Logic Text Chapter 3 Solutions

Chapter 3: Truth Tables

Basic

Question {3.1}

The asterisk is under the column of the main operator.

1:

y~y
010
101
*

2 and 12:

yp~ypyp
001010010
011011001
100100100
110111111
**

3 and 8:

yc~yc~(yc)
0010000010
0110111001
1001101100
1101010111
**

4 and 14:

ycpy(cp)(yc)p
0000101001000
0010101101011
0100110001100
0110111101111
1001101010010
1011101110011
1101010011100
1111111111111
**

5 and 10:

ycp(y&~p)cy(c~p)
000001010000110
001000110010001
010001011001110
011000111001101
100111000110110
101100110100001
110111011111110
111100111111101
**

6, 11 and 13:

ycy&cycyc
00000000010
01001011011
10100110100
11111111111
***

7:

yp~(y&p)
001000
011001
101100
110111
*

9:

c~~c
0010
1101
*

15:

yc(yc)(cy)
000101010
010110100
101000011
111111111
*

Question {3.2}

They are all tautologies except for the fourth one.

((p&q)r)(pr)
100100100

Let p = 1, q = 0 and r = 0. That makes the formula false.

Question {3.3}

1:

p~~p
0010
1101

2:

pqp&qq&p
00000000
01001100
10100001
11111111

3:

pqpq~pq
000101010
010111011
101000100
111110111

4:

pqrp(qr)(pq)r~p~(q&~r)
000010100100010110010
001010110101110110001
010011000110010101110
011011110111110111001
100110101001001110010
101110111001101110001
110101001110001001110
111111111111101111001

The first and third propositions are equivalent to each other, and both are not equivalent to the second.

5. p & ~ p is equivalent to ~(qq), as both are contradictions. r ∨ ~ r and ss are equivalent as both are tautologies.

Question {3.4}

1:

pqppqq
00200100
0100111
1011000
1111111

The argument form is valid, as there is no row where the premises are true & the conclusion false.

2:

pqpqpq
0000010
0101001
1010100
1111111

The argument form is valid as there is no row where the premises are both true & the conclusion false.

3:

pqp&qpq
00000010
01001001
10100100
11111111

The argument form is valid as there is no row where the premise is true & the conclusion false.

4:

pqpqpq
0000100
0101001
1010110*
1111111

The argument form is invalid as there is a row where the premises are true & the conclusion false, marked with the star.

5:

pqpqp&q
0000000
0101001
1010100
1111111

The argument is valid as there is no row where the premises are both true & the conclusion false.

6:

pqppq
000000
010011
101110
111111

The argument is valid as there is no row where the premise is true & the conclusion false.

7:

pqpqp~q~p
00010001010
01001010110
10100111001
11111100101

The argument is valid as there is no row where the premises are true & the conclusion false. (There is no row where premises are true.)

8:

pqrp(qr)q(pr)
0000101001010
0010101101011
0100110011010
0110111111011
1001101001100
1011101101111
1101010010100
1111111111111

The argument is valid – there is no row where the premise is true and the conclusion false. They are true in exactly the same rows, so they are equivalent.

9:

pp~p~p
0011010
1100101

The argument is valid, as there’s no row where the premise is true and the conclusion false. (Again, they’re equivalent.)

10:

p~~pp
00100
11011

The argument is valid. ~~p and p are equivalent, what’s more.

11:

pqrpq(rp)(rq)
0000100101010
0010101001100
0100110101011
0110111001111
1001000111010
1011001110100
1101110111011
1111111111111

The argument is valid – there is no row where the premise is true and the conclusion false. They are not true in exactly the same rows, so they are not equivalent.

12:

pqpq~q~p
0001010110
0101101110
1010010001
1111101101

The argument is valid. There’s no row with the premise true & conclusion false.

13:

pqp~pq
0001000
0101011
1010110
1110111

The argument is valid. There’s no row with the premise true & conclusion false.

14:

pqp(pq)pq
0001010010
0101011011
1010100100
1111111111

The argument is valid. There’s no row with the premise true & conclusion false.

15:

pqpqq
000010
010111
101010
111111

The argument is valid. There’s no row with the premise true & conclusion. In fact, the conclusion is a tautology, and any argument like this is valid.

16:

pqrpq~qrpr
0000001010000
0010001011011
0100110100000
0110110111011
1001101010110
1011101011111
1101110100110
1111110111111

The argument is valid – there is no row where the premise is true and the conclusion false.

17:

pqpqqp
00010010
01011100*
10100011
11111111

The argument is invalid. There’s a row with the premise true & conclusion false (with the star).

18:

pqrp(qr)(pq)r
0000101001000
0010101101011
0100110001100*
0110111101111
1001101010010
1011101110011
1101010011100
1111111111111

The argument is invalid – there is a row where the premise is true and the conclusion false. (See the asterisk.)

19:

pqr(p&q)rp(~qr)
00000010011010
00100011011011
01000110010100
01100111010111
10010010111010
10110011111011
11011100100100
11111111110111

The argument is valid – there is no row where the premise is true and the conclusion false.

20:

pqrspqrs(qr)(ps)
00000100100101010
00010100110101011
00100101000111010
00110101110111011
01000110101001010
01010110111001011
01100111001111010
01110111111111011
10001000100100100
10011000110101111
10101001000110100
10111001110111111
11001110101001100
11011110111001111
11101111001110100
11111111111111111

The argument form is valid. There’s no row where the premises are both true and the conclusion is false.

Question {3.5}

The argument form goes like this: (j & ~ b) ⊃ ~ j therefore jb

This is a valid argument form:

jb(j&~b)~jjb
000010110010
010001110011
101110001100
111001101111

Question {3.6}

The argument form goes like this: ~(b & ~ m) therefore mb It is invalid.

~(b&~m)mb
10001100

Question {3.7}

The argument form is: ec, cp, p ⊃ ~ e therefore ~ e It is a valid form.

Question {3.8}

The argument form is: pc, pm, cs therefore ~(~ m &~ s) This is valid.

Question {3.9}

The argument form is: (r ⊃ ~ w) ⊃ r, therefore r. Surprisingly, this is valid. If the conclusion, r, is false, then (r ⊃ ~ w) is true, and r is false, so the premise is also false.

Question {3.10}

(jc) & (ed) therefore (jd) ∨ (ec) Surprisingly, this is valid.

Question {3.11}

Here’s a truth table for exclusive disjunction (I’ll use the symbol x for it).

pqpxq
00000
01011
10110
11101

The exclusive disjunction of p and q is true when exactly one of p and q is true.

Advanced:

Question {3.14}

Each formula here is a tautology. I think that this shows that ’ ⊃ ’ is not a good translation of ‘if’ in English.