Question {7.1}
A ⊃ ~ B ⊢ B ⊃ ~ A :
1 | B ⊢ B | Ax. |
2 | A ⊃ ~ B ⊢ A ⊃ ~ B | Ax. |
3 | A ⊢ A | Ax. |
4 | A ⊃ ~ B, A ⊢ ~ B | 2,3 (⊃ E) |
5 | A ⊃ ~ B, A, B ⊢ \bot | 1,4 (~ E) |
6 | A ⊃ ~ B, B ⊢ ~ A | 5 (~ I) |
7 | A ⊃ ~ B ⊢ B ⊃ ~ A | 6 (⊃ I) |
~ ~ ~ A ⊢ ~ A :
1 | ~ ~ ~ A ⊢ ~ ~ ~ A | Ax. |
2 | A ⊢ A | Ax. |
3 | ~ A ⊢ ~ A | Ax. |
4 | A, ~ A ⊢ \bot | 2,3 (~ E) |
5 | A ⊢ ~~ A | 4 (~ I) |
6 | ~ ~ ~ A, A ⊢ \bot | 1,5 (~ E) |
7 | ~ ~ ~ A ⊢ ~ A | 6 (~ I) |
~ A ∨ ~ B ⊢ ~(A & B) :
1 | ~ A ∨ ~ B ⊢ ~ A ∨ ~ B | Ax. | |
2 | A & B, ~ A ⊢ A & B | Ax. | |
3 | A & B, ~ A ⊢ A | 2 (& E) | |
4 | A & B, ~ A ⊢ ~ A | Ax. | |
5 | A & B, ~ A ⊢ \bot | 3,4 (~ E) | |
6 | A & B, ~ B ⊢ A & B | Ax. | |
7 | A & B, ~ B ⊢ B | 6 (& E) | |
8 | A & B, ~ B ⊢ ~ B | Ax. | |
9 | A & B, ~ B ⊢ \bot | 7,8 (~ E) | |
10 | ~ A ∨ ~ B, (A & B) ⊢ \bot | 1,5,9 (∨ E) | |
11 | ~ A ∨ ~ B ⊢ ~(A & B) | 10 (~ I) |
~(A ∨ B) ⊢ ~ A & ~ B :
1 | ~(A ∨ B) ⊢ ~(A ∨ B) | Ax. |
2 | A ⊢ A | Ax. |
3 | A ⊢ A ∨ B | 2 (∨ I) |
4 | ~(A ∨ B), A ⊢ \bot | 1,3 (~ E) |
5 | ~(A ∨ B) ⊢ ~ A | 4 (~ I) |
6 | B ⊢ B | Ax. |
7 | B ⊢ A ∨ B | 6 (∨ I) |
8 | ~(A ∨ B), B ⊢ \bot | 1,7 (~ E) |
9 | ~(A ∨ B) ⊢ ~ B | 8 (~ I) |
10 | ~(A ∨ B) ⊢ ~ A & ~ B | 5,9 (& I) |
A & ~ B ⊢ ~(A ⊃ B) :
1 | A & ~ B ⊢ A & ~ B | Ax. |
2 | A & ~ B ⊢ ~ B | 1 (& E) |
3 | A & ~ B ⊢ A | 1 (& E) |
4 | A ⊃ B ⊢ A ⊃ B | Ax. |
5 | A & ~ B, A ⊃ B ⊢ B | 3,4 (⊃ E) |
6 | A & ~ B, A ⊃ B ⊢ \bot | 2,5 (~ E) |
7 | A & ~ B ⊢ ~(A ⊃ B) | 6 (~ I) |
Question {7.2}
⊢ ((A ⊃ B) ⊃ A) ⊃ A :
1 | ~ A ⊢ ~ A | Ax. |
2 | A ⊢ A | Ax. |
3 | ~ A, A ⊢ \bot | 1,2 (~ E) |
4 | ~ A, A ⊢ B | 3 (\bot E) |
5 | ~ A ⊢ A ⊃ B | 4 (⊃ I) |
6 | (A ⊃ B) ⊃ A ⊢ (A ⊃ B) ⊃ A | Ax. |
7 | (A ⊃ B) ⊃ A, ~ A ⊢ A | 5,6 (⊃ E) |
8 | (A ⊃ B) ⊃ A, ~ A ⊢ \bot | 1,7 (~ E) |
9 | (A ⊃ B) ⊃ A ⊢ ~~ A | 8 (~ I) |
10 | (A ⊃ B) ⊃ A ⊢ A | 9 (DNE) |
11 | ⊢ ((A ⊃ B) ⊃ A) ⊃ A | 10 (⊃ I) |
~(A & B) ⊢ ~ A ∨ ~ B :
1 | ~(~ A ∨ ~ B) ⊢ ~(~ A ∨ ~ B) | Ax. |
2 | ~ A ⊢ ~ A | Ax. |
3 | ~ A ⊢ ~ A ∨ ~ B | 2 (∨ I) |
4 | ~(~ A ∨ ~ B), ~ A ⊢ \bot | 1,3 (~ E) |
5 | ~(~ A ∨ ~ B) ⊢ ~~ A | 4 (~ I) |
6 | ~(~ A ∨ ~ B) ⊢ A | 5 (DNE) |
7 | ~ B ⊢ ~ B | Ax. |
8 | ~ B ⊢ ~ A ∨ ~ B | 7 (∨ I) |
9 | ~(~ A ∨ ~ B), ~ B ⊢ \bot | 1,8 (~ E) |
10 | ~(~ A ∨ ~ B) ⊢ ~~ B | 9 (~ I) |
11 | ~(~ A ∨ ~ B) ⊢ B | 10 (DNE) |
12 | ~(~ A ∨ ~ B) ⊢ A & B | 6,11 (& I) |
13 | ~(A & B) ⊢ ~(A & B) | Ax. |
14 | ~(A & B), ~(~ A ∨ ~ B) ⊢ \bot | 12,13 (~ E) |
15 | ~(A & B) ⊢ ~~(~ A ∨ ~ B) | 14 (~ I) |
16 | ~(A & B) ⊢ ~ A ∨ ~ B | 15 (DNE) |
⊢ A ∨ (A ⊃ B) :
1 | ~(A ∨ (A ⊃ B)) ⊢ ~(A ∨ (A ⊃ B)) | Ax. |
2 | A ⊢ A | Ax. |
3 | ~ A ⊢ ~ A | Ax. |
4 | A, ~ A ⊢ \bot | 2,3 (~ E) |
5 | A, ~ A ⊢ B | 4 (\bot E) |
6 | ~ A ⊢ A ⊃ B | 5 (⊃ I) |
7 | ~ A ⊢ A ∨ (A ⊃ B) | 6 (∨ I) |
8 | ~(A ∨ (A ⊃ B)), ~ A ⊢ \bot | 1,7 (~ E) |
9 | ~(A ∨ (A ⊃ B)) ⊢ ~~ A | 8 (~ I) |
10 | ~(A ∨ (A ⊃ B)) ⊢ A | 9 (DNE) |
11 | ~(A ∨ (A ⊃ B)) ⊢ A ∨ (A ⊃ B) | 10 (∨ I) |
12 | ~(A ∨ (A ⊃ B)) ⊢ \bot | 1,11 (~ I) |
13 | ⊢ ~~(A ∨ (A ⊃ B)) | 12 (~ I) |
14 | ⊢ A ∨ (A ⊃ B) | 13 (DNE) |
~ A ⊃ ~ B ⊢ B ⊃ A :
1 | ~ A ⊢ ~ A | Ax. |
2 | ~ A ⊃ ~ B ⊢ ~ A ⊃ ~ B | Ax. |
3 | ~ A ⊃ ~ B, ~ A ⊢ ~ B | 1,2 (⊃ E) |
4 | B ⊢ B | Ax. |
5 | ~ A ⊃ ~ B, ~ A, B ⊢ \bot | 3,4 (~ E) |
6 | ~ A ⊃ ~ B, B ⊢ ~~ A | 5 (~ I) |
7 | ~ A ⊃ ~ B, B ⊢ A | 6 (DNE) |
8 | ~ A ⊃ ~ B ⊢ B ⊃ A | 7 (⊃ I) |
(A & B) ⊃ C ⊢ (A ⊃ C) ∨ (B ⊃ C) :
1 | A ⊢ A | Ax. |
2 | B ⊢ B | Ax. |
3 | A, B ⊢ A & B | 1,2 (& I) |
4 | (A & B) ⊃ C ⊢ (A & B) ⊃ C | Ax. |
5 | (A & B) ⊃ C, A, B ⊢ C | 3,4 (⊃ E) |
6 | (A & B) ⊃ C, A ⊢ B ⊃ C | 5 (⊃ I) |
7 | (A & B) ⊃ C, A ⊢ (A ⊃ C) ∨ (B ⊃ C) | 6 (∨ I) |
8 | ~((A ⊃ C) ∨ (B ⊃ C)) ⊢ ~((A ⊃ C) ∨ (B ⊃ C)) | Ax. |
9 | (A & B) ⊃ C, A, ~((A ⊃ C) ∨ (B ⊃ C)) ⊢ \bot | 7,8 (~ E) |
10 | (A & B) ⊃ C, A, ~((A ⊃ C) ∨ (B ⊃ C)) ⊢ C | 9 (\bot E) |
11 | (A & B) ⊃ C, ~((A ⊃ C) ∨ (B ⊃ C)) ⊢ A ⊃ C | 10 (⊃ I) |
12 | (A & B) ⊃ C, ~((A ⊃ C) ∨ (B ⊃ C)) ⊢ (A ⊃ C) ∨ (B ⊃ C) | 11 (∨ I) |
13 | (A & B) ⊃ C, ~((A ⊃ C) ∨ (B ⊃ C)) ⊢ \bot | 8,12 (~ E) |
14 | (A & B) ⊃ C ⊢ ~~((A ⊃ C) ∨ (B ⊃ C)) | 13 (~ I) |
15 | (A & B) ⊃ C ⊢ (A ⊃ C) ∨ (B ⊃ C) | 14 (DNE) |