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Lecture 10

In this class, I will introduce some ideas an constructions from logic that have been developed with an aim
to give insight into the behaviour of the truth predicate in the light of the liar paradox. In particular, I will
explain Kripke’s fixed point construction to give models for a theory of self-referential truth. This should help
you come to terms with the technical parts of Kripke’s “An Outline of a Theory of Truth”, (hereafter, OTT) so
we can discuss the underlying philosophy of Kripke’s position in our tutorial this week.

Then, in my second class (Week 11), we’ll look at a variety of perspectives on what on this might mean, more
generally, noting other (non-Kripkean) perspectives which use broadly Kripkean insights for a very different
end. We will wrap up with a consideration of what scope there might be for a broadly neutralist perspective
on truth and other concepts prone to self-referential paradox.

Formalising one paradoxical argument

Here is one version of the Liar Paradox:

The liar paradox runs as follows. Consider a sentence that says of itself that it is not true:

(λ): (λ) is not true.

Suppose first that this sentence is not true. Then, since this is what it says, it is true after all. So
supposing that (λ) is not true, we can conclude that (λ) is true. But if (λ) is true, then what (λ) says is the
case. And what (λ) says is that it is not true. So (λ) is not true. But this contradicts what we had already
concluded, namely that (λ) is true.

Matti Eklund “Deep Inconsistency”, Australasian Journal of Philosophy 80 (2002) 321-331 (from page 321)

One delightful (and infuriating) feature of the Liar paradox is that it is so simple. There are very few
inference steps involved in the argument to the contradictory conclusion. I spell them out in detail here, and
show how they combine to produce the argument to the contradictory conclusion.

The inference principles are

Negation elimination , according to which, a statement  and its negation  are contradictory.
Negation introduction , according to which, you can prove a negation  by first assuming the
negand  an deriving a contradiction from this assumption.
Introduction for the truth predicate , according to which, you can infer  from .
Elimination for the truth predicate , according to which, you can infer  from .
Identity elimination , the principle of “indiscernibility” of identicals. We appeal to this when it is
applied to the truth predicate. I.e., if  and  is true, then so is .

Each of these rules has the virtue of isolating a particular concept and describing some facet of what we
can do with that concept, either as an elimination rule (what follows from the use of the concept) or an
introduction rule (what we need to prove to be in a position to conclude a claim using that concept).
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This is starkest in the case of the identity rule: it is about identity, and not any other concept at all. (The  in
the rule stands in for any predicate. It is not restricted to any predicate in particular. You could press the
case that  not only uses the concepts involved in the expression  and the expression  but also the
copula that connects  to , and if that is a concept involved in the rule for identity.)

The negation rules feature this strange marker: . It can simply read as “that’s a contradiction”. I prefer
thinking of it as not another statement which could be true or false, but something we say when we have
reached a dead end in our reasoning. In the  rule, if we manage to prove  and also prove  (from
various assumptions), we can say: well, that can’t happen, and we can treat what we have got to as a
refutation of one or other of our assumption we have appealed to on the way to this dead end. This makes
sense of the  rule, which says: if I do reach a dead end (this kind of contradiction) in my reasoning, I can
look among the assumptions and choose one and blame that. Since  cannot hold (along with the other
assumptions), then given the other assumptions, we have .

The truth rules are simple, too, except they use the notion of quotation. For every sentence  we presume
we have a singular term , which we can think of as  surrounded by quote marks. While  is the kind of
thing we can assume in a proof, and we can prove or disprove, conjoin with something else, etc.,  is
something we can predicate properties of.  is a sentence which we can use to assert something.  is a
singular term which refers to an object, namely, the sentence .

With that squared away, the truth rules allow us to introduce quotation names and the truth predicate in one
inference, and to reverse this inference. If  then the sentence  is true. Conversely, if 

 is true, then .

Using these five rules alone, we can start from the assumption that we have a sentence  which says of
itself that it is not true (i.e., a  where we have ), and we can prove a contradiction:

Locating different positions on this map

With this proof spelled out in such detail, we can categorise various positions on the paradox by way of
distinguishing where they locate an error in the proof:

Level solutions object to the assumption  that there is a sentence which says of itself that it
is not true.

 No-proposition views (according to which any liar sentence does not express a proposition, and so,
does not actually say of itself that it is not true) also object to this assumption, because on this view, 
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 can be truly said. It is just not truly said by the sentence .

 Truth-value gap views reject the inference rule . They agree that  and  are inconsistent,
but you cannot infer from this that  follows from .

 Truth-value glut views reject the inference rule . For friends of truth-value gluts,  and  need not
be incompatible.

 Revisionary projects about truth reject either  or , perhaps by way of restricting one or the other
inference,[1] or by rejecting the use of the truth predicate altogether in favour of a pair of predicates,
one of which satisfies the introduction rule and the other of which satisfies the elimination rule.[2]

I know of no view in the literature that objects to the proof at the  inference. (Surely there is
something to be explored there, though I can’t quite see what it would be.)

Some of these diagnoses (e.g. the gap and glut views) analyse the liar paradox in terms of the distinctive
behaviour of negation, saying that our traditional understanding of negation is shown to be incorrect by the
paradoxical argument. Other diagnoses (e.g. the level and revisionary views, and perhaps no-proposition
views, too) locate the culprit in the distinctive behaviour of the concept of truth. Perhaps one or other
option seems plausible (after all, negation and the concept of truth seem to play an essential role in the
paradoxical argument), but there are strikingly similar paradoxes that employ a different family of concepts.
One is Curry’s paradox, which Patrick mentioned last week.

Formalising a different self-referentially paradoxical argument

Curry’s paradox is formulated not using negation, but using the conditional.

I will give an example of Curry’s paradox here, but instead of using the concept of truth, I will use the
concept of property possession (or, if you prefer, class membership[3]).

The idea is simple. For any sentence  in which the variable  is free, we can think of the property of
being a thing that satisfies . For example, given the sentence “  is green” the property of being a thing
that satisfies is green  is simply the property of being green. We introduce a shorthand notation 
to talk about such a property, and we say  to say that  is one of the things that has that
property.

We can talk about properties in the same way that we talk about anything else. In particular, properties can
have properties, like other things can have properties. Every property has the property of being a property,
as one example.

Some very plausible rules of property exemplification go like this: if  holds, then  exemplifies the
property . And conversely, if  exemplifies the property  then we have . The green
things are all and only the things that exemplify the property of being green.

That motivates the property exemplification rules below, which, together with the very straightforward rules
for the conditional, suffice to derive a version of Curry’s paradox.

We work with a very simple (but, admittedly, bizarre) property. We choose an arbitrary proposition  and
consider this property: being a thing such that if it exemplifies itself, then . For short, we call this property 
. The  and  rules when applied to  have a very interesting structure:
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With these instances of  and  we can reason like this:

The result is a proof of the proposition , which was whatever proposition we cared to choose in the first
place. We can prove anything we like, from no premises at all. That means our rules have gone too far. But
where?

Noticing the parallels

This proof has a remarkably similar structure to the paradoxical liar proof. Notice, though, that it uses none
of the same inference rules. If this is the “same” kind of problem under a different guise, then we have an
opportunity to refine our diagnosis, to give a more general account that can help in a wider range of
settings. Thankfully, some of diagnoses of the liar paradox given above do generalise in a relatively natural
way:[4]

Level solutions object to the assumption that the statement  is well-formed. Properties may have
properties, but properties at level  have higher-order properties at level .

 No-proposition views: perhaps to generalise this view to the property case you would have to reject
the coherence of the definition of the putative property  on grounds other than levels.

 Truth-value gap views: to generalise this to the Curry-paradox setting, you would reject  in parallel
with . The motivation for this seems, as yet, unclear… But notice that this doesn’t seem to be about
truth values any more. What could motivate the rejection of ?

 Truth-value glut views: to generalise these it would seem that the natural place to object here would
be  in parallel with the inference rule . But  is modus ponens, and can we do without that?
(This is the crux of the Restall/Priest disagreement, mentioned in footnote 4.) Again, the connection
with truth value gluts is not so clear.

 Revisionary projects can take a stricter view of property formation and application, rejecting one or
other of  and  in just the same way that they reject either  or .
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Notice that in each of these responses, we need to do surgery on different concepts, whether properties
and exemplification or conditionality, in addition to the concepts of truth or negation. It would be good to
have some kind of guiding principles to help us in such surgery, and to formulate those principles in terms
that are independent of any particular guise in which this kind of malady arises.

Kripke’s Model: why it’s needed

Kripke’s insight in OTT[5] is one way to attempt to articulate the idea that a key diagnostic tool in all of these
paradoxes of self-reference is the role of groundedness and ungroundedness. Paradoxical sentences
(whether the liar paradox or Curry’s paradox or the truth-teller) send us into a kind of ungrounded process
of evaluation in which our everyday rules spin their wheels and never come in contact with something
“outside” which might ground the evaluation. The heavy-handed way to deal with this is to impose levels
and never permit even the possibility of ungrounded claims. But Kripke’s construction shows that this might
be a more aggressive treatment than necessary. The aim is to show that there is some way to interpret
sentences in a language involving the truth predicate in such a way as to make sure that each sentence 
and  always the same truth value, and which allows for sentences like  which are liar paradoxical.

You should first think about why the naïve first thought for how to interpret the truth predicate…

Assign  whatever truth value you assigned : that is, for any given model , simply make sure that 
.

…cannot work as a guide to assigning truth values.

Here is why: Consider the truth-teller sentence  for which we have . What advice does this rule
give us about the value of ? Since , we assign  the same value as , and the rule says this
should have the same value as . In other words, the advice has simply gone around in a very tight circle
and does not actually tell us the value of ! The case is worse for the liar sentence: What do we assign ?
Since , we assign  the same value as , and the guideline above tells us that you should
assign this the same value as . The guideline, in other word, tells us to go around in a circle, and to
assign  the same value as . In traditional two-valued logic we can’t do this, but maybe we can do this
if we have more values to apply. But the guideline doesn’t tell us to assign  a truth value on the basis of
something simpler (which is already determined). It tells us to assign the truth value of  in terms of the
value of something more complex (in this case, ). This might be possible, but there is, as of yet, no
guarantee that assigning truth values in this way is at all possible.

Kripke’s model:  and refinement

Let’s step back and think about how we might do assign an interpretation to the truth predicate.[6]

First, let’s be clear about models. Each model assigns values to sentences in our language. In Kripke’s
construction, in particular, each sentence is assigned one of the three values  (for falsity)  (for truth) and 
(for a third status, which you can think of as “neither true nor false” for the moment). The crucial idea in
Kripke’s construction is that we think of  as “less specific” than either  or , and  and  as both being
more defined than .

So, there is a kind of “ordering” among the values where  and  but no other ordering obtains
between the values (so  and  are incomparable by .) The strict order  induces the order  (which
stands to  as  stands to  for numbers), where we define  to hold if and only if  or . If 
then we think of  as being at least as defined as , or  as being a possible update to  which might (or
might not) resolve the less specific value  into a more specific  or , but a  or  cannot be resolved to
anything other than the value it is.

We can interpret the logical concepts in our language by way of “truth tables” with respect to these three
values. One way to specify them is by way of the following rules, which specify the conditions under which a
sentence gets the value  or  (so a sentence gets the value  if the other clauses do not give it a value):
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 iff  and ;  iff  or .
 iff  or ;  iff  and .
 iff  or ;  iff  and .

These values can be summarised in a table like this:

The idea is simple: a complex formula gets a traditional value (  or ) just when its components are
determined enough (by having values  or ) to assign the value required. So, e.g., a conjunction is true
when both conjuncts are true. It is false when one conjunct (at least) is false. And in the remaining cases, it
is left .

Think of a model of the language as assigning values ,  and  to every sentence of the language, in such a
way that these rules are respected.

Each connective in the language respects the order  in the following way: Think of models as ordered by
refinement:  iff  for each atom  (so  differs from  only by resolving some atoms
that were valued  by  to be valued  or  by , but it never changes a  to a  or vice versa), then this
fact is extends to the entire language:  for every formula . (I leave verifying this to you as an
exercise if you want to work through the details, or consult my Proofs and Models in Philosophical Logic, p.
44, 45 to see how this is done.)

Kripke’s model: stages and the fixed point

Now, we’ll see how we can define a model  that will, as a matter of fact, always assign  and  the
same truth values. The process of doing this will respect the intuition that if the process of evaluating a
sentence of the form  is grounded, it will be assigned one of the truth values  or , but ungrounded
sentences might be assigned the value .

Start with some model  that interprets the entire language in whatever way we please, except that each
sentence of shape  is assigned the value . At stage , the truth predicate is totally undefined. We will be
constructing , , , etc… for very many stages of evaluation.

Now, given any model  that we have defined so far, we will define the next model in the series, . We
assign its atomic sentences in just the same way as  does, except for the -sentences. Here, we assign 

 the same value that the model  assigns to the sentence . The idea is that if  has been assigned a
value  or  in the process of evaluation, then at the next stage (at least), we can assign  that value,
too.

The crucial feature of this process is that for every sentence at all, . That is, the values
assigned to sentences as we go along this series are more and more refined. If  has is assigned some
value  at stage  and then  (say) at stage , then at stage ,  gets value  too, and from then on,
its truth value is settled and does not change any more. Sentences flip from  to  or to , but once a
sentence has the value  or  it is fixed from then on.

Now, this process can go on infinitely far. (For any number , you can formulate a sentence with  ‘ ‘s
prefixing some sentence, which will only get its value at stage  at the earliest.) In fact, given the sequence 

 going on for every natural number, we can define a new model  that collects together all the
models we’ve made before! (  iff  for some finite ;  iff  for some finite ,
and  otherwise.) In fact, if the language we are evaluating is expressive enough, we might not stop
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at level , but have to continue. After all, we can define  by applying the same rule as before, and
assign a settled value to some -sentence  where  was first settled at level .[7]

Will this ever stop, or will it go on for ever and ever with no place to stop at all? This is the point at which
things get even more technically challenging, and you can skip these details unless they interest you. The
process we have defined so far for every natural number, and beyond to ,  and so on, can be
extended to every ordinal number, way off into the transfinite. (The idea is that you can keep on adding one,
and do that indefinitely, and at each infinite stack of adding ones, you sum everything up into a limit, so we
have , ,… and onto , so following the pattern, we have , , ,…, and onto 

,… and way beyond that, too.) How far off into the transfinite? Well, there are so many of these ordinals
that there is an important sense in which there are more ordinals than sentences in any given language we
are interpreting in our models.

This is important, because as we define this humongously large “sequence” of models , ,  , ,  at
each and every stage along the way the models are getting more and more refined, at least in the sense
that we have

and in such a humongous sequence of models once a sentence is given the value  (or the value ) it keeps
it, forever more. Given that there are more steps along the way in this “sequence” than there are formulas in
the language, eventually we have to run out of formulas to be assigning these settled values. We will
eventually have a pair of models  and  which agree in their values, and once that is done, the
sequence stops:  will assign to the -sentences  the values that  was assigned in  and these
are, by hypothesis, just the same as the values that  was assigned in , which determines the values that 

 has in . So, every -sentence is fixed in value from  to , and the other atomic sentences
were unchanging, so every sentence has the same value from  to , and so, things are fixed from
then on.

Such a model is called a fixed-point of the sequence, and fixed points are special. They assign exactly the
same value to  and to  for every sentence , ensuring that in a very tight sense, the  and  rules
hold in full generality: the sentences are assigned the same semantic values. We did this by allowing all
grounded sentences (any sentence for which there is any conceivable process of evaluation that can
interpret  by first assigning a value,  or  to ) to eventually be assigned a settled truth value—no
matter how long that process might take—leaving only the remainder to have the unsettled value . This is a
model of some way that truth can be understood without resorting to levels or otherwise restricting the
truth rules in their full generality.

The Upshot

What can we learn from this exercise?

Whatever we’ve done, it’s both less and more than a “solution” to the original liar paradox. It’s much less than
a “solution” because there is so much more to say than just accepting that sentences are assigned truth
values as they are in a fixed point of a scheme like Kripke has constructed. If we think of the values  and 
as “false” and “true”, then I suppose something assigned as  is neither true nor false, and if we say that in
our preferred model of the liar sentence  and so, the liar sentence is neither true nor false, which
seems to commit us to saying that the liar sentence is not true, which is just what the liar sentence says. We
have a simple revenge paradox, which itself needs an answer.

So, we need to do more to use this to comprehensively diagnose the liar paradox and its cousins.

But there is another sense in which its much more than just an account of the liar paradox. Nothing in the
reasoning we looked at said anything special about negation. The key idea was that all the logical concepts
in the construction preserved the refinement order. This constrains the interpretation of negation, but it also
equally constrains the interpretation of the conditional, so Curry-paradoxical sentences are interpreted in
just the same sort of way as liar paradox sentences.
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Similarly, the groundedness interpretation for truth applies equally well to properties (we say  is
assigned the same value at stage  that  is assigned at stage ), and exactly the same story can be
told here. The crucial insight of the construction is the stages of construction, the refinement ordering and a
fixed point. The particular details of how these are applied, to any given logical connective, or any concept
that threatens ungroundedness, like truth or property abstraction, is mere detail. The point is not a specific
one about the semantics of this or that connective, or of this or that concept like truth or property
instantiation.

More importantly, though, the model gives us reassurance that at the very least of a minimal kind of
coherence of a set of rules. The fixed point construction shows that any rules which hold in that model do
not, in and of themselves, lead us into paradox. A model or a system of models provides a proof of concept
that any system of rules that apply in models like that cannot give rise (by themselves) to any conclusion
that does not also hold in those models. That does not mean that no paradoxes can arise, of course, but it is
a kind of safety net, saying that if we are happy with limiting ourselves to principles like these, our position is
at least, in this minimal sense, coherent. And that, in this area, is a kind of reassurance that is surprisingly
rare.

In the next class I will explore what kind of insight we might draw from this when it comes to thinking more
generally about the liar paradox and other paradoxes of self-reference.

1. See, Stephen Read’s “The Liar Paradox from John Buridan back to Thomas Bradwardine” Vivarium 40 (2002), 189–218
for a good introduction to these issues. ↩︎

2. See Kevin Scharp, Replacing Truth, OUP, 2013 for an extended presentation of a view of this form.↩︎
3. I describe all of this in terms of properties and exemplification rather than classes and membership, but the reasoning

is exactly the same in either case. Classes satisfy an extra condition, extensionality, not satisfied by properties. If  and
 are classes with exactly the same members, then they are identical; while  and  might be distinct properties

exemplified by exactly the same things. The class of equiangular triangles in the Euclidean plane is exactly the same as
the class of equilateral triangles in the Euclidean plane. However, the property of being an equilateral triangle need not
be identical to the property of being an equiangular triangle. Since extensionality is not involved in Curry’s paradox, we
need not worry about whether we are reasoning about classes or properties.↩︎

4. To track down some of the considerations here around the costs and benefits of uniformity in diagnoses of the
paradoxes of self-reference, see the critical discussion between Graham Priest “The Structure of the Paradoxes of Self-
Reference” Mind 103 (1994), 25–34, and Greg Restall “Deviant Logic and the Paradoxes of Self Reference”
Philosophical Studies 70 (1993), 279–303. (Although published earlier than Priest’s 1994 paper, Restall’s paper was
written partly in response to an earlier version Priest’s paper, which was presented at the 1991 Australasian Association
for Logic conference.)↩︎

5. This insight was not solely had by Kripke. Amazingly, the same idea was formulated by Brady in 1971, Gilmore in 1974
and Martin and Woodruff in 1975, all apparently independently. See Greg Restall, Proofs and Models in Philosophical
Logic, Cambridge University Press, 2022 (page 44) for references.↩︎

6. It will turn out that what we do with the truth predicate could equally apply to properties and exemplification, as I will
mention below. It is a general technique for how to deal with possibly circular definitions. For more on this general
theme, and for an exploration of a related approach that treats circular definitions in their generality, I recommend Anil
Gupta and Nuel Belnap’s A Revision Theory of Truth, MIT Press, 1993.↩︎

7. If the language has quantifiers, and if we have a primitive predicate  that (in the ground model ) is true of every -
free sentence, and false otherwise, and a primitive relation  that (in the ground model) holds between  and  just
when  is the sentence , that is,  prefixed by some number of -predicates, then the sentence 

 will only be assigned  at level , and so,  will only be
assigned  at ,  will get its value at , and so on…↩︎
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