA : x : A � y : A, and
the composition of π1(x)[y] of type x : A � y : B and π2(x)[y] of type x : B � y : C is the
term (π1(x)[‚] π2(‚)[y])˚ (we cut on the intermediate formula B and reduce). This sat-
isfies the conditions to be a category, since composition is associative and Id is indeed an
identity for composition. (If we did not restrict our attention to the reduced terms, then
Id would not be an identity, because the composition of Idp with itself, for example—
xñ‚ ‚ñy—is not identical to Idp.) It is not a Cartesian closed category (since boolean
cartesian closed categories are trivial [20]). What kind of category is it?27 An immediate
answer distinguishing this category from traditional categories is to note that K and J

are neither initial nor terminal objects respectively. An initial object in a category is an
object such that there is a unique arrow from that object to any object. While xñ is indeed
an arrow from K to any object at all (it is a term for any sequent x : K � y : A), there is
another arrow from K to J. On this analysis of proof identity, ñy and xñ are different
proof terms for the sequent x : K � y : J, one appealing to the fact that J is a tautology,
and the other appealing to the fact that K is a contradiction. This is analagous to the dif-
ferent proofs one could have for the sequent x : p∧¬p � y : q∨¬q. One has proof term
xñ¬̀∧̀x, and the other has proof term ¬̀∨̀yñy (and a third is the blend of the two).

• A natural question is how to generalise proof terms to analyse derivations in classical
predicate logic, and beyond, to higher order logics and also to other, non-classical logics.
Do proof terms for intuitionist sequent calculus behave any differently to λ-terms?

• Proof terms seem like a natural way to represent information flow between premises and
conclusions of a sequent. There is scope for further work in understanding and inter-
preting them, in a simliar way to the interpretation of λ terms and intuitionist natural
deduction proofs as describing constructions or verifications [22, 23, 26, 27, 34, 35]. Can an
analagous interpretation be found for proof terms? In the light of any such interpreta-
tion, perhaps a deeper understanding can be found of the behaviour of input and output
variables, and what it means for inputs and outputs to be strongly present.
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