Question {4.1}
You should get exactly the same answers as you got with truth tables. Here are the solutions for the exercises in Questions {3.2} and {3.4}. First, the formulas from {3.2}
1.
| ~(p ⊃ ((p ⊃ q) ⊃ q)) | ||||
| | | ||||
| p | ||||
| ~((p ⊃ q) ⊃ q) | ||||
| | | ||||
| p ⊃ q | ||||
| ~ q | ||||
| / | \ | |||
| ~ p | q | |||
| X | X |
The tree closes, so the formula is a tautology.
2.
| ~ (p ∨ (p ⊃ q)) |
| | |
| ~ p |
| ~ (p ⊃ q) |
| | |
| p |
| ~ q |
| X |
The tree closes, so the formula is a tautology.
3.
| ~((p & (p ⊃ q)) ⊃ q) | ||||
| | | ||||
| p & (p ⊃ q) | ||||
| ~ q | ||||
| | | ||||
| p | ||||
| p ⊃ q | ||||
| / | \ | |||
| ~ p | q | |||
| X | X |
The tree closes, so the formula is a tautology.
4.
| ~(((p & q) ⊃ r) ⊃ (p ⊃ r)) | ||||||
| | | ||||||
| (p & q) ⊃ r | ||||||
| ~(p ⊃ r) | ||||||
| | | ||||||
| p | ||||||
| ~ r | ||||||
| / | \ | |||||
| ~(p & q) | r | |||||
| / | \ | X | ||||
| ~ p | ~ q | |||||
| X | ^ | |||||
| open |
The tree is open. A countermodel is as follows:
p = 1 q = 0 r = 0
This makes the premise true and the conclusion false. The argument is invalid.
5.
| ~((p ⊃ q) ⊃ p) ⊃ p) | ||||
| | | ||||
| (p ⊃ q) ⊃ p | ||||
| ~ p | ||||
| / | \ | |||
| ~(p ⊃ q) | p | |||
| | | X | |||
| p | ||||
| ~ q | ||||
| X |
The tree is closed, the formula is a tautology.
Now the argument forms from {3.4}
1.
| p | ||||
| p ⊃ q | ||||
| ~ q | ||||
| / | \ | |||
| ~ p | q | |||
| X | X |
The tree closes, the argument form is valid.
2.
| p | ||||
| q | ||||
| ~(p ≡ q) | ||||
| / | \ | |||
| p | ~ p | |||
| ~ q | q | |||
| X | X |
The tree closes, the argument form is valid.
3.
| p & q | ||||
| ~(p ≡ q) | ||||
| | | ||||
| p | ||||
| q | ||||
| / | \ | |||
| p | ~ p | |||
| ~ q | q | |||
| X | X |
The tree is closed. The argument form is valid.
4.
| p | ||||
| q ⊃ p | ||||
| ~ q | ||||
| / | \ | |||
| ~ q | p | |||
| ^ | ^ | |||
| open | open |
The tree remains open. A countermodel p = 1 and q = 0 makes the premises true and the conclusion false.
The argument form is invalid.
5.
| p | ||||
| q | ||||
| ~(p & q) | ||||
| / | \ | |||
| ~ p | ~ q | |||
| X | X |
The tree is closed. The argument form is valid.
6.
| p |
| ~(p ∨ q) |
| | |
| ~ p |
| ~ q |
| X |
The tree is closed. The argument form is valid.
7.
| p ≡ q | ||||||
| p ≡ ~ q | ||||||
| ~~ p | ||||||
| | | ||||||
| p | ||||||
| / | \ | |||||
| p | ~ p | |||||
| q | ~ q | |||||
| / | \ | X | ||||
| p | ~ p | |||||
| ~ q | ~~ q | |||||
| X | X |
The tree is closed, the argument form is valid.
8.
| p ⊃ (q ⊃ r) | ||||||
| ~(q ⊃ (p ⊃ r)) | ||||||
| | | ||||||
| q | ||||||
| ~(p ⊃ r) | ||||||
| | | ||||||
| p | ||||||
| ~ r | ||||||
| / | \ | |||||
| ~ p | q ⊃ r | |||||
| X | / | \ | ||||
| ~ q | r | |||||
| X | X |
The tree closes, the argument form is valid.
9.
| p ⊃ ~ p | ||||
| ~~ p | ||||
| / | \ | |||
| ~ p | ~ p | |||
| X | X |
The tree closes, the argument form is valid.
10.
| ~~ p |
| ~ p |
| X |
The tree closes, the argument form is valid.
11.
| p ⊃ q | ||||||
| ~((r ⊃ p) ⊃ (r ⊃ q)) | ||||||
| | | ||||||
| r ⊃ p | ||||||
| ~(r ⊃ q) | ||||||
| | | ||||||
| r | ||||||
| ~ q | ||||||
| / | \ | |||||
| ~ p | q | |||||
| / | \ | X | ||||
| ~ r | p | |||||
| X | X |
The tree closes. The argument form is valid.
12.
| p ⊃ q | |||||
| ~(~ q ⊃ ~ p) | |||||
| | | |||||
| ~ q | |||||
| ~~ p | |||||
| / | \ | ||||
| ~ p | q | ||||
| X | X |
The tree closes, the argument form is valid.
13.
| p |
| ~(~ p ⊃ q) |
| | |
| ~ p |
| ~ q |
| X |
The tree closes, the argument form is valid.
14.
| p ⊃ (p ⊃ q) | ||||
| ~(p ⊃ q) | ||||
| | | ||||
| p | ||||
| ~ q | ||||
| / | \ | |||
| ~ p | p ⊃ q | |||
| X | X |
The tree closes, the argument form is valid.
Note that we can close the right branch using p ⊃ q and its negation. There is no need to resolve the formula p ⊃ q.
15.
| p |
| ~(q ⊃ q) |
| | |
| q |
| ~ q |
| X |
The tree closes, the argument form is valid.
16.
| p ∨ q | ||||||
| ~ q ∨ r | ||||||
| ~ (p ∨ r) | ||||||
| | | ||||||
| ~ p | ||||||
| ~ r | ||||||
| / | \ | |||||
| p | q | |||||
| X | / | \ | ||||
| ~ q | r | |||||
| X | X |
The tree closes, the argument form is valid.
17.
| p ⊃ q | ||||
| ~(q ⊃ p) | ||||
| | | ||||
| q | ||||
| ~ p | ||||
| / | \ | |||
| ~ p | q | |||
| ^ | ^ | |||
| open | open |
The tree is open.
The counterexample p = 0 and q = 1 makes the premises true, and the conclusion false.
So, the argument is invalid.
18.
| p ⊃ (q ⊃ r) | ||||||||||||||
| ~((p ⊃ q) ⊃ r) | ||||||||||||||
| | | ||||||||||||||
| p ⊃ q | ||||||||||||||
| ~ r | ||||||||||||||
| / | \ | |||||||||||||
| / | \ | |||||||||||||
| / | \ | |||||||||||||
| ~ p | q ⊃ r | |||||||||||||
| / | \ | / | \ | |||||||||||
| ~ p | q | ~ p | q | |||||||||||
| ^ | ^ | / | \ | / | \ | |||||||||
| ~ q | r | ~ q | r | |||||||||||
| ^ | X | X | X |
The tree is open (see any of the branches marked with `^’). Any evaluation of the propositions with p and r false (see the first branch) will make the premises true and the conclusion false. So:
p = 0 q = 0 r = 0
p = 0 q = 1 r = 0
are both countermodels.
The argument is invalid.
19.
| (p & q) ⊃ r | ||||||
| ~(p ⊃ (~ q ∨ r)) | ||||||
| | | ||||||
| p | ||||||
| ~(~ q ∨ r) | ||||||
| | | ||||||
| ~~ q | ||||||
| ~ r | ||||||
| / | \ | |||||
| ~ (p & q) | r | |||||
| / | \ | X | ||||
| ~ p | ~ q | |||||
| X | X |
The tree closes, the argument form is valid.
20.
| p ⊃ q | ||||||||
| r ⊃ s | ||||||||
| ~((q ⊃ r) ⊃ (p ⊃ s)) | ||||||||
| | | ||||||||
| q ⊃ r | ||||||||
| ~(p ⊃ s) | ||||||||
| | | ||||||||
| p | ||||||||
| ~ s | ||||||||
| / | \ | |||||||
| ~ p | q | |||||||
| X | / | \ | ||||||
| ~ q | r | |||||||
| X | / | \ | ||||||
| ~ r | s | |||||||
| X | X |
The tree is closed. The argument form is valid.
Question {4.2}
An exclusive disjunction A x B is true when A is true and B isn’t, or when B is true and A isn’t. So the rule for an exclusive disjunction should be:
| A x B | ||||
| / | \ | |||
| A | ~ A | |||
| ~ B | B |
If you get a negated exclusive disjunction, you have a different rule. A x B is false when A and B are both true, or when they are both false. So, you get:
| ~(A x B) | ||||
| / | \ | |||
| A | ~ A | |||
| B | ~ B |
Question {4.3}
The Sheffer Stroke A | B is false when A and B are both true, and true otherwise. The negated rule is easiest.
| ~(A | B) |
| | |
| A |
| B |
The formula A | B is true just when either A is false, or B is false. So you can use the rule:
| A | B | ||||
| / | \ | |||
| ~ A | ~ B |