
λµ: relating constructive & classical logics
(extended handout)

Greg Restall ∗ Arché, Philosophy Department, University of St Andrews*

proofs, rules and meanings ∗ arché, st andrews ∗ 11 april 2024

This talk is a reflection on the relationship between constructive
and classical proof, and on the significance of Michel Parigot’s
λµ calculus [14–16]. I attempt to understand the relationship be-
tween constructive and classical proof as a distinction orthogo-
nal to the structural rules of contraction and weakening—since rel-
evant, affine and linear logic also have constructive and classical
variants—since looking at this difference from different perspec-
tivesmay prove profitable. Along theway, the talk brings together
three different interests of mine—substructural logics [18], logical
pluralism [2], and the philosophy of proof theory [20].

1. two rules / four logics

Gentzen/Prawitz-style natural deduction proofs for implication
are very simple [7,17]. Atomic proofs are individual formulas, and
there are two rules for constructing new proofs from old:

A

[A]i

Π
B →Ii

A → B

Π
A → B

Π ′

A →E
B

Here is a proof, using these rules:

[p → (q → r)]3 [p]1 →E
q → r

[p → q]2 [p]1 →E
q →E

r →I1
p → r →I2

(p → q) → (p → r) →I3

(p → (q → r)) → ((p → q) → (p → r))

Its conclusion stands at the root of the tree, and and there are no
undischarged assumptions.

It is very natural to annotate proofs with λ terms, like so [1, 5, 9]:

[x : p → (q → r)] [z : p]→E
(xz) : q → r

[y : p → q] [z : p]→E
(xy) : q→E

((xz)(xy)) : r →Iz

λz((xz)(xy)) : p → r →Iy

λyλz((xz)(xy)) : (p → q) → (p → r) →Ix

λxλyλz((xz)(xy)) : (p → (q → r) → ((p → q) → (p → r))

*Thanks to my Logic Lunch colleagues in Arché for listening to me talk about
this material, and asking perceptive questions. ¶This handout and the accompa-
nying slides can be downloaded from https://consequently.org/p/2024/
lma.

The rules for term annotation are straightforward:1

x : A

[x : A]
...

M : B →Ix
λxM : A → B

...
M : A → B

...
N : A →E

(M N) : B

You can think of these terms as representing processes of justifica-
tion or of construction. (Justify A → B by taking A as given, and
using this to justifyB. You can use a such a justification ofA → B

by applying it to a justification ofA to produce a justification ofB.)

Thinking of terms as representingprocessesmotivates the follow-
ing reduction rule:

[x : A]
...

M : B →Ix
λxM : A → B

...
N : A →E

(λxM N) : B

▷

...
N : A...

M {N/x} : B

Since the justification ofA → B is a construction which converts
a hypothetical justification ofA into a justification for B, when we
apply that to some given justification for A the result should be
that original construction applied to the given justification.

This setting seems simple and natural, but the choice of how as-
sumption discharge works (and equivalently, variable binding in
λ terms), hides some design choices. For one thing, is this proof
an instance of the rules?

[x : p] →Iy
λyx : q → p →Ix

λxλyx : p → (q → p)

We never used the supposition of q in the justification of p, and
this is reflected in the term structure: the λy binds vacuously.
There is no free y in x to bind. There is no sense in which the p

has been derived from q. So, we have a choice: we can allow vacu-
ousbinding (the standardapproach), or forbid it (in favour of some
kind of relevant implication). To allow vacuous binding is to admit
the standard structural rule of weakening (also called thinning).
digression: You must restrict or modify the usual rules for conjunc-
tion if you want to forbid vacuous binding, since with fst⟨M, y⟩ you can
mimic the use of an assumption y in the otherwise y-freeM.

[x : p] [y : q]
∧I

⟨x, y⟩ : p ∧ q
∧E

fst⟨x, y⟩ : p →Iy

λyfst⟨x, y⟩ : q → p →Ix

λxλyfst⟨x, y⟩ : p → (q → p)

1The formal treatment of the identity of terms is subtle, and the details will
not matter much here, except for one point in Section 3. To make the argument
there simple, we identify terms by α-equivalence: For our purposes, λxλy(yx) is
the same term as λyλz(zy). For a proof theorist this amounts to saying that the
identity of the tags used to label discharge classes is irrelevant.

1

https://consequently.org/p/2024/lma
https://consequently.org/p/2024/lma

Wewill not spend any timeon conjunction rules, but thefix iswell under-
stood in substructural logics. Thestandardnatural deduction rule∧Ebe-
longs to additive conjunction, while the∧I rule ismultiplicative, and these
must be teased apart in a setting where we do without some of the usual
structural rules [18, 21]. end digression

Another design choice in the logic of implication involveswhether
multiple occurrences of an assumption can be discharged in one
go. In the example proof above, with term

λxλyλz((xz)(yz)) : (p → (q → r) → ((p → q) → (p → r))

two copies of the hypothesis p are discharged at once. (The λz

binds two instances of z in (xz)(yz).) If we think of the grounds
for a judgement as resources whichmay expire after use, then we
may have reason to restrict or to outright ban such duplicate dis-
charge. To do so is to reject the structural rule of contraction.

Our two rules give rise to four different logics, once we make our
choices concerning weakening and contraction.

We keep the→Iand→E rulesfixedandchange the context inwhich
those rules apply.2

The strongest of our four logics is constructive (minimal, implica-
tional) logic. Can we extend this elegant analysis to classical logic?
In the sequent calculus, we can. Here are the intuitionistic rules
for the conditional, written sequent-style.

X � A B, X ′ � C →L
X, A → B, X ′ � C

X, A � B →R
X � A → B

The classical rules are found by allowing the sequent context to be
more general, allowing for multiple formulas on the right:

X � A, Y B, X ′ � Y ′ →L ′

X, A → B, X ′ � Y, Y ′
X, A � B, Y →R ′

X � A → B, Y

These can be seen as different incarnations of the one basic struc-
ture for→:

� A B � →Lcore
A → B �

A � B →Rcore
� A → B

The core rules are applied in a given structural context by requir-
ing the surrounding sequent to be as general as the given struc-
tural context allows. Notice that the choice of shape of sequent,
betweenX�A andX�Y is orthogonal to the question of whether
contraction or weakening are allowed.

My aim is to translate this result into a setting where sequents
are not treated as a primitive notion, but arise out of the struc-
tural context of natural deduction proofs. Along the way, I hope

2“Context” here isNuel Belnap’s antecedently given context of deducibility [3, p. 131].
Think of the natural deduction rules as added to a pre-existing notion of conse-
quence or structure of justification: Does that pre-existing context satisfy the rule
of weakening? (WheneverA follows from X thenA follows from X, B too.) Does
it satisfy contraction? (WheneverA follows fromX, B, B it follows fromX, B too.)
That is what is at stakewhen you considerwhether the→I/E rules should allow for
contraction and for weakening.

to see howwe can extend the simply-typed λ calculus and our un-
derstanding of processes of justification or construction to apply
in this classical setting, independently of our choices concerning
contraction and weakening.

2. alternatives

The currently popular philosophical treatment of classical reason-
ing in natural setting is bilateralist [10–12,19,22,23]. Ifwe treat as-
sertion anddenial as equal partners, we can recover the full power
of classical reasoning. One way to do this is to replace the famil-
iarGentzen/Prawitz–style natural deduction ruleswithnew rules
involving positively tagged formulas (+A) and negatively tagged
formulas (−A). For example, here are Rumfitt’s rules for condi-
tionals, both positively and negatively tagged [22]:

This sort of set-uphas its virtues, but it is innoway a simple struc-
tural variation on the orginal rules. We have not kept the connec-
tive rules constant and applied them in awider structural context.
However, it is possible to use bilateralist motivations for a purely
structural expansion of Gentzen/Prawitz natural deduction, and
to do so in a way that is totally orthogonal to the structural rules
of weakening and contraction.

Thekey bilateralist idea is that a classical sequentA, B�C, Ddoes
not carryquite enoughstructure to represent theupshotof aproof.
For that, we need to decide which formula is the conclusion. So
mark a conclusion with a box like so: A, B � C, D. If we take C

to be the conclusion of the proof, then the remaining formula D

is part of the proof context, alongsideA and B, but with opposite
polarity toA and B. This can be read as

GivenA andB,C follows, unlessD.

GrantingA andB, and settingD aside, we haveC.

This reading motivates two simple structural rules, governing
how formulasmay be set aside (treated as alternatives, or, for short,
stored) and later retrieved. These rules allow us to shift focus from
one formula to another. A natural way to do so is to allow the fo-
cus to shift away from a formula entirely, as it transitions from
one formula to another. The ↑ rule allows what was a conclusion
to be set aside. The result is, in a natural deduction proof, a dead
end, a proof with no conclusion. After all, if you proveA only to set
it aside, there is no remaining alternative:

Π
A A ↑

♯

X � A, Y

X � A, Y

2

To the left of the natural deduction proofwe have the correspond-
ing sequent rule. X � A, Y represents the context for the proof
Π to conclusion A where X collects together everything we have
assumed and Y consists of everythingwe have set aside. So, when
we also setA aside (adding A as an assumption) and leaving no
formula as the conclusion,whichwe representwith ♯, then the se-
quent representing this addsA to the collection of set-aside for-
mulas, so the negative context is now A, Y, and no formula is in
focus: the box is empty. So,we extend thenatural deductionproof
syntax with two new structural features: slashed formulas as new
leaves in proof trees, and ♯ to represent dead-end proofs.
Once we have reached a dead end, we need to be able to do

something to back out of it, if we wish to prove anything at all.
But this is obvious: if we reach a dead end, we can take one of the
claims we previously set aside, and retrieve it as our conclusion:

[A]i

Π
♯ ↓i

A

X � A, Y

X � A, Y

These rules are purely structural, and they are independent of
whether we allow or forbid contraction or weakening. If we add
them to any of our four calculi, we get a classicalproof system, cor-
responding to the original constructive system. Here is a proof of
the constructively underivable Peirce’s Lawusing the original nat-
ural deduction rules applied in this wider structural setting:

[(p → q) → p]3

[p]1 [p]2 ↑
♯ ↓
q →I1

p → q →E
p [p]2 ↑

♯ ↓2

p →I3

((p → q) → p) → p

Notice that in this proof we use duplicate discharge of alterna-
tives (at the ↓2 step) and we used a vacuous retrieval at the ↓ step
where we inferred q.3 This proof of Peirce’s Law uses both con-
traction and weakening of alternatives.

It is natural to extend theλ-termassignment rules to this classical
natural deduction setting. To do so, we add a family of labels for
each stored formula, and to annotate a dead end we need a term
of type A and a label of corresponding type A . We’ll call such a
pair ⟨M|α⟩ a package. Given package P, and a label α of type A ,
we mark retriving A from P with the term µαP. This binds the
free occurrences of the label α in P. These rules were originally
formulated by Michel Parigot [14–16]. The rules are:

...
M : A α : A ↑
⟨M|α⟩ : ♯

[α : A]
...

P : ♯ ↓α

µαP : A

3The rather arbitrary ‘falsity elimination’ rule—according to which you can in-
fer anything you like from a contradiction—has been traditionally understood as
the ground of the irrelevant deduction from p and ¬p to q, independent of the
irrelevant deduction from p to q → p, which uses vacuous discharge of assump-
tions. In the presence of alternatives, we can understand them as two sides of the
one coin. In one case, it is an assumption that is vacuously discharged, in the other,
it is an alternative that is vacuously retrieved [21].

Here the proof of Peirce’s Law, annotated with λµ terms.

[x : (p → q) → p]

[y : p] [α : p] ↑
⟨y|α⟩ : ♯ ↓β

µβ⟨y|α⟩ : q →Iy

λyµβ⟨y|α⟩ : p → q →E
(xλyµβ⟨y|α⟩) : p [α : p] ↑

⟨(xλyµβ⟨y|α⟩)|α⟩ : ♯ ↓α

µα⟨(xλyµβ⟨y|α⟩)|α⟩ : p →Ix

λxµα⟨(xλyµβ⟨y|α⟩)|α⟩ : ((p → q) → p) → p

Given the dead-end conclusion ♯, it makes sense to use it to define
negation. First, define f as the formula representative of ♯, and
then use¬A as an abbreviation forA → f.4

P : ♯
fI

µP : f

M : f
fE

⟨M⟩ : ♯

Here, we treat f as the formula-representative of the dead-end.
We do not need to retrieve any stored alternatives to derive f, and
because f is available ‘for free’ at any dead-end, we do not need to
label any f, once derived, in order to reach a dead-end. In fact, in
our term-assignment system we do not have any labels of type f,
as none are needed.

Here is a proof ofA from (A → f) → f, using these rules:

y : (A → f) → f

[x : A] [α : A] ↑
⟨x|α⟩ : ♯

fI
µ⟨x|α⟩ : f →Ix

λxµ⟨x|α⟩ : A → f →E
(yλxµ⟨x|α⟩) : f

fE
⟨(yλxµ⟨x|α⟩)⟩ : ♯ ↓α

µα⟨(yλxµ⟨x|α⟩)⟩ : A

Taking ¬A as shorthand for A → f, these are the I/E rules for
negation:

M : ¬A N : A
¬E

⟨(MN)⟩ : ♯

[x : A]
...

P : ♯
¬Ix

λxµP : ¬A

The proof above simplifies to this (linear) proof, from¬¬A toA.

y : ¬¬A

[x : A] [α : A] ↑
⟨x|α⟩ : ♯

¬Ix

λxµ⟨x|α⟩ : ¬A
¬E

⟨(yλxµ⟨x|α⟩)⟩ : ♯ ↓α

µα⟨(yλxµ⟨x|α⟩)⟩ : A

4Thinking of negation in this way allows for the order of priority to be explicit.
In Gentzen/Prawitz natural deduction (whether constructive or classical), nega-
tion and the contradictory formula⊥ are defined in terms of each other [13]. Here,
the storage and retrieval structural rules fix the behaviour of reaching a dead end
in a proof. ♯ is given its interpretation by the purely structural rules, and the be-
haviour of assertion and denial. Then, f is defined in terms of ♯: to assert f is to
reach a dead end, and one allowable response when reaching a dead end is to as-
sert f. Then ¬A is a shorthand for A → f. The order of priority is fixed: ♯, then
f then negation (using implication). What makes negation negation is ultimately
explained in termsof ♯, what is leftwhenyouderive somethingbut also set it aside.

3

So, with the structural rules for alternatives, and the corre-
sponding term assignment system, we now have eight different
logical systems:

Our new µ terms have their own reduction rules, like the famil-
iar β reduction rule for λ terms. If we take a package retrieve a
label α, but then repackage that term with another label β, this
retrieve/store pair can be done away with in a natural way by cre-
ating the original package usingβ in place of α:

[α : A]
...

P : ♯ ↓α

µαP : A β : A ↑
⟨µαP |β⟩ : ♯

▷

[β : A]
...

P {β/α} : ♯

The same goes for the label-free f-packages, with no relabelling:

...
P : ♯

fI
µP : f

fE
⟨µP⟩ : ♯

▷
...

P : ♯

Another reduction connects retrieval with application. We would
like to know how to apply a retrieved term µαP (of typeA → B)
to another termN (of typeA). This is more complex. Consider a
proof with this structure:

[α : A → B]
...

P : ♯ ↓α

µαP : A → B

...
N : A →E

(µαP N) : B

In such a proof, the labelα is applied in P some number of times,
each labelling site marked with ∗:

...
∗ : A → B [α : A → B] ↑

⟨∗|α⟩ : ♯
...

P : ♯ ↓α

µαP : A → B

...
N : A →E

(µαP N) : B

So, if we hoist the derivation of A upwards to each site at which
the label α is applied in P, we have the following derivation:

...
∗ : A → B

...
N : A →E

(∗N) : B [β : B] ↑
⟨(∗N)|β⟩ : ♯

...
P {⟨(∗N)|β⟩/⟨∗|α⟩} : ♯ ↓β

µβP {⟨(∗N)|β⟩/⟨∗|α⟩} : B

Here, the notation for substitution P {⟨(∗N)|β⟩/⟨∗|α⟩} is to be un-
derstood as substituting, for each package ⟨M|α⟩ (for any term
M packaged up with our given label α) inside P with the package
⟨(M N)|β⟩, whereβ is free for α in P.

If the result of the applicationof our labelled term toN is a term
of type f, on the other hand, it does not get a fresh label, so the
result of the application is simpler. The original proof simplifies
as follows:

...
∗ : A → f [α : A → f] ↑

⟨∗|α⟩ : ♯
...

P : ♯ ↓α

µαP : A → f

...
N : A →E

(µαP N) : f

▷

...
∗ : A → f

...
N : A →E

(∗N) : f
fE

⟨(∗N)⟩ : ♯
...

P {⟨(∗N)⟩/⟨∗|α⟩} : ♯
fI

µP {⟨(∗N)⟩/⟨∗|α⟩} : B

The reduction rules in the λµ calculus are then:

(λxM N) ▷ M {N/x}

⟨µαP |β⟩ ▷ P {β/α}

⟨µP⟩ ▷ P

(µαP N) ▷ µβP {⟨(∗N)|β⟩/⟨∗|α⟩} (if not type f)

▷ µP {⟨(∗N)⟩/⟨∗|α⟩} (if type f)

Figure 1 shows a natural deduction proof from p → (p → q)
using a duplicate retrieval (at the ↓β step, marked with !!). Two
copies of labelβ are bound in the oneµβ term. Whenwe evaluate
this proof term using the reduction rules the duplicate µ binding
is reduced to a duplicate λ binding. One reduction process goes
as follows, where at each step I have framed the subterm reduced
in the next step:

λwµγ⟨ (µβ⟨λzµ⟨(µα⟨λyµ⟨(xy)|α⟩|β⟩z)|γ⟩|β⟩w) ⟩

▷ λwµγ⟨(λzµ⟨(µα⟨ (λyµ⟨(xy)|α⟩w) ⟩z)|γ⟩w)⟩

▷ λwµγ⟨(λzµ⟨(µα ⟨µ⟨(xw)|α⟩⟩ z)|γ⟩w)⟩

▷ λwµγ⟨(λzµ⟨ (µα⟨(xw)|α⟩z) |γ⟩w)⟩

▷ λwµγ⟨(λzµ ⟨µδ⟨((xw)z)|δ⟩|γ⟩ w)⟩

▷ λwµγ⟨ (λzµ⟨((xw)z)|γ⟩w) ⟩

▷ λwµγ ⟨µ⟨((xw)w)|γ⟩⟩

▷ λwµγ⟨((xw)w)|γ⟩

The resulting term describes a much more direct proof from

4

x : p → (p → q) [y : p] →E
(xy) : p → q [α : p → q] ↑

⟨(xy)|α⟩ : ♯
¬Iy

λyµ⟨(xy)|α⟩ : ¬p [β : ¬p]! ↑
⟨λyµ⟨(xy)|α⟩|β⟩ : ♯ ↓α

µα⟨λyµ⟨(xy)|α⟩|β⟩ : p → q [z : p] →E
(µα⟨λyµ⟨(xy)|α⟩|β⟩z) : q [γ : q] ↑

⟨(µα⟨λyµ⟨(xy)|α⟩|β⟩z)|γ⟩ : ♯
¬Iz

λzµ⟨(µα⟨λyµ⟨(xy)|α⟩|β⟩z)|γ⟩ : ¬p [β : ¬p]! ↑
⟨λzµ⟨(µα⟨λyµ⟨(xy)|α⟩|β⟩z)|γ⟩|β⟩ : ♯ ↓β!!

µβ⟨λzµ⟨(µα⟨λyµ⟨(xy)|α⟩|β⟩z)|γ⟩|β⟩ : ¬p [w : p]
¬E

⟨(µβ⟨λzµ⟨(µα⟨λyµ⟨(xy)|α⟩|β⟩z)|γ⟩|β⟩w)⟩ : ♯ ↓γ

µγ⟨(µβ⟨λzµ⟨(µα⟨λyµ⟨(xy)|α⟩|β⟩z)|γ⟩|β⟩w)⟩ : q →Iw
λwµγ⟨(µβ⟨λzµ⟨(µα⟨λyµ⟨(xy)|α⟩|β⟩z)|γ⟩|β⟩w)⟩ : p → q

Figure 1: A derivation using contraction on alternatives

p → (p → q) to p → q:

x : p → (p → q) [w : p] →E
(xw) : p → q [w : p] →E

((xw)w) : q [γ : q] ↑
⟨((xw)w)|γ⟩ : ♯ ↓γ

µγ⟨((xw)w)|γ⟩ : q →Iw

λwµγ⟨((xw)w)|γ⟩ : p → q

This proof is not quite as direct as it could be. There is no need to
take the detour through storing q only to immediately retreive it.
The term is fully reduced by way of the reduction rules, in just the
same way that the term λx(Mx) is β-reduced, even though the
corresponding natural deduction proof

M : A → B x : A →E
(Mx) : B →Ix

λx(Mx) : A → B

goes through the detour of eliminating the conditional only
to reintroduce it. This motivates ▷η, setting λx(Mx) ▷η M,
µα⟨M|α⟩▷η M andµ⟨M⟩▷η M and then this proof η-reduces to

x : p → (p → q) [w : p] →E
(xw) : p → q [w : p] →E

((xw)w) : q →Iw

λw((xw)w) : p → q

3. translation / normalisation

It’s well known that classical logic can be found inside intuition-
istic logic using any number of different double negation transla-
tions [6]. In fact, classical logic is found inside intuitionistic logic
not only at the level of provability, but also at the level of proofs, and
even at the level of proof dynamics—normalisation. These results
are robust. They extend to all four structural settings, linear, rele-
vant, affine, and full.

Here is one translation that embeds the classical formulas, stored
formulas and the punctuation mark ♯ signifying a dead-end, in-
side a constructive (minimal, i.e., negation-free) language, and

simultaneously embeds classical λµ terms (including labels and
packages) inside the simply typed λ calculus. We select a fresh
propositional atom q (unused in the classical language), and we
define our translationmapping from the classical language to the
minimal language as follows:

♯ = q

f = q

p = p → q

p = (p → q) → q

A → B = (A → B) → q

A → B = ((A → B) → q) → q

We abbreviate C → q as ¬qC. Note that in this translation, for
every classical formulaA (other than f),A = ¬q A .

For terms, packages and labels, given any variable x of typeAwe
find a corresponding variable x of typeA, and for every labelα of
type A , we find a unique variable α of type A . Using this cor-
respondence between the classical term variables and labels, we
define a translation from classical terms, labels and packages to
simply typed lambda terms as follows:5

λxN = λy(yλxN)

(M N) = λz(M λy((yN)z))

⟨M|α⟩ = (M α)

µαP = λαP

µP = P

⟨N⟩ = N

This translation preserves types in the sense that if M has type
A, thenM has typeA (and similarly for labels and packages) and
furthermore, if the source terms are linear (relevant or affine), so
is the translation of that term. For type preservation, we argue by
induction on the construction of the term, using justifications in
Figure 2 for each different term constructor.

5Parigot discusses a number of other translations in his paper discussing
strong normalisaiton for the λµ calculus [16]. I choose this translation because
it is simple, it is orthogonal to the other structural rules, and it allows for all four
λµ reductions to be preserved.

5

[y : ¬q(A → B)]

[x : A]
...

N : B

λxN : A → B

(yλxN) : q

λy(yλxN) : ¬q¬q(A → B)

...
M : ¬q¬q(A → B)

[y : A → B]

...
N : A

(yN) : B [z : B]

((yN)z) : q

λy((yN)z) : ¬q(A → B)

(M λy((yN)z)) : q

λz(M λy((yN)z)) : B

...
M : A α : A

(M α) : q

[α : A]
...

P : q

λαP : ¬q A

...
P : q

µP : q

...
N : q

⟨N⟩ : q

Figure 2: Translating classical inferences into (minimal) constructive inferences

Furthermore, each of the classical λµ reduction steps can be
translated into λ termβη-reductions.

For (λxM N) ▷ M {N/x}:

(λxM N) = λz(λxM λw((w N)z))

= λz(λv(v λxM) λw((w N)z))

▷ λz(λw((w N)z) λxM)

▷ λz((λxM N)z)

▷η (λxM N)

▷ M {N/x}

= M {N/x}

For ⟨µαP |β⟩ ▷ P {β/α}:

⟨µαP |β⟩ = (µαP β) = (λαP β)

▷ P {β/α} = P {β/α}

For ⟨µP⟩ ▷ P it suffices to note that ⟨µP⟩ = P.

For (µαP N) ▷ µβP {⟨(∗N)|β⟩/⟨∗|α⟩}:6

(µαP N) = λy(µαP λx((x N)y))

= λy(λαP λx((x N)y))

▷ λyP {λx((x N)y)/α}

▷ λyP {((∗N)y)/(∗α)}

= λβP {⟨(∗N)|β⟩/⟨∗|α⟩}

= µβP {⟨(∗N)|β⟩/⟨∗|α⟩}

It follows that a great deal of the behaviour of classical proof is
found inside constructive proof of formulas of the formA.

4. meanings

What does this mean for the relationship between classical and
constructive reasoning? Consider this extract from Errett Bishop
and Douglas Bridges’ 1985 Constructive Analysis [4, p. 7]:

6In this derivation we rely on the identification of α-equivalent terms.

Let’s call this perspective #1: Classical reasoning extends con-
structive reasoning. There are statements which can be proved
classically that cannot be proved constructively.

Contrast that quote with this extract from Robert Harper’s 2016
Practical Foundations for Programming Languages [8, p. 104]:

Call this perspective #2: The constructive language extends the
classical language. There are things we can state constructively
that cannot be stated classically.
This second perspective induces a different way to relate the clas-
sical logics to their constructive counterparts. Wemight depict it
like this:

Which of these pictures is correct?

I think this depends on what you mean, in the sense that it de-
pends onhowyou individuate the very claimswemake in our rea-
soning, those items that have meaning. We usually take this as
given. There is one field of statements, and classical and construc-
tive mathematicians argue about which statements in this field
are correct.

Take the assertion that every bounded non-void setA of real
numbers has a least upper bound . . .

6

This fits perspective #1 taking classical logic to be an extension
of constructive logic, allowing for more proofs.

However, if you take it that propositional content is determined
by what norms govern it, then the usual picture is not the only
one. Constructive justification is stricter than classical justifica-
tion. Since there are fewer ways to give constructive justification,
you can domore with such a justification when you have one.
classically: to state something is to rule something out, in that
if you and I rule out the same things, we have said the same thing.
constructively: p and ¬¬p rule out the same things, but they
might (construtively) entail different things.
perspective #2a: The constructive distinction between p and
¬¬p is a meaningful difference in what is said. The classical logi-
cianerasesor ignoresdifferences that arepresent inpropositional
content.
perspective #2b: The constructive distinction between p and
¬¬p is not a difference in propositional content. If we allow
only constructive justification, we are in a wider field of pre-
propositions, only some of which are governed by all the norms
that determine propositional content.

Our formal results are consistent with perspectives #1, #2a and
#2b. Each is an admissible perspective, consistent with our un-
derstanding of the relationship between classical and construc-
tive proof.

the moral of this story: Take time to recognise these different
perspectives, and learnwhat is involved in taking up each stance.

references

[1] h. p. barendregt. “Lambda Calculi with Types”. In samson
abramsky, dov gabbay, and t. s. e. maibaum, editors,Handbook of
Logic in Computer Science, volume 2, chapter 2, pages 117–309.
Oxford University Press, 1992.

[2] jc beall and greg restall. Logical Pluralism. Oxford University
Press, Oxford, 2006.

[3] nuel d. belnap. “Tonk, Plonk and Plink”. Analysis, 22:130–134,
1962.

[4] errett bishop and douglas bridges. Constructive Analysis.
Springer-Verlag, 1985.

[5] alonzo church.TheCalculi of Lambda-Conversion. Number 6 in
Annals of Mathematical Studies. Princeton University Press, 1941.

[6] gilda ferreira and paulo oliva. “On Various Negative
Translations”. Electronic Proceedings inTheoretical Computer Science,
47:21–33, January 2011.

[7] gerhard gentzen. “Untersuchungen über das logische
Schliessen”.Math. Zeitschrift, 39, 1934.

[8] robert harper. Practical Foundations for Programming Languages.
Cambridge University Press, Second edition, 2016.

[9] j. roger hindley. Basic Simple TypeTheory. Cambridge University
Press, Cambridge, U.K., 1997.

[10] luca incurvati and julian j. schlöder. “Weak Rejection”.
Australasian Journal of Philosophy, 95(4):741–760, 2017.

[11] luca incurvati and julian j. schlöder. ReasoningWith Attitude:
Foundations and Applications of Inferential Expressivism. Oxford
University Press, New York, 2023.

[12] luca incurvati and peter smith. “Rejection and valuations”.
Analysis, 70(1):3–10, 2010.

[13] nils kürbis. Proof and Falsity. Cambridge University Press, Apr
2019.

[14] michel parigot. “λµ-Calculus: An Algorithmic Interpretation of
Classical Natural Deduction”. In andrei voronkov, editor,
International Conference on Logic for Programming Artificial Intelligence
and Reasoning, volume 624 of Lecture Notes in Artificial Intelligence,
pages 190–201. Springer, 1992.

[15] michel parigot. “Classical proofs as programs”. In george
gottlob, alexander leitsch, and daniele mundici, editors,
Computational Logic and ProofTheory, volume 713 of Lecture Notes in
Computer Science, pages 263–276. Springer, 1993.

[16] michel parigot. “Proofs of Strong Normalisation for Second
Order Classical Natural Deduction”.The Journal of Symbolic Logic,
62(4):1461–1479, 1997.

[17] dag prawitz.Natural Deduction: A ProofTheoretical Study. Almqvist
andWiksell, Stockholm, 1965.

[18] greg restall. An Introduction to Substructural Logics. Routledge,
2000.

[19] greg restall. “Multiple Conclusions”. In petr hájek, luis
valdés-villanueva, and dagwesterståhl, editors, Logic,
Methodology and Philosophy of Science: Proceedings of the Twelfth
International Congress, pages 189–205. kcl Publications, 2005.

[20] greg restall. Proofs andModels in Philosophical Logic. Cambridge
University Press, 2022.

[21] greg restall. “Structural Rules in Natural Deduction with
Alternatives”. Bulletin of the Section of Logic, 52(2):109–143, 2023.

[22] ian rumfitt. ““Yes” and “No””.Mind, 109(436):781–823, 2000.

[23] timothy smiley. “Rejection”. Analysis, 56:1–9, 1996.

7

http://dx.doi.org/10.4204/EPTCS.47.4
http://dx.doi.org/10.4204/EPTCS.47.4
http://dx.doi.org/10.1093/oso/9780197620984.001.0001
http://dx.doi.org/10.1093/oso/9780197620984.001.0001
https://doi.org/10.1017%2F9781009040457
https://doi.org/10.18778%2F0138-0680.2023.6
https://doi.org/10.18778%2F0138-0680.2023.6

	two rules / four logics
	alternatives
	translation / normalisation
	meanings

