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Michael Dummett spoke to this Society 65 years ago 
(Dummett 1959), inaugurating a long-running debate over 
semantic realism and anti-realism, and the role of logic as a 
necessary prolegomenon to fruitful discussion in 
metaphysics.  

The Issue 
Dummett argued that not all traditional logical principles are 
metaphysically neutral.  

Some logical principles (those of intuitionistic or constructive 
logic) are self-justifying on neutral semantic grounds.    1

Double negation elimination (dne), the inference from ￼  
to ￼ , is not self-justifying. To adopt dne involves metaphysical 
commitment that skews debate in favour of the realist.  

The philosophically neutral logical perspective, acceptable to 
all sides, would be to accept only intuitionistic logic. 

The debate over whether Dummett is correct reached its peak 
in the 1980s and early 1990s.  

That peak has receded: e.g. Oxford philosophical logic is now 
dominated by discussions of higher-order modal logic (see 
Williamson 2013).  

Almost everywhere, Dummett’s concerns are sidestepped, 
rather than addressed head on.  2

The situation is reversed in mathematics.  

Constructive mathematics was in the minority in the second half 
of the 20th Century (Bishop and Bridges 1985, 
Bridges, et al 2023). 

With the rise of proof assistants (Avigad 2024) like Agda (Bove, et 
al 2009) and Lean (Avigad, et al 2023). An increasing number of 
mathematicians are doing constructive mathematics, in line with 
Dummett’s scruples.  

What is happening here? 

The use of proof assistants raises issues of broader 
philosophical interest. Semantics matters at the human/
machine interface. How should we understand the role of 
computational systems in our own practices of explanation, 
inference, and justification?  

I approach this as a pluralist (Beall and Restall 2006), though if 
you are inclined to find one framework as correct and another 
incorrect, I’ll indicate where the different choice points lie 
along thew way. 

What Proof Assistants Do 
Proof assistants are just one way computers have changed the 
face of mathematics in the late 20th and early 21st Century. 

A proof assistant acts as a patient research assistant, checking 
your work, making sure that your statements are consistent 
with your definitions, and checking that the proof that you 
write out is correct (Avigad et al. 2023).  

Proof assistants, in general, could be totally agnostic about the 
choice of logical principles to use, and could be practicing 
“formalists”. 

Contemporary proof assistants are not formalists.  Agda (Bove 
et al. 2009) and Lean (Avigad et. al. 2023) are more opinionated 
about what kind of thing a proof is, and the logic they encode is 
constructive. 

Agda and Lean treat proofs as functions, where a valid 
deduction is represented as a function that transforms grounds 
the premises into grounds for the conclusion.  This is 3

straightforward, except for the unspecified notion of ground. 
What is a ground, in general (Prawitz 2012)?  

As far as the logic goes, proofs are functions that combine 
grounds and supply new grounds from old in regular ways. 

¬¬p
p

 For a given logical concept we can treat the rule introducing a judgement of that form as its definition. Its corresponding elimination rule should be in 1

harmony with the introduction rule, allowing us to infer from the judgement only what we could use to deduce it in the first place. See Dummett’s Logical 
Basis of Metaphysics, Chapter 11 (1991). Dummett’s argument to the conclusion that the distinctively classical laws are not so justified depends on an 
account of the general rules governing the proofs in which the rules for specific logical concepts are given. Different rules governing the assumption 
contexts in which a proof may be constructed give rise to different logical systems as self-justifying, including classical logic, or even a relevant logic, or 
a number of other non-classical logics (Restall 2023).

 See Williamson’s “Must Do Better” (2006) for a vivid and opinionated account of why this debate was sidestepped.2

 The ground for a conjunction is pair, the first element of which is a ground for the first conjunct, the second, for the second conjunct. The ground for 3

a conditional (￼ ) is a function transforming grounds from the antecedent ￼  to grounds for the consequent ￼ , etc.A → B A B
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When it comes to mathematics, the definitions of the basic 
concepts will tell us what we need to know, structurally, about 
the grounds of atomic judgements.  4

The reasoning principles that arise naturally here are familiar 
from intuitionistic logic (Dummett 1977, Heyting 1956, 
Rathjen 2023), and proof assistants like Agda and Lean are 
implementations of Martin-Löf’s dependent type theory 
(1984).  

Since this framework takes the construction of proofs to be a 
specific case of constructing functions, proof assistants are 
special kinds of functional programming languages.  

So, mathematicians learn to express their results in the 
language of dependent type theory (Escardó and collaborators 
2024, Lean community 2024).  

Mathematics encoded in this way is constructive.  

A proof of a disjunction ￼  may be transformed into a 
proof of one of the disjuncts, ￼ , or ￼ . A proof of an 
existentially quantified statement ￼  may be 
transformed into an algorithm supplying a witness term ￼  
where we can prove ￼ .  

Such results are impossible in classical logic, since ￼  is a 
classical tautology, but we cannot expect to prove an arbitrary 

 or .   5

Classical mathematical theories can tell us that ￼  is a 
continuous function where ￼  and ￼ , and so, that 
there is some number ￼  between ￼  and ￼  where ￼  (this 
is the intermediate value theorem), but we may be in no position 
to find such a number ￼ . 

Mathematicians regularly make use of classically valid 
principles, and proof assistants allow for this, by allowing for 
the development of proofs where classicality is an added 
assumption (Avigad et al. 2023, Section 3.5).  

This is strikingly similar to Dummettian semantic anti-
realism where distinctively classical principles are an optional 
extra, to be adopted when the metaphysics asks for it. 

This well established, if still minority, practice of constructive 
mathematical theorising raises a question.  

How are we to understand the relation between constructive 
mathematics and classical mathematics?  

option 1: Constructive mathematics is a restriction on classical 
mathematics. 

…take the assertion that every bounded non-void set ￼  of 
real numbers has a least upper bound. (The real number 
￼  is the least upper bound of ￼  if ￼  for all ￼  in ￼ , and if 
there exist elements of ￼  that are arbitrarily close to ￼ .) … 
If this assertion were constructively valid, we could 
compute ￼ , in the sense of computing a rational number 
approximating ￼  to within any desired accuracy… 
(Bishop and Bridges 1987, p. 7) 

option 2: Constructive mathematics is an expansion of 
classical mathematics. 

…constructive logic is stronger (more expressive) that 
classical logic, because it can express more distinctions 
(namely, between affirmation and irrefutability), and 
because it is consistent with classical logic. Proofs in 
constructive logic have computational content: they can 
be executed as programs, and their behaviour is described 
by their type. Proofs in classical logic also have 
computational content, but in a weaker sense than in 
constructive logic. Rather than positively affirm a 
proposition, a proof in classical logic is a computation 
that cannot be refuted. (Harper 2016, p. 104) 

What should we say? Is constructive practice a restriction, or an 
expansion of classical reasoning? 

An Analogy 
Consider the calculator—a device that plays an essential role 
not only in giving answers to arithmetical questions, but in 
giving us knowledge that we would not otherwise have.  

When a calculator says that ￼ , we thereby 
learn that ￼  times ￼  is ￼ . How does that work?  

We acquire our knowledge of basic facts of arithmetic by way 
of an education involving counting things. 

Calculators do not count things, but the system involves the 
reliable manipulation of patterns. 

What regularities are required for the actions of a calculator to 
count as reliably doing arithmetic? The simple answer is that it 
needs to get arithmetic right but that is an infinite task, since 
there are infinitely many arithmetical equations. We need a 
finitary way to specify these infinitely many facts.  

A ∨ B
A B

∃x￼ϕ (x)
t

ϕ (t )

p ∨ ¬p

p ¬p

f
f (0) < 0 f (1) > 0

r 0 1 f (r) = 0

r

A

b A a ≤ b a A
A b

b
b

345 × 678 = 233, 910
345 678 233, 910

 In fact, in type theory, propositions are just a special instance of the more general class of types, and proofs are a special instance of terms inhabiting 4

those types. Constructive type theory is a general account of types and terms, inside which proofs and propositions. A proof ￼  from ￼  to ￼  and a 
function ￼  from ￼  to ￼  are exactly the same kinds of thing (Martin-Löf 1985).

π A B
f ℝ ℕ

 , on the other hand, is provable. It is straightforward to refute  (since this entails both  and ), an obvious 5

contradiction. So, in an important sense, ￼  is constructively undeniable.
¬ ¬(p ∨ ¬p) ¬(p ∨ ¬p) ¬p ¬ ¬p

p ∨ ¬p
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peano arithmetic:  

Here, there are three axioms governing the notion of zero and 
the successor function .  6

• ￼  
• ￼  
• ￼  
• ￼  
• ￼  
• ￼  
• ￼  

• ￼  

If the output of our calculator agrees with the judgements of 
Peano Arithmetic, it is reliably doing finite arithmetic. But it 
need not be counting in any sense. 

neo-fregean arithmetic:  

Other formalisations of arithmetic do make some kind of use 
of a notion of counting.  

For any one-place predicate ￼ , we have a singular term ￼ , to 
be read as “the number of ￼ s”, and the key principal governing 
this term-forming operator is Hume’s Principle (Wright 1983), 

• ￼  

which, using the resources of second-order logic, states that 
the number of ￼ s is the number of ￼ s if and only if there is a 
bijection between the ￼ s and the ￼ s.  

With the help of lambda abstraction,  we introduce the finite 7

numbers using identity: 

• ￼  

• ￼  

• ￼  

• ￼ , etc. 

Define addition by setting ￼  to be ￼  when 
nothing is both ￼  and ￼ , and continuing from there.  

If our calculator’s output agreed with a neo-Fregean theory, it 
would also count as recognisably doing arithmetic. 

A calculator might implement a neo-Fregean arithmetic, or a 
Peano Arithmetic, or be doing something else besides.  

What is required for it to be intelligible as doing arithmetic is 
that there is some translation between what it is doing with 
some recognisable arithmetic practice. (The same holds for 
you and for me.) 

These counting practices agree on a great deal, but disagree at 
the margins: Is there a number ￼  where ￼ ?  

The answer is no for Peano Arithmetic, and the answer is yes in 
a neo-Fregean arithmetic.  8

A competent user of arithmetic vocabulary could well find that 
their own concept of number simply does not settle the issue as to 
whether a number can be its own successor.  

So, is it correct to say that there is some number ￼  where 
￼ ? To get a useful answer to this question, we must be 
more specific about how we will interpret the word “number.” 

If I have a calculator and I ask it to solve the equation 
￼ , to interpret the significance of the answer of that 
calculator, I must have at least some sense of what the 
calculator is doing.  

The Claim 
What goes for understanding the counting and calculating 
functions of devices also goes for interpreting the assertoric and 
inferential processes instantiated in proof assistants.  

There are many proposals for how to understand assertion 
(Brown and Cappelen 2011). 

speaker norms: e.g. assert only what you know (the 
knowledge norm); or assert only what is true (the truth norm), 
etc.  

hearer norms: to assert ￼  entitles the hearer to (a) ask for a 
justification of the assertion and (b) to reassert ￼ , handing 
back the request for justification to the original speaker. 

The proof function in a proof assistant shows how grounds of 
the premises of an argument may be used to produce grounds 
for the conclusion (Prawitz 2012).  

For the human who wants to assert the conclusion, given a 
context in which the premises have been granted, the proof is 
available to show how the conclusion follows from the 
premises (Restall to appear).  

s

s x ≠ 0
s x = s y → x = y
x ≠ 0 → ∃y￼x = s y
x + 0 = x
x + s y = s(x + y)
x × 0 = 0
x × s y = (x × y) + x

[ϕ (0) ∧ ∀x(ϕ (x) → ϕ (s x))] → ∀x ϕ (x)

F ♯F
F

♯F = ♯G ↔ ∃ f ( f :F ↔ G)

F G
F G

0 =df ♯λ x￼x ≠ x
1 =df ♯λ x￼x = 0
2 =df ♯λ x (x = 0 ∨ x = 1)

3 =df ♯λ x (x = 0 ∨ x = 1 ∨ x = 2)

♯F + ♯G ♯λ x (F x ∨ G x)
F G

n n = n + 1

n
n = n + 1

x = x + 1

p
p

 Here, as always, any unbound variables are implicitly universally quantified.  can be understood as ;  as 6

￼ , and so on.
s x ≠ 0 ∀x￼s x ≠ 0 s x = s y → x = y

∀x ∀y(s x = s y → x = y)

 If  is a formula in which the variable  may occur free, then  is a one-place predicate, where for any singular term  (that is free for  in 7

￼ ), ￼  holds of ￼  if and only if ￼ . So, ￼  is a ‘non-identity predicate’ which holds of ￼  if and only if ￼ , i.e., it holds, never.
ϕ (x) x λ x￼ϕ (x) t x

ϕ (x) λ x￼ϕ (x) t ϕ (t ) λ x￼x ≠ x t t ≠ t

In Peano arithmetic, this is an easy proof by induction. Zero is not its on successor by the first axiom, and by the second, if the successor of x is its own 8

successor, so is x, so, using induction, no number is its own successor.  In Neo-Fregean arithmetic, the number ￼  of finite natural numbers satisfies 
￼ , since we can put the natural numbers in bijection with the natural numbers plus one extra thing.

♯ℕ
♯ℕ = ♯ℕ + 1

￼  3
	



Something proved by a proof assistant becomes apt for 
assertion, provided that having such a ground is sufficient for 
knowledge, and therefore, truth. 

The proof of a proposition can be used to fulfil a justification 
request for the assertion, and thereby, so there is something to 
answer the hearer who asks for a justification request, or who 
refers back to the proof assistant to justify their re-assertion of 
the claim, should it be questioned.  

To represent a theorem in a proof assistant is an epistemic 
achievement.  9

However, our point of contention is not primarily about what 
can be proved with the aid of a proof assistant, but what cannot 
be so proved.  

When we learn that some result cannot be given a proof in a 
proof assistant without making explicit classicality 
assumptions, does this have any significance?  

(Recall the issue of understanding what it means when our 
calculator tells us that there is—or isn’t—a solution to the 
equation ￼ .) 

What is the corresponding account of the constructive 
invalidity of the intermediate value theorem?  It is that there 10

is no function that supplies, for each continuous ￼  
where ￼  and ￼  a ground for the claim that there 
is some ￼  where ￼ . 

This result has epistemic significance, if the standards of 
evidence in the discussion are appropriately high.   11

If a claim fails to have those grounds, it may be rejected. An 
assertion of ￼  in the context of a constructive proof may 
be ruled out, since in general, we have no means to ground an 
arbitrary ￼  or an arbitrary ￼ .  

Constructive mathematics is recognisably assertoric and 
inferential. Claims are made, and constructive proof is the coin 
by which they are justified. 

Note: nothing here favours mathematical anti-realism over 
realism. The motivation is on internal mathematical grounds 
(Bauer 2018). 

This said, the majority tradition in mathematical reasoning is 
classical. Nonconstructive reasoning is everywhere, in 
mathematics, and philosophy. Consider this: 

It is unclear whether there is here a genuine 
disagreement between Gadamer and Davidson. It is 
undeniable that someone may lack a concept that others 
have, and that we now have many concepts that no one 
had three hundred years ago. New concepts are 
continually introduced. They cannot always be defined in 
the existing language, but they can be explained by means 
of it; a study of how we acquire concepts, such as the 
concept of infinity, that could not even be expressed 
before their introduction would be highly illuminating. It 
is also undeniable that we can now recognize, of certain 
concepts that were used in some previous age, that they 
were incoherent or confused. (Emphasis mine.) 

The author treats it is undeniable that as an intensifier.  

(It would be strange to agree with the author, but to continue 
“yes, I cannot deny that someone may lack a concept that 
others have … but I do not see why it follows that I should 
grant it.”)  

The claim that it is undeniable that ￼  is a form of double 
negation. The natural reading is to take the author to be 
committed to the inference from  to .  12

There is a kind of discourse in which we seek to settle issues. 
We want to know whether ￼  holds or not. To rule out one 
option is to leave the other. It wins by being the last option 
standing, not necessarily because it has been given any 
positive (constructive) ground.   13

This is a norm applying to issues that diverges from the norms 
applying in constructive reasoning. 

Let’s not ask whether the constructive norms or whether issue-
settling norms are objectively correct, by analogy with asking 
whether cardinal or ordinal numbers are the correct numbers. 

x = x + 1

f :[0, 1] → ℝ
f (0) < 0 f (1) > 0

x ∈ (0, 1) f (x) = 0

p ∨ ¬p

p ¬p

p

¬¬p p

p

 See Section 2 of Jeremy Avigad’s explanation of the role of proof assistants (2024) for an account of this epistemic safeguarding role. The rest of that 9

paper recounts other advantages of using proof assistants.

 Note that a reformulation of the intermediate value theorem is constructively provable: if  is continuous and for every  either 10

￼  or ￼ , then for either for every ￼ , ￼  or for every ￼ , ￼  (Bauer 2018, Theorem 5.3).
f :[0, 1] → ℝ x ∈ [0, 1]

f (x) < 0 f (x) > 0 x ∈ [0, 1] f (x) < 0 x ∈ [0, 1] f (x) > 0

 Consider the higher standard of evidence in criminal legal proceedings compared to civil court.11

 This cheeky example is an extract from The Nature and the Future of Philosophy, by Michael Dummett (2010, p. 94).12

 If you start off as a committed constructivist, you can understand the family of settleable issues as given by the negations of propositions. The inference 13

from ￼  to ￼  is constructively valid, and so, if we restrict attention to the constructive universe of negative propositions, we see that it behaves 
classically.

¬ ¬ ¬p ¬p

￼  4
	



“Issue settling” discourse is fundamentally bilateral (taking yes 
and no, or assertion and denial, on a par).  Since  is 14

undeniable we thereby have grounds for ￼ .  

(We have settle it only because it is undeniable, and not because 
we have any positive ground for ￼  or for ￼ .) 

Restricting ourselves to classical inference (and imposing the 
bilateral inference norms) means that we can ground a 
disjunction without possessing a ground for either disjunct. 
Similarly, we may be able to categorically classically prove 
￼  without thereby constructing some term ￼  where we 
can prove ￼ .  

What we lose in terms of the constructive power of assertion, 
when adopting classical reasoning principles, we gain with 
regard to the ability to express rejection by way of assertion. 

Consider some domain of constructive mathematics, and 
some proposition ￼  where we have no ground for ￼ , and 
we know that we have no ground.  

We are asked: is it the case that ￼ ? What can we say?  

We cannot answer yes (since ￼  has no ground) and we cannot 
answer no (since ￼  has no ground).  

Our indecision about ￼  is not merely a matter of 
ignorance that might be settled with more information.  

(Such ignorance is consistent with a classical theory, in which 
￼  is true, but our theory does not decide on which 
disjunct holds.) 

 The constructive reasoner would like to rule ￼  out, without 
going so far as to say that ￼  is true.  

To do this, constructively speaking, requires some kind of 
semantic ascent—we can say ￼  is not proved, or ￼  is not known, 
or some such thing,  which involves changing the subject: we 15

have not answered the question about whether ￼  or not.  

If I restrict myself to constructive reasoning about a domain, I 
can go only so far, describing the phenomena at hand. 

Some Consequences 
Return, to the divide between realism and anti-realism.  

Some classical mathematicians express their preference for 
classical mathematics in realist terms: their theory tells them 
that ￼  and they would like to discover which disjunct is 
true, because the phenomena they study is really one way or 
the other. 

There is something to this: they implicitly treat each issue as in 
fact settled (by Reality) and so, treating all of our claims as we 
theorise as issues that may be settled one way the another is 
appropriate.  

To restrict the grounds for our reasoning to what can be 
constructed when the phenomena exceed our grasp, seems 
artificial if the aim is correct description.  

This does not mean that the constructive restriction has no 
point. You can still value of constructively theorising for its 
other virtues. (This way lies option 1 above: constructive 
mathematics is a subset of classical mathematics.) 

However, there is no reason to think that classically reasoning 
about a phenomenon means that there any more realist 
commitment implicit over and above a constructive theory.  

Take a constructive theory: we find inside it a perfectly 
classical theory, if we focus on the settlable issues in our 
language (the sentences of the form ).  When might be 16

tempted to say, in our native constructive tongue ￼ , we 
instead say the classical substitute, ￼ . When we 
might say ￼ , we say ￼ . As far as a classical 
semantics goes, this makes no difference, but the result is a 
constructive vindication of classical reasoning, at the cost of 
making claims that are (constructively) weaker than their 
constructive counterparts.  

If there was no controversial metaphysical commitment 
before, we incur no new commitments, because we make no 
new claims. The constructivist is able to translate classical 
theoretical commitments into their own tongue, at no change 
in ontology. 

p ∨ ¬p
p ∨ ¬p

p ¬p

∃x ϕ (x) t
ϕ (t )

A A ∨ ¬A

A

A
¬A

A ∨ ¬A

A ∨ ¬A

A
¬A

A A

A

A ∨ ¬A

¬A
A ∨ B

¬(¬A ∧ ¬B )
∃x￼ϕ (x) ¬∀x￼¬ϕ (x)

 The literature has a number of different proposals considering bilateralism (Incurvati and Schlöder 2023, Restall 2005, Rumfitt 2000). The most 14

direct way to understand the shift from constructive to classical proof is to expand our language to include a primitive speech act of denial alongside 
assertion (write the denial of ￼  as ‘￼ ’), with two structural rules connecting them: (1) from ￼  and ￼  the contradiction ￼  follows, and (2) if we can derive 
a contradiction from the assumption ￼  (that is, if ￼  is undeniable) then we can derive the conclusion ￼ , discharging that assumption (Restall 2023). 
Given this context, the harmonious proof rules Dummett takes to be semantically neutral behave classically: since ￼  is undeniable, we can now 
prove it, using Dummett’s own definitions for the connectives.

p p A A ⊥
A A A

p ∨ ¬p

 Or we can say that the statement  is a constructive taboo: a principle which is not false, but which violates the spirit of constructive mathematics (see, 15

e.g. Rathjen 2023, Section 1.2.1). Typically, taboo statements are true in classical models of a constructive theory, but fail in other interesting models of 
the theory which have useful or interesting constructive features.

A

 This is one way to understand the Gödel–Gentzen double negation translation, which embeds classical Peano Arithmetic inside the constructive 16

Heyting Arithmetic (Gödel 1933, Gentzen 1933). If we can justify a constructive arithmetic on anti-realist grounds, then classical arithmetic, understood 
in this way, proves no more problematic.

￼  5
	



This perspective vindicates option 2 mentioned above: we 
can constructively recover classical theorems when we isolate 
the classically-behaving propositions inside our constructive 
theory. Classical commitment is found inside a constructive 
theory.  

A pluralist does not have to endorse one option and reject the 
other, any more than a mathematician has to endorse one 
kind of number and reject the others. However, pluralism is 
not mandatory: if you have a preferred unitary theory of 
assertion and of propositional content and you are convinced 
that propositions understood in that way are all that should 
count as propositions, properly so-called, then nothing I have 
said here need count as a decisive argument against that view. 

But let’s say you are tempted by this thoroughgoing pluralism, 
about logic and about propositional content. If all this is 
correct, when we say ￼ , is what we have said true? 

Here this depends on how we are taken. Speech is a 
communicative act, requiring a speaker and audience. If the 
audience treats our claim constructively, it may have no proof, 
and thus, fail to meet that mark. (It may not meet the 
standard of evidence required for admission in this court). If 
we treat the claim ￼  as expressing an issue to be settled, 
with all the classical norms of reasoning applying, then the 
answer is yes. It is true, since it is undeniable. 

Notice that to ask the question of whether ￼  is true or not 
is simply to ask about ￼ . The question has been asked, 
and we are in the business of evaluating it. To evaluate it well, 
we must pay close attention to the norms we apply, and to 
reflect on whether we want to apply them, instead of taking 
one and only one set of evaluative norms as given. 
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