Question {4.1}
You should get exactly the same answers as you got with truth tables. Here are the solutions for the exercises in Questions {3.2} and {3.4}. First, the formulas from {3.2}
1.
~(p ⊃ ((p ⊃ q) ⊃ q)) | ||||
| | ||||
p | ||||
~((p ⊃ q) ⊃ q) | ||||
| | ||||
p ⊃ q | ||||
~ q | ||||
/ | \ | |||
~ p | q | |||
X | X |
The tree closes, so the formula is a tautology.
2.
~ (p ∨ (p ⊃ q)) |
| |
~ p |
~ (p ⊃ q) |
| |
p |
~ q |
X |
The tree closes, so the formula is a tautology.
3.
~((p & (p ⊃ q)) ⊃ q) | ||||
| | ||||
p & (p ⊃ q) | ||||
~ q | ||||
| | ||||
p | ||||
p ⊃ q | ||||
/ | \ | |||
~ p | q | |||
X | X |
The tree closes, so the formula is a tautology.
4.
~(((p & q) ⊃ r) ⊃ (p ⊃ r)) | ||||||
| | ||||||
(p & q) ⊃ r | ||||||
~(p ⊃ r) | ||||||
| | ||||||
p | ||||||
~ r | ||||||
/ | \ | |||||
~(p & q) | r | |||||
/ | \ | X | ||||
~ p | ~ q | |||||
X | ^ | |||||
open |
The tree is open. A countermodel is as follows:
p = 1 q = 0 r = 0
This makes the premise true and the conclusion false. The argument is invalid.
5.
~((p ⊃ q) ⊃ p) ⊃ p) | ||||
| | ||||
(p ⊃ q) ⊃ p | ||||
~ p | ||||
/ | \ | |||
~(p ⊃ q) | p | |||
| | X | |||
p | ||||
~ q | ||||
X |
The tree is closed, the formula is a tautology.
Now the argument forms from {3.4}
1.
p | ||||
p ⊃ q | ||||
~ q | ||||
/ | \ | |||
~ p | q | |||
X | X |
The tree closes, the argument form is valid.
2.
p | ||||
q | ||||
~(p ≡ q) | ||||
/ | \ | |||
p | ~ p | |||
~ q | q | |||
X | X |
The tree closes, the argument form is valid.
3.
p & q | ||||
~(p ≡ q) | ||||
| | ||||
p | ||||
q | ||||
/ | \ | |||
p | ~ p | |||
~ q | q | |||
X | X |
The tree is closed. The argument form is valid.
4.
p | ||||
q ⊃ p | ||||
~ q | ||||
/ | \ | |||
~ q | p | |||
^ | ^ | |||
open | open |
The tree remains open. A countermodel p = 1 and q = 0 makes the premises true and the conclusion false.
The argument form is invalid.
5.
p | ||||
q | ||||
~(p & q) | ||||
/ | \ | |||
~ p | ~ q | |||
X | X |
The tree is closed. The argument form is valid.
6.
p |
~(p ∨ q) |
| |
~ p |
~ q |
X |
The tree is closed. The argument form is valid.
7.
p ≡ q | ||||||
p ≡ ~ q | ||||||
~~ p | ||||||
| | ||||||
p | ||||||
/ | \ | |||||
p | ~ p | |||||
q | ~ q | |||||
/ | \ | X | ||||
p | ~ p | |||||
~ q | ~~ q | |||||
X | X |
The tree is closed, the argument form is valid.
8.
p ⊃ (q ⊃ r) | ||||||
~(q ⊃ (p ⊃ r)) | ||||||
| | ||||||
q | ||||||
~(p ⊃ r) | ||||||
| | ||||||
p | ||||||
~ r | ||||||
/ | \ | |||||
~ p | q ⊃ r | |||||
X | / | \ | ||||
~ q | r | |||||
X | X |
The tree closes, the argument form is valid.
9.
p ⊃ ~ p | ||||
~~ p | ||||
/ | \ | |||
~ p | ~ p | |||
X | X |
The tree closes, the argument form is valid.
10.
~~ p |
~ p |
X |
The tree closes, the argument form is valid.
11.
p ⊃ q | ||||||
~((r ⊃ p) ⊃ (r ⊃ q)) | ||||||
| | ||||||
r ⊃ p | ||||||
~(r ⊃ q) | ||||||
| | ||||||
r | ||||||
~ q | ||||||
/ | \ | |||||
~ p | q | |||||
/ | \ | X | ||||
~ r | p | |||||
X | X |
The tree closes. The argument form is valid.
12.
p ⊃ q | |||||
~(~ q ⊃ ~ p) | |||||
| | |||||
~ q | |||||
~~ p | |||||
/ | \ | ||||
~ p | q | ||||
X | X |
The tree closes, the argument form is valid.
13.
p |
~(~ p ⊃ q) |
| |
~ p |
~ q |
X |
The tree closes, the argument form is valid.
14.
p ⊃ (p ⊃ q) | ||||
~(p ⊃ q) | ||||
| | ||||
p | ||||
~ q | ||||
/ | \ | |||
~ p | p ⊃ q | |||
X | X |
The tree closes, the argument form is valid.
Note that we can close the right branch using p ⊃ q and its negation. There is no need to resolve the formula p ⊃ q.
15.
p |
~(q ⊃ q) |
| |
q |
~ q |
X |
The tree closes, the argument form is valid.
16.
p ∨ q | ||||||
~ q ∨ r | ||||||
~ (p ∨ r) | ||||||
| | ||||||
~ p | ||||||
~ r | ||||||
/ | \ | |||||
p | q | |||||
X | / | \ | ||||
~ q | r | |||||
X | X |
The tree closes, the argument form is valid.
17.
p ⊃ q | ||||
~(q ⊃ p) | ||||
| | ||||
q | ||||
~ p | ||||
/ | \ | |||
~ p | q | |||
^ | ^ | |||
open | open |
The tree is open.
The counterexample p = 0 and q = 1 makes the premises true, and the conclusion false.
So, the argument is invalid.
18.
p ⊃ (q ⊃ r) | ||||||||||||||
~((p ⊃ q) ⊃ r) | ||||||||||||||
| | ||||||||||||||
p ⊃ q | ||||||||||||||
~ r | ||||||||||||||
/ | \ | |||||||||||||
/ | \ | |||||||||||||
/ | \ | |||||||||||||
~ p | q ⊃ r | |||||||||||||
/ | \ | / | \ | |||||||||||
~ p | q | ~ p | q | |||||||||||
^ | ^ | / | \ | / | \ | |||||||||
~ q | r | ~ q | r | |||||||||||
^ | X | X | X |
The tree is open (see any of the branches marked with `^’). Any evaluation of the propositions with p and r false (see the first branch) will make the premises true and the conclusion false. So:
p = 0 q = 0 r = 0
p = 0 q = 1 r = 0
are both countermodels.
The argument is invalid.
19.
(p & q) ⊃ r | ||||||
~(p ⊃ (~ q ∨ r)) | ||||||
| | ||||||
p | ||||||
~(~ q ∨ r) | ||||||
| | ||||||
~~ q | ||||||
~ r | ||||||
/ | \ | |||||
~ (p & q) | r | |||||
/ | \ | X | ||||
~ p | ~ q | |||||
X | X |
The tree closes, the argument form is valid.
20.
p ⊃ q | ||||||||
r ⊃ s | ||||||||
~((q ⊃ r) ⊃ (p ⊃ s)) | ||||||||
| | ||||||||
q ⊃ r | ||||||||
~(p ⊃ s) | ||||||||
| | ||||||||
p | ||||||||
~ s | ||||||||
/ | \ | |||||||
~ p | q | |||||||
X | / | \ | ||||||
~ q | r | |||||||
X | / | \ | ||||||
~ r | s | |||||||
X | X |
The tree is closed. The argument form is valid.
Question {4.2}
An exclusive disjunction A x B is true when A is true and B isn’t, or when B is true and A isn’t. So the rule for an exclusive disjunction should be:
A x B | ||||
/ | \ | |||
A | ~ A | |||
~ B | B |
If you get a negated exclusive disjunction, you have a different rule. A x B is false when A and B are both true, or when they are both false. So, you get:
~(A x B) | ||||
/ | \ | |||
A | ~ A | |||
B | ~ B |
Question {4.3}
The Sheffer Stroke A | B is false when A and B are both true, and true otherwise. The negated rule is easiest.
~(A | B) |
| |
A |
B |
The formula A | B is true just when either A is false, or B is false. So you can use the rule:
A | B | ||||
/ | \ | |||
~ A | ~ B |