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abstract

We present a new frame semantics for positive relevant and substructural propo-
sitional logics. This frame semantics is both a generalisation of Routley–Meyer
ternary frames and a simplification of them. The key innovation of this semantics
is the use of a single accessibility relation to relate collections of points to points.
Different logics are modeled by varying the kinds of collections used: they can be
sets, multisets, lists or trees. We show that collection frames on trees are sound and
complete for the basic positive distributive substructural logic B+, that collection
frames onmultisets are sound and complete for RW+ (the relevant logic R+, with-
out contraction, or equivalently, positive multiplicative and additive linear logic
with distribution for the additive connectives), and that collection frames on sets
are sound for the positive relevant logic R+. The completeness of set frames for
R+ is, currently, an open question.

1. ternary relational frames

The ternary relational semantics for relevant logics is a triumph. The groundbreaking
results of of Routley andMeyer [45, 46, 47] have significantly clarified our understand-
ing of relevant logics.1 After 20 years of viewing relevant logics with Hilbert-style ax-

1The ternary relational frame condition for conditionals was discovered independently both by Larisa
Maksimova in the late 1960s and by Dana Scott in the early 1970s. Maksimova’s strikingly early contribu-
tions [30] are discussed by Katalin Bimbó andMikeDunn [8, see p. 43]. Scott’s contributions are discussed
by Brian Chellas, in a 1975 article [10, see p. 143 and notes 17 and 18]. Thanks to Lloyd Humberstone for
bringing this reference to our attention.
For recent discussions Routley andMeyer’s early work on the ternary relational semantics, see papers by

Bimbó and Dunn [9] and Ferenz [19].
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iomatisations, natural deduction systems and algebraic semantics, we finally had a truth-
conditional semantics which modelled relevant logics in the same way that Kripke se-
mantics providemodels for normalmodal logics and intuitionistic and intermediate log-
ics.2

Propositions are modelled as sets of points, and connectives are interpreted as op-
erations on such sets, some (namely the modal operators, intuitionistic conditional and
negation, and in the case of relevant logics, relevant implication and the intensional con-
junction, fusion) using accessibility relations on the class of points. In the case of the
distinctively relevant conditional connective ‘→’, the two-place connective is naturally
interpreted by a three-place accessibility relation, the eponymous ternary relation of the
ternary relational semantics.

That a ternary relation should feature in a frame semantics for relevant logics should
not have surprised anyone. The pieces had been in place for quite some time. Jóns-
son and Tarski’s papers, from the 1950s, on Boolean algebras with operators [26, 27],
showed how Boolean algebras with n-ary operators satisfying appropriate distributive
laws can be concretely modelled as power set algebras where each n-place operator is
interpreted using an n + 1-place relation. Generalising these results from Boolean al-
gebras to distributive lattices makes some of the details a little more complicated, but
the picture is mostly unchanged. The details for how to make that generalisation of
Jónsson and Tarski’s work to arbitrary distributive lattices with operators — including
relevant logics — were worked out by Dunn in his papers on gaggle theory in the early
1990s [14, 16, 15, 17].3 The picture is extremely natural and well motivated. The ternary

2This is not to say that there weren’t other point-based semantics for relevant logics, before the advent
of the ternary relational semantics. The operational semantics, introduced by Urquhart [53], should not
be omitted from any survey of semantics for relevant logics. It differs from the ternary relational semantics
for R+ (and related logics) by using a binary operation on points, rather than a ternary relation, to model
the conditional. As a result, once disjunction is present in the language, this means that points cannot in
general, be prime (supporting a disjunctionA∨ B only when supporting one of its disjuncts, one ofA or
B). To see why, take a point supporting p → (q ∨ r) and apply it (using the binary application relation)
to a point supporting p. By the interaction between the application operation and the conditional, the
resulting point will satisfy q ∨ r. For classical logic, this would be no problem, since p→ (q ∨ r) entails
(p → q) ∨ (p → r). But this entailment fails in R+ (and in intuitionistic logic). In the operational
semantics for R+, points need not be prime, and it turns out that points have much more of the flavour
of arbitrary theories or propositions, rather than special theories like worlds or situations. In the Kripke
models for intuitionist logic, and the ternary relational semantics for R+, points are prime, and to evaluate
a conditional like p→ (q ∨ r), given a point where p holds we may need to consider a range of points to
evaluate q∨ r. At some of these points, qmay be true, and at others rmay be. In the Kripke semantics for
intuitionist logic or the ternary relational semantics for relevant logics, points generate prime theories, the
completeness theorem is hardwork, and there ismorewe can learn from the distinctive structure ofmodels.
Humberstone [23] shows that the operational semantics can be expanded to better model disjunction,

with the additionof a secondoperationonpoints. InHumberstone’s semantics, a disjunctionA∨B is taken
to be true at a point x just when x = y+zwhereA is true aty andB is true at z. We gain the simplicity of a
binary operation for the conditional (rather than a ternary relation) at the cost of a second binary operation
for disjunction. See Humberstone’s 2018 paper [25] for an extended discussion of this semantics. In the
frame semantics that is our focus, the distributive lattice operators are modelled as intersection and union
on sets of points, so using an operation for the conditional is out of the question.

3Katalin Bimbó and J. Michael Dunn have written a comprehensive overview of gaggle theory, the the-
ory ofGeneralised Galois Logics [7]. [18, ch. 12] provides a short introduction to gaggle theory.
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relational semantics for relevant and substructural logics is powerful, and it has resulted
in significant advances in our understandings of these logics.

Nonetheless, it cannot be said that the ternary relational semantics hasmetwith any-
thing like the reception of the Kripke semantics formodal and constructive logics. Some
of the difference is no doubt due to the size of the respective audiences. Substructural
and relevant logic is a boutique interest when compared to themodal industrial complex
of the late 20th and early 21st centuries. However, it seems to us that this does not explain
all of the differences in the scale and quality of the reception of the respective semantic
frameworks. Some of the relative dissatisfaction with the ternary relational semantics
centres on philosophy and the question of the intelligibility of the semantics [2, 11]. We
think those questions have been well dealt with in the literature, and that to a large de-
gree the proof of this pudding is in the eating, rather than adding to the already long
discussion of pudding interpretation. The ternary relational semantics is not problem-
atic because it lacks interpretive power or philosophical intelligibility. The problemwith
the ternary relational semantics is that it is fiddly.

Consider Kripke semantics for modal logics. All you need tomake a Kripke frame is
a non-empty set of points, and a binary relation on those points. Nothingmore. Propo-
sitions aremodelled by sets of points. The Boolean operators correspond to the set func-
tions of union, intersection and complementation, and the modal operators are simple
universal or existential projections along the binary relation. This is simple, it is robust,
and once you see it, you find this pattern everywhere. Structures for modal logics are
ubiquitous.

Kripke semantics for intuitionistic logic is a little more complicated, but not by
much. We must have a partial order on our set of points (or possibly a preorder) and
propositions are sets of points closedupward along that order. Conjunction anddisjunc-
tion are unchanged from themodal case, as intersection and union preserve the property
of being upward closed. However, complementation, and the corresponding operation
to model the material conditional, do not preserve the property of being closed, so they
are replaced by operations that utilise the partial order and respect the upward closure
condition. Again, this is all very straightforward. When you have an ordered collection
of states, carrying information preserved along that order, constructive logic is a natural
tool, and Kripke models for intuitionistic logic are correspondingly natural.

Now compare the general framework for substructural logics.4 One natural presen-
tation of the semantics takes this form: a frame is a 4-tuple 〈P, R,v, N〉, where P is a
non-empty set of points, R is a ternary relation on P,v is a binary relation on P, andN
is a subset of P, where the following conditions are satisfied.

• v is a partial order.
• R is v-downward preserved in the first two positions, and v-upward preserved
in the third. That is, if Rxyz and x− v x, y− v y and z v z+ then Rx−y−z+.

4This presentation is taken from Restall’s Introduction to Substructural Logics [41, Chapter 6], but the
choice of framework is irrelevant to the general point. No presentation of primitives is particularly less
fiddly than any other.
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• y v z if and only if there is some xwhereNx and Rxyz.

Notice that these models have three distinct moving parts: the ternary relation R, the
partial order v, and the distinguished set N of points. Propositions are sets of points
closed upward under the partial orderv. R is used to interpret the conditional connec-
tive ‘→’ (and the intensional conjunction ‘◦’, if present), while the set N of so-called
normal, or regular, points is the set of points at which logical truths are taken hold.5 The
need forN is a distinctive feature of relevant logics, logical truths (like, say, p→ p) need
not hold at all points. Since, for example, q → (p → p) is not a theorem of R+, so
some models feature have counterexamples to the conditional. Those models have at
least one point where q is supported but p→ p is not. But p→ p is still a logical truth
according to R+. Logical truths are guaranteed to hold at some points (namely, those in
N), but not necessarily at all points. So, our models have three distinct moving parts:v
for providing our closure conditions for propositions6,R formodelling ‘→’ and ‘◦’, and
Nmodelling the logical truths.

We challenge anyone to find this kind of formal semantics to be as straightforward to
apply as theKripke semantics formodal and constructive logics. While it is relatively easy
to find preorders or binary relations on sets under every bush, it is rather harder to see
where ternary relations, partial orders and special sets of normal points are to be found.
Perhaps they are there somewhere, but they do not seem particularly easy to spot. It is
not for nothing that modal and constructive logics have been applied in many domains
where relevant and substructural logics have not.7

It is true that the choice of primitives in the ternary frame semantics is somewhat
arbitrary. We could take v to be defined in terms ofN and R, but then the condition
that it is a partial order (or a preorder) and that R is preserved along that order become
even more complex and unnatural to state. In models for some of our logics (not all)
we could impose the condition that v is the identity relation (and hence, all algebras
of propositions arising out of such frames would be at least implicitly Boolean algebras,
so this works only for logics conservatively extended with Boolean negation) [38]. It is
possible, for some substructural logics, to trade in our set N for a single point g (and
restrict our attention to so-called reducedmodels), cutting down further on the number

5There are many names for the points inN. We are following [37] in using the term ‘normal’, with its
connections tomodal logics. Alongwith ‘regular’, ‘base points’ and ‘’logical points’ are used in the literature
on relevant and substructural logics.

6Not all algebras of relevant logics are Boolean algebras (or more precisely, distributive lattices in which
each element has a unique Boolean complement, that is for each x there is ay such that themeet of x andy
is the bottom element of the lattice and the join of x and y is the top. This can be so even if the algebra has
no operator that sends an element to its complement), so we wouldn’t expect all of our frames too allow
every subset of points to count as a proposition. However, these algebras are distributive lattices, so a partial
order of this form is very natural.

7This is not to say that the only way a logic finds its application is that a class of models for that logic
is independently discovered in some domain. It is to say that this is one way that the tools of the logic may
be applied. This is also not to say that there are no well motivated independent applications of the ternary
frame semantics. Frames for the Lambek calculus, where the ternary relation arises out of string concatena-
tion, for example, are one obvious case, though notice that in this case, the ternary relation collapses into a
binary operation [12, 36].
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of models generated, but the conceptual complexity remains [21, 48, 49, 50, 51].
When you consider ternary relational models alongside point semantics for normal

modal logics and constructive logics, the contrast is plain for all to see. Ternary relational
models are significantly less elegant, and they have many different moving parts than
Kripke models for modal and constructive logics. It is not for nothing that those of us
working in the area have sought to simplify the semantics, but try aswemight, significant
complexity remains after such all such efforts [38, 39].8

In this paper we introduce a new class of models for positive relevant and substruc-
tural logics, which at the same time generalises and simplifies the ternary relational se-
mantics. Collection frames generalise ternary relational frames in the sense that every
ternary relational frame can be seen as a collection frame, but that there are also col-
lection frames that do not arise as ternary relational frames. Collection frames simplify
ternary relational frames in the sense that there are significantly fewer independent parts
and conditions connecting different components of the semantics. While the resulting
models are not quite as simple as Kripke semantics for modal logics — some complex-
ity is inevitable, given that we are aiming to model an intensional two-place connective
— the gain in simplicity over the traditional presentation of the ternary relational frame
semantics for relevant logics is significant.

Simplifying the semantics is one motivation for our work. The second motivation
for an alternate approach to frames for these logics arises out of noticing the following
fact: When we work with particular substructural logics — such as R+, RW+, and TW+

— it is very natural to consider not only the ternary relation R but its generalisations to
more places: R2a(bc)d is defined as (∃x)(Rbcx∧Raxd), andR2(ab)cd is defined as
(∃x)(Rabx∧Rxcd). In R+ and RW+,R2a(bc)d holds if and only ifR2(ab)cd holds,
so we can simplify our notation, and generalise further: for n > 0, we define Rn to be
the (n+2)-ary relation onP, settingR1 = R, and settingRn+1a1a2a3 · · ·an+3 to hold
if and only if (∃x)(Ra1a2x ∧ Rnxa3 · · ·an+3). This generalisation into an arbitrary
n-ary relation, where n ≥ 3 is extremely natural, and conditions on R2 and still higher
orders of R play a role in the specification of various substructural logics.9

Our attempt to understand the phenomenon of higher order accessibility relations
— and how they relate to each other— is the starting point for a new, simpler character-
isation of frame semantics for substructural logics. In the next section we will start with
one case, frames for the logics RW+ and R+. In later sections we will then branch out to
a wider class of substructural logics.

2. multiset frames

A guiding idea in ternary relational semantics for relevant logics is the notion of infor-
mation application or combination. The ternary relation R relates the triple of points

8Frames for some of the stronger logics seem to present particular challenges to simplification [43].
9Mares’ monograph Relevant Logic [31, p. 210] gives a definition of frames for R+ using this general-

isation of the ternary relation. This generalisation is also used by Meyer and Routley [34, p. 184], which
introduces a notation similar to the multiset and list frames below.
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x, y, z (that is, Rxyz) if and only if applying the information in x to the information
in y results in information that is in z. In the logics R+ and RW+, information applica-
tion is commutative (applying x to y results in the same information as applying y to
x), and associative (applying x to y and then applying the results to z results in the same
things as applying x to a result of applyingy to z). Inmodels for R+, combination is also
idempotent, to the effect that the result of applying x to itself doesn’t take you outside
x (so we have Rxxx). Associativity and commutativity of application (or combination)
means that we could simplify our ternary relation R by thinking of it not so much as
a ternary relation where all three slots act independently, but rather, at least in the case
of these logics, as a relation between unordered pairs of points on the one hand, and
points on the other. The fact rendered as Rxyz in the ternary semantics could instead
be represented as

[x, y]Rz

where we have the (unordered) pair of x and y on the one hand, and the z on the other.
The fact that this is an unordered pair, and not a set is important, because when we
consider Rxxzwhat we have is

[x, x]Rz

where x is applied to itself. But as far as order of application goes, [x, y]Rz is the very
same fact as [y, x]Rz. When it comes to associativity, what we have in models for RW+,
traditionally presented, is the following complex fact:

(∃u)(Rxyu∧ Ruzw) iff (∃v)(Ryzv∧ Rxvw)

If we arewilling to abuse notation a littlemore, whatwe have in this biconditional is two
different ways of representing the one single fact

[x, y, z]Rw

to the effect that x,y and z together, combined in any order, are related tow. Collection
frames arise from taking what was an abuse of notation literally. In collection frames, an
accessibility relation relates collections of points to points.

This shiftedperspective onR comeswith advantages. Notonlywill this relationRdo
the job of the original ternary relation, in the case where the multiset has two elements,
and not only can it represent R2 and relations of higher arities with larger multisets. It
also has the capacity to represent the binary relation v in the case where the collection
being related is a singleton, and it also represents the predicateN, in the case where the
collection being related is the empty multiset. The translationmanual is straightforward:

(F1) Nx becomes [ ]Rx
(F2) x v y becomes [x]Ry
(F3) Rxyz becomes [x, y]Rz

What was represented by three different fundamental concepts in traditional Routley–
Meyer frames becomes three different aspects of oneunderlying relation. The conditions
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linkingN,v and (ternary)R become corollaries of the fundamental structure of the one
multiset relation R.

To make things explicit, a collection frame for RW+ has a non-empty set P of points
and a single accessibility relation R onM(P)×P, whereM(P) is the class of finite mul-
tisets of elements of P. Since multisets are not in very wide use,10 wewould do well to be
explicit about them and their properties.

definition 1 [finite multisets, ground] Amultiset is a collection in which order
is irrelevant, but multiplicity of membership is relevant. There are various ways to for-
mally define the notion. One way is this: a finite multiset of objects taken from some
class P can be represented as a functionm : P → ωwherem(x) = 0 for all but finitely
many values of x. If x is in P, thenm(x) is the number of times x is a member of the
multisetm. The multisetsm1 andm2 from P are identical if they have the same mem-
bers to the same multiplicities: that is,m1 = m2 if and only ifm1(x) = m2(x) for
each x in P.

For any twomultisetsm1 andm2, their union is the multiset with functionm1+
m2. We also write ‘m1 ∪m2’ using the traditional notation for union. Note, however,
thatm1 ∪m1 is now not (typically) the same multiset asm1.

We say thatm1 ≤ m2 (a generalisationof the subset relation tomultisets) ifm1(a) ≤
m2(a) for all a in P.

We use the familiar bracket notation for multisets: for example, [a, a, b] is the mul-
tiset wherem(a) = 2 andm(b) = 1 andm(x) = 0 for every other value of x. So,
[a, b] ∪ [a, c, c] = [a, a, b, c, c].

As with sets, we will use the symbol ‘∈’ for multiset membership. Here, ‘x ∈ m’
will be taken tomean thatm(x) > 0, that is, the object x is in themultisetm a non-zero
number of times.

For anymultisetmonP, its groundg(m) is the subset ofP consisting of all objects
xwith non-zero multiplicity inm, that is, g(m) = {x ∈ P |m(x) > 0}.

Now we know enough about multisets for us to introduce the multiset semantics for
RW+ and for R+. As we have already indicated, a collection frame consists of a set P of
points (with at least onemember), and a relationR onM(P)×P, which relatesmultisets
of points to points. Henceforth, we will call relationsR onM(P)×Pmultiset relations.

The intended application of R in a multiset frame is straightforward: XRy holds
when, and only when, the information in the points X taken together also holds in y.
There are aspects, in this reading, of the partial order from constructive logics, and just
like that case, there must be at least some condition on this relation for such an inter-
pretation to make sense. The relation R cannot be entirely arbitrary. In the case of the

10The papers “Multisets and Relevant Implication I” and “II” by Meyer and McRobbie [32, 33] are ac-
counts of multisets and their importance in the proof theory of relevant logics. Grattan-Guinness has a
helpful discussion of the history of accounts of multisets in late 19th and 20th Century mathematics [22].
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semantics for constructive logic, there are two parts to the constraint on the order rela-
tion. First, that it be reflexive, and second, that it is transitive.11 In the case of multiset
relations for frames for RW+, the condition has much the same form: a transitivity com-
ponent and a reflexivity component. The strictest and most natural form of reflexivity
would be we require that the information in the singleton multiset of points [x] is in-
deed carried by the x itself. This says very little about combining points, of course. For
transitivity, we require that combination compose in a straightforward manner: if XRy
and [y] ∪ YRz then (X ∪ Y)Rz.12 However, we require something stronger than just
composition in this direction: we also require its converse. That is, if (X ∪ Y)Rz then
we can find some ‘value’ y where XRy and ([y] ∪ Y)Rz. We call these two conditions
compositionality becausewe think ofR as a generalised combination relation, selecting for
each collection of points the single points which are suitable to represent it. The compo-
sitionality condition says that this relation can be composed or decomposed piecewise.
So, we have the following definition:

definition 2 [compositionality] Amultiset relation R onM(P)× P is said to be
compositional if and only for all multisets X and Y and for all points z,

(∃y)(XRy and ([y] ∪ Y)Rz) iff (X ∪ Y)Rz.

In addition, a compositional multiset relation is reflexive iff for all points x, we have
[x]Rx.

We break the compositionality condition into two parts, The left to right direction we
will call Transitivity, for obvious reasons. The right to left direction we will call Split-
ting.13 These two parts of the condition play different roles in exploring the properties
of this semantics, so we will highlight these roles by mentioning at each point whether
Transitivity or Splitting is being appealed to.

The intuitions behind the two directions are represented in Figure 1. The intuition
behind Transitivity, is that if one can combine the information in X to obtain x and
combine the information inY togetherwithx to obtainy, represented by the solid lines,
then one could have just as well have used the information in the combination ofX and
Y to obtain y, represented by the broken lines. If we restrict our attention to the case
where X = [x] and Y = [ ] then we see that Transitivity gives us the transitivity of the
binary relation λx.λy.[x]Ry on points.

The intuition behind Splitting is that if one can obtainy from some informationZ,
which can be split into components X and Y, then one could evaluate the X portion to
obtain something, x, which can be combined with the information in Y to obtain y.14

11We could add the condition that it is anti-symmetric, though this is in no way essential for the models
to give us intuitionistic logic.

12This is a generalised form of transitivity, much like those discussed for consequence relations by Rip-
ley [44].

13We thank an anonymous referee for suggesting this name.
14The similarity with the rules of Identity and Cut in a single conclusion sequent calculus (A � A, and

from Γ �A andA, Γ ′ �B to infer Γ, Γ ′ �B) should not be surprising. LikeCut, the second component of
the compositionality condition is the appropriate kind of transitivity condition on the relation R.
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Transitivity Splitting

Figure 1: The two directions of compositionality

If we restrict our attention to the case where X = [x] and Y = [ ], then Splitting gives
us the density of the binary relation λx.λy.[x]Ry. That is, if [x]Rz then there is some y
where [x]Ry and [y]Rz. Notice that the density of this relation holds automatically in
the case where reflexivity holds, but this condition is strictly weaker than reflexivity.15

Since this binary relation λx.λy.[x]Ry is so important in our frames, wewill reserve
special notation for it. In ternary frames the usual notation is ‘v’. Since our frames
will not require reflexivity (but we will allow it), let us write ‘@’ for this binary relation
induced by the multiset relation R. We have seen proved the following Lemma.

lemma 3 If R is a compositional multiset relation then the induced binary relation @
(given by setting x @ y i� [x]Ry) is transitive and dense.

Beforewe continue spelling out the semantics, wewoulddowell to pause to consider
some examples of simple multiset relations, and their properties.

example 4 [compositional multiset relations onω] Here are some examples
of compositional multiset relations on the setω of natural numbers.

[the product] XRy if and only if y is the product of all the members ofX.16 (This is
genuinely and distinctively a multiset relation, which distinguishes repeated ele-
ments in the multiset. For this relation, [2, 2]R4 holds, but [2]R4 does not.) This
is compositional, which fact is left to the reader.

[some product] XRy if and only ify is some product of themembers ofX, using each
instance in X at most once. ( Unlike the product, this relation is not functional.

[the sum, and some sum] In the same way, the relation R given by setting XRy iff
ΣX = y is compositional (given that we set Σ[ ] = 0), as is the relation given by

15The relation< onQ orR is dense, but not reflexive, as one obvious example.
16What is the product of all the members of [ ]? A moment’s reflection shows that the natural answer is

to declareΠ[ ] to be 1. Then, for any two multisets X and Y,Π(X ∪ Y) = ΠX× ΠY.
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setting XRy iff ΣX ′ = y for some X ′ ≤ X. As with the product relations, one is
functional, and the other is not.
Each of the relations discussed so far makes essential use of the multiset structure.
The multiset [2, 2] is related to different numbers in each case, than the singleton
multiset [2]. In thenext example, themultiplicity ofmembersmakes nodifference
at all.

[maximum-or-zero-if-empty] In this case, XRy if and only if y is the largest mem-
ber of X, and is 0 if X is empty. This satisfies the reflexivity condition, as well as
Transitivity and Splitting.

[the empty relation] Anothermultiset relation, trivially compositional, is the empty
multiset relation. It is straightforward to verify that this relation satisfies both the
Transitivity and the Splitting conditions. Of course, this relation fails to be reflex-
ive, unlike the other relations we have considered so far.

That is a range of compositional multiset relations onω. Not every multiset relation,
however, is compositional.

example 5 [non-compositional multiset relations onω] These relations fail
to be compositional in different ways.

[larger than the product of] XRy holds if and only if y > ΠX. Clearly this is
not reflexive. While Splitting holds, theTransitivity direction of compositionality
fails.

[largest two] XRy if and only if y is one of the largest two elements of X. This
relation fails transitivity.

[membership] XRy if and only if y ∈ X. This relation enjoys Transitivity but not
Splitting.
Although membership is not a compositional multiset relation onM(P) × P,
it is compositional if we restrict our attention to inhabited17 multisets. (We will
discuss this restricted form of compositionality below.)

[between] XRy iffy occurs between the smallest and the largest members ofX, inclu-
sive. So [2, 4] is related to 2 and to 4 and to 3 but to no other number. This, like
membership, is compositional on the inhabited multisets but not the full collec-
tion of multisets.

We will end this series of examples with twomore compositional relations, this time, on
the rational numbersQ and the reals,R, rather than onω, sowe have scope for examples
of non-reflexive but dense order relations.

example 6 [non-reflexive multiset relations] These examples ofmultiset rela-
tions make use of the density of the underlying order< onQ and onR.

17A multiset is inhabited iff it has at least one member at multiplicity at least one. It is (at least if we
ignore constructivist distinctions) the positive synonym for the negatively defined ‘non-empty.’
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[larger than] XRy if and only if y > x for each x ∈ X. So, [ ]Ry for every y (in this
case, the condition is vacuously satisfied). This relation satisfies Transitivity and
Splitting but not reflexivity.
In this case, the relation makes no distinction between multisets with the same
ground. [2, 2] is related to all the numbers greater than 2, as is [2] and [2, 2, 2].

[larger than the sum of] Here, XRy if and only if y is larger than the sum of all
the members ofX (counting their multiplicities, as in the case of the sum relation
given previously. As before, we set Σ[ ] = 0. While this fails to be reflexive, it is
compositional.

This flock of examples was longer than it strictly needed to be, if not for one thing. A
complaint about the ternary relational semantics is that examples are hard to come by,
hard to construct and above all, hard to picture. That there is such a list of naturally oc-
curring examples of compositional multiset relations, both reflexive and irreflexive, and
which exhibit significantly different behaviours, but are straightforward both to reason
with and to understand, goes quite some way towards answering that complaint.

It is disappointing, however, that membership and betweenness failed to count as
compositional relations. In fact, as we noted, those multiset relations are compositional
if we restrict our attention to the classM ′(P) of inhabited multisets of points. We can
make this notion precise in a definition.

definition 7 [compositional inhabited-multiset relations] ArelationRon
M ′(P) × P is said to be compositional if and only if for all multisets X and Y where
X 6= [ ], and for all points z,

(∃y)(XRy and ([y] ∪ Y)Rz) iff (X ∪ Y)Rz.

This is the appropriate definition of compositionality for a relation on inhabited multi-
sets. Youmay wonder why, in this definition,X inhabited, but Y is allowed to be empty.
Isn’t that outside the spirit of restricting our attention to inhabited multisets? This is a
natural restriction of compositionality to this setting, because it is the smallest modifica-
tion to the condition that ensures that the left relata of any R-fact is nonempty. (Since
we require thatX be inhabited, forXRy to make sense in this context, this is enough to
guarantee thatX ∪ Y is also inhabited, and [y] ∪ Y is inhabited by design.) A satisfying
upshot of this result is the fact under this condition (allowing for Y to be empty), the
proof of Lemma 15 below, works in the case of inhabited-multiset relations, too. That
special case of transitivity, spelled out, is this: XRy and [y]Rz impliesXRz. We have also
appealed to this condition in the proof Lemma 3. We will also see below, when we turn
to more general structures, like lists and trees, that the general form of compositionality
involves trading in a single item in a structure (here, a member of a multiset) for another
structure. In the case of a multiset, anymultiset with a member y can be written in the
formX∪[y]. For this representation towork, in general, we need to allow the casewhere
X is empty, even if our attention is fixed on inhabitedmultisets, for wemaywish to trade
in the y in a singletonmultiset [y] for some other multiset.
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example 8 [compositional inhabited-multiset relations] With this expanded
definition, we can enlarge our class of models even further. We have already seen that
membership and between give us compositional relations on inhabited multisets. So
are these:

[maximum, and minimum] maximum-or-zero-if-empty is a compositional mul-
tiset relation onω. Without the need to have a maximum for [ ], we can remove
the “or-zero-if-empty” dodge, and restrict our attention to the largest member
of the multiset. Or the smallest, if we choose, and the result is a compositional
inhabited-multiset relation.

[the sum, and some sum on subsets ofω] If we no longer have the requirement
that the emptymultiset [ ] have a sum, then given any subsetS ofω, closed under
addition (so ifx, y ∈ S, then so isx+y)we can define a compositional inhabited-
multiset relationsR andR ′ on S, settingXRy iffy = ΣX, andXR ′y iffy = ΣX ′

where X ′ is an inhabited multiset where X ′ ≤ X. For example, we can let S =
{1, 2, 3, . . .} = ω\{0} to provide a very different kind of model, once 0 is left out
of the domain.

[the product, and some product on subsets ofω] In exactly the sameway, we
can generate models defining R on subsets ofω closed under product, without
having to include 1 as the product of the empty multiset.

In what follows, we will consider both compositional multiset relations and, at times,
compositional inhabited-multiset relations. For any compositional multiset relation, its
restriction to inhabited multisets is, of course, also compositional. For the converse, we
have the following lemma, which shows that there is a way to extend a compositional
inhabited multiset relation R onM ′(P) × P to a compositional multiset relation on
M(P ∪ {∞})× (P ∪ {∞}), where we add a new ‘point at infinity’ to our point set.

lemma 9 If R is a compositional inhabited-multiset relation onM ′(P)× P, and∞ 6∈
P, then the multiset relation R× onM(P ∪ {∞}) × (P ∪ {∞}), defined as follows, is
compositional.

XR×z i�
{
z =∞ if X\∞ = [ ]

(X\∞)Rz if X\∞ 6= [ ]

Furthermore, if R is reflexive, then so is R×.

(In the definition ofR× we use the notation ‘X\y’ for the multiset formed by removing
all instances of y from X. So, for example, [a, b, b, c, c]\c = [a, b, b]. We reserve
‘X\Y’ for the multiset formed by removing the number of occurrences in Y from X, so
[a, b, b, c, c]\[c] = [a, b, b, c].)

Proof: Let’s suppose that (X ∪ Y)R×z, in order to find some y where YR×y and (X ∪
[y])R×z. By definition (X∪Y)R×z holds if and only if z =∞ (if (X∪Y)\∞ = [ ]) or
((X ∪ Y)\∞))Rz (otherwise). Let’s take these cases in turn. If (X ∪ Y)\∞ = [ ] then
clearlyX\[ ] and Y\[ ], so in this case, both YR×∞ and (X∪ [∞])R×∞, as desired. So,
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now consider the second case: we have ((X∪Y)\∞))Rz and (X∪Y)\∞ 6= [ ]. We aim
to find some y where YR×y and (X ∪ [y])R×z. If Y\∞ = [ ], then we choose∞ for
y. We have, then, YR×∞ and since ((X ∪ Y)\∞))Rz, we have (X\∞)Rz, so we have
(X∪{∞})R×z as desired. On the other hand, ifY has some element other than∞, since
((X∪Y)\∞))Rz, we have ((X\∞)∪(Y\∞))Rz, and sinceR is compositional, there is
someywhere (Y\∞)Ry and ((X\∞)∪[y])Rz, which gives usYR×y and (X∪[y])R×z
as desired.

Now for the second half of the compositionality condition for R×, suppose that
there is some y where YR×y and (X ∪ [y])R×z. We aim to show that (X ∪ Y)R×z. If
YR×y then either y = ∞ and Y contains at most∞, or otherwise (Y\∞)Ry. In the
first case, (X∪ [y])R×z tells us that (X∪ [∞])R×z, whichmeans either that (X\∞)Rz,
or X also contains at most∞ and then z = ∞. In the either of these cases, we have
(X ∪ Y)R×z, as desired. So, let’s suppose y 6=∞. In that case we have (Y\∞)Ry, and
then, since (X ∪ [y]))R×z, we have ((X ∪ [y])\∞)Rz, and by the compositionality of
R, ((X ∪ Y)\∞)Rz, which gives (X ∪ Y)R×z, as desired.

Finally,R× is reflexive follows immediately from the reflexivity ofR and the fact that
[∞]R×∞.

With this result, it is possible for us to use examples likemembership and betweenness as
compositional multiset relations, with the full complement of logical resources, includ-
ing the set of normal points, identified as those related to the empty multiset [ ].

Now we are in a position to define multiset frames and models. We will begin with the
more standard ternary relational frames for RW+.

definition 10 [ternary relational RW+ frames, models] A ternary relational
frame for RW+ is a quadruple 〈P, R,v, N〉 obeying the following conditions.

1. v is a partial order.
2. If x v w, y v u, v v z, and Rwuv, then Rxyz.
3. y v z iff ∃x ∈ N, Rxyz.
4. If x ∈ N and x v y, then y ∈ N.
5. Rxyz only if Ryxz.
6. Rwxyz only if Rw(xy)z

To get a ternary relational frame for R+, one adds the condition that if Rxyz, then
Rxyyz.

A ternary relational model is a quintuple 〈P, R,v, N,
〉 where the first four com-
ponents make up a frame and the final component is a binary relation between P and
the set of atoms such that if x 
 p and x v y, then y 
 p. This is extended to the
whole language according to the following clauses.

• x 
 A∧ B iff x 
 A and x 
 B.
• x 
 A∨ B iff x 
 A or x 
 B.
• x 
 A→ B iff for each y, zwhere Rxyz, if y 
 A then z 
 B.
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• x 
 A ◦ B iff for some y, zwhere Rxyz, both y 
 A and z 
 B.
• x 
 t iff x ∈ N.
• x 
 ⊥ never.

Next, we define multiset frames.

definition 11 [multiset frame] Amultiset frame 〈P, R〉 is an inhabited set P of
points together with a compositional multiset relation R on P.

This definition is, in one sense, starkly simpler than the traditional frame semantics for
RW+, in that the three elementsN,v and the ternary relation R are subsumed into one
fundamental relation, the compositional multiset relation. They are also more general,
because we consider not only models in which@ is reflexive (as it is in ternary relational
frames), but the more general class of frames allowing for the underlying order relation
@ to be non-reflexive, or even irreflexive. In fact, we allow as a frame the case where R
is the empty relation. So, this is a wider class of frames. The multiset frames subsume
the traditional ternary relational frames for RW+ following the conditions (F1), (F2), and
(F3) from §1. The one relation in a multiset frame encodes the three different moving
parts of a ternary frame. We have the following fact:

lemma 12 Each ternary frame 〈P, R,v, N〉 for RW+, determines a reflexive multiset
frame 〈P, R ′〉, defined by setting

• [ ]R ′x i� x ∈ N,
• [x]R ′y i� x v y,
• [x, y]R ′z i� Rxyz,
• If Y is a multiset of size two or more, ([x] ∪ Y)R ′z i� for some y, YR ′y and
[x, y]R ′z.

Proof: We first need to show that the definition is R ′ coherent: that the third clause, to
the effect that [x, y]R ′z iffRxyz, that the last clause, according towhich ([x]∪Y)R ′z iff
for somey,YR ′y and [x, y]R ′z, could both hold. For the third clause, weneed to be sure
that Rxyz holds iff Ryxz holds, since [x, y] = [y, x], lest the clause give inconsistent
guidance as about [x, y]R ′z. But in any ternary frame 〈P, R,v, N〉 for RW+, we have
Rxyz iff Ryxz, so this clause is coherent.

For the last clause, if [x] ∪ Y is the same multiset as [x ′] ∪ Y ′, we need to show that

(∃y)(YR ′y∧ [x, y]R ′z) if and only if (∃y ′)(Y ′R ′y ′ ∧ [x ′, y ′]R ′z)

in order to ensure that this clause also gives consistent guidance concernring R ′. We
prove this by induction on the size of [x] ∪ Y. When Y has size 2, this reduces to the
case (∃y)([x2, x3]R ′y ∧ [x1, y]R

′z iff (∃y ′)([x1, x3]R ′y ′ ∧ [x2, y
′]R ′z), but given

the definition of R ′ on two-element multisets in terms of the ternary R, this reduces to
the biconditional (∃y)(Rx2x3y∧Rx1yz) iff (∃y)(Rx1x3y ′∧Rx2y ′z), but this is the
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biconditional betweenR2x1(x2x3)z andR2x2(x1x3)z, which indeed holds in our RW+

frame.
Suppose the equivalence has been proved for all multisets of size n (where n > 2)

andwe have amultiset [x1]∪Y = [x2]∪Y ′ of sizen+1. LetZbe such thatZ∪[x2] = Y
and Z ∪ [x1] = Y ′. Note that we may assume x1 6= x2, as otherwise the case is trivial.
We wish to show that

(∃y)(([x2] ∪ Z)R ′y∧ [x1, y]R
′z) iff (∃y ′)(([x1] ∪ Z)R ′y ′ ∧ [x2, y

′]R ′z).

By the inductive hypothesis, (∃y)(([x2] ∪ Z)R ′y∧ [x1, y]R
′z) is equivalent to

(∃y)(∃w)(ZR ′w∧ [w, x2]R
′y∧ [x1, y]R

′z)

From the definition of R ′, the latter two conjuncts suffice for Rx1(x2w)z, which is
equivalent to Rx2(x1w)z, as in the base case. Therefore,

(∃y ′)(∃w)(ZR ′w∧ [w, x1]R
′y ′ ∧ [x2, y

′]R ′z),

which in turn is equivalent, by the inductive hypothesis, to

(∃y ′)(([x1] ∪ Z)R ′y ′ ∧ [x2, y
′]R ′z),

So, we have shown by induction that the definition is coherent.
Now, it suffices to show thatR ′, so defined, is reflexive and compositional. Reflexiv-

ity follows from the reflexivity ofv, andTransitivity follows straightforwardly from the
definition of R ′ itself, albeit with many cases to check. It remains to show that Splitting
holds.

We want to show that if (X ∪ Y)R ′z, then there is some y where XR ′y and ([y] ∪
Y)R ′z. Given the definitions, we need to consider the cases where X ∪ Y has zero, one,
two, or more elements. In the case where X ∪ Y is empty, then we have []R ′z. So, then
we have []R ′z and [z]R ′z, as desired.

If X ∪ Y has size 1, then there are two subcases. Subcase: X is [x]. By assumption
we have [x]R ′z, so we then have [x]R ′x, by Reflexivity, and [x]R ′z, satisfying Splitting.
Subcase: X is empty and Y is [x]. Since [x]R ′z, x v z, so there is some y ∈ N such that
Ryxz. We then have []R ′y and [y, x]R ′z, satisfying Splitting.

Suppose X ∪ Y has size 2. Subcase: X is empty. We need a y such that []R ′y and
[y, y1, y2]R

′z. Since y1 v y1, there is a u ∈ N such that Ruy1y1. By assumption we
have Ry1y2z, so it follows that Ruy1y2z, which is [uy1y2]R ′z, as desired. Subcase: X
is [x] and Y is [y1]. In this subcase we have [x, y1]R ′z. Since [x]R ′x, it follows that there
is a y such that [x]R ′y and [y, y1]R ′z, namely x. Subcase:X is [x1, x2] and Y is empty.
By assumption we have [x1, x2]R ′z and we need a y such that [x1, x2]R ′y and [y]R ′z.
Since [z]R ′z, we can simply take z as y.

SupposeX∪ Y has size 3 or greater. Subcase: X is empty. The argument is similar to
the subcase of the previous case where X is empty. Subcase: Y is empty. The argument
is similar to the subcase of the previous case where Y is empty. Subcase: X and Y are
inhabited, so X = [x] ∪ X ′ and Y = [y1, . . . , yn] and ([x] ∪ X ′ ∪ [y1, . . . , yn)R

′z.
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From the definition ofR ′, it follows that for some z1, ([x]∪X ′∪ [y2, . . . , yn])R ′z1 and
[y1, z1]R

′z. Repeated use of the definition results in z2, . . . , zn such that [y1, z1]R ′z,
[y2, z2]R

′z1, . . . , [yn, zn]R ′zn−1, and ([x]∪X ′)R ′zn. Repeated use ofTransitivity then
yields [y1, . . . , yn, zn]R ′z, so we can let zn be the desired y.

All of the cases have been covered, so we conclude that R ′ obeys Splitting.
So, the Lemma is proved.

Now let us turn to consider what it is for a formula to hold at a point in amultiset frame.
Given our understanding of the relationR, if [x]Ry then the information in x also holds
in y. So, if a formula holds at x, it is given by the multiset consisting of [x] alone. But
then, it should also hold at y, since the information given by [x] is (perforce, according
to R at least) also true at y, and there is nothing else in [x] to take together with x. So,
an appropriate heredity condition for truth-at-a-point in a multiset frame is given by the
multiset relation R:

definition 13 [heredity] A relation
 between points and formulas is hereditary
alongR for some classF of formulas if and only if whenever [x]Ry (that is, whenx @ y)
and x 
 A then y 
 A, for each formulaA inF .

Given a hereditary relation
 for all atomic formulas on a multiset frame, we can extend
it to a hereditary relation on all formulas in the language of RW+ as follows:

definition 14 [truth-at-a-point in a multiset model] For any multiset frame
〈P, R〉 and ahereditary relation
defined on atomic formulas in our language, we extend
the relation
 to the whole vocabulary, defining x 
 A recursively as follows:

• x 
 A∧ B iff x 
 A and x 
 B.
• x 
 A∨ B iff x 
 A or x 
 B.
• x 
 A→ B iff for each y, zwhere [x, y]Rz, if y 
 A then z 
 B.
• x 
 A ◦ B iff for some y, zwhere [y, z]Rx, both y 
 A and z 
 B.
• x 
 t iff [ ]Rx.
• x 
 ⊥ never.

lemma 15 In anymultiset frame 〈P, R〉, the evaluation relation
 defined above, between
points and arbitrary formulas is hereditary along R.

Proof: We aim to show that whenever [x]Ry and x 
 A then y 
 A. This is an easy in-
duction on the structure of the formulaA. The result holds by fiat for atomic formulas,
and the induction step is trivial for conjunctions and disjunctions.

For conditionals, suppose [x]Ry and x 
 A→ B. We wish to show that y 
 A→
B too. Take u, v where [y, u]Rv. We wish to show that if u 
 A then v 
 B. By
compositionality, since [x]Ry and [y, u]Rv, we have [x, u]Rv. Since x 
 A → B, if
u 
 A then v 
 B as desired.
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Similarly, if [x]Ry and x 
 A ◦ B, we wish to show that y 
 A ◦ B. So, we wish
to find u, v where [u, v]Ry, u 
 A and v 
 B. Since x 
 A ◦ B, we have u, v where
[u, v]Rx, u 
 A and v 
 B. By compositionality, [u, v]Rx and ([x] ∪ [ ])Ry gives us
([u, v] ∪ [ ])Ry, i.e. [u, v]Ry as desired.

Finally, if [x]Ry andx 
 t, thenwehave [ ]Rx. Notice that compositionality ensures
that [ ]Rx and ([x]∪ [ ])Ry give ([ ]∪ [ ])Ry, i.e., from [ ]Rx and [x]Ry, we have [ ]Ry,
so if t holds at x and [x]Ry, then t holds at y too.

So, evaluation relations on frames allow us to interpret formulas from the language of
RW+ or R+ at points. Note that in the case for fusion, we needed to consider themultiset
[x] ∪ [ ], which is the special case highlighted in the definition of compositionality for
inhabited-multiset relations. We call the combination of a frame 〈P, R〉 and an evalu-
ation relation 
 on that frame a model, and we abuse notation slightly to think of the
triple 〈P, R,
〉 as a model.

Another way to represent how formulas are evaluated at points in frames is, for each
formulaA, to collect together the points that supportA. We use the notation [[A]] for
the set {x ∈ P : x 
 A}, the extension of the formulaA in themodel. The results of this
section show that the set [[A]] is upwardly closed along the relation@, and the evaluation
conditions for atomic formulas are simply that for each atomic formula p, its extension
[[p]] is an upwardly closed set.

We pause to note that the evaluation conditions on ternary frames agree with those
on multiset frames. In other words we have the following lemma:

lemma 16 [model equivalence] If 〈P, R,v, N,
〉 is a ternary relational model for
RW+ (or R+), then 〈P, R ′,
〉 is a multiset model defined on the multiset frame 〈P, R ′〉.

The proof is immediate, given that [x, y]R ′z iff Rxyz, and [ ]R ′x iff x ∈ N.

So, we have shown that reflexive multiset frames correspond tightly to ternary relational
frames. We have also seen that compositional inhabited-multiset relations arise natu-
rally as structures in the same general family as compositional multiset relation. A frame
〈P, R〉which is furnishedwith an inhabited-multiset relationR can also be used tomodel
our propositional vocabulary. Given an inhabited-multiset frame 〈P, R〉 and a hereditary
evaluation relation
on atomic formulas, we can extend
 to the propositional language
except for the Ackermann constant t, in the manner given in Definition 14. The proof
that
 so defined is heredity follows in exactly the sameway. The only point at which the
condition that R relate only inhabited multisets is violated in that proof is at the clause
for t. The rest of the proof goes through as expected.

With multiset frames, we can model the relevant logic RW+. To make this precise, we
introduce the logic RW+ by way of a sequent calculus. The calculus utilises sequents of
the form Γ � A, where A is a formula and Γ is a structure, generated by the following
grammar:

Γ := A | ε | (Γ, Γ) | (Γ ; Γ)
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In other words, a structure is a formula A, the empty structure ε, the extensional com-
bination (Γ, Γ ′) of two structures, or the intensional combination (Γ ; Γ ′) of two struc-
tures. When presenting structures, we often omit the outer layer of parentheses (soA,B
is a structure, as is A; (B,C)), but we do not omit interior parentheses: A, (B,C) dif-
fers from (A,B), C in the order of combination, even though they will end up having
the same logical force, due to the structural rules of the proof calculus.18 We will also
treat binary structural connectives as binding less tightly than any formula connectives,
soA→ B;Cwill be (A→ B);C.

When specifying rules of inference, we use parentheses in another way: Γ(A) is a
structure with a particular subformulaA singled out. Given Γ(A), the structure Γ(Γ ′)
is found by substituting that instance of A by Γ ′. The same goes for other structures.
So, Γ(Γ ′, Γ ′′) is a structure in which the structure Γ ′, Γ ′′ is found somewhere as a con-
stituent, and the structure Γ(Γ ′′, Γ ′) is found by reversing the order of Γ ′ and Γ ′′ inside
that structure. For future reference, we will call the part of the structure Γ(A) around
the instanceA the context ofA in Γ(A), and we will use the notation ‘Γ(−)’ to refer to
that context.

A derivation in this sequent calculus is a tree of sequents, of which every leaf is an
axiom, where each transition is an inference rule. The fundamental rules in the sequent
calculus are the axioms of Identity and the inference rule, Cut.19

A �A Id
Γ �A Γ ′(A) � B

Cut
Γ ′(Γ) � B

The next series of rules are structural rules, governing extensional and intensional struc-
ture combination respectively. Extensional combination allows for commutativity and
associativity (at arbitrary depth inside a structure), as well as contraction and weaken-
ing, while intensional combination allows for only commutativity and associativity. In
addition, ε acts as an identity for intensional combination.

Γ(Γ ′, Γ ′′) � B
EC

Γ(Γ ′′, Γ ′) � B

Γ(Γ ′, (Γ ′′, Γ ′′′)) � B
EB

Γ((Γ ′, Γ ′′), Γ ′′′) � B

Γ(Γ ′, Γ ′) � B
EW

Γ(Γ ′) � B

Γ(Γ ′) � B
EK

Γ(Γ ′, Γ ′′) � B

Γ(Γ ′; Γ ′′) � B
IC

Γ(Γ ′′; Γ ′) � B

Γ(Γ ′; (Γ ′′; Γ ′′′)) � B
IB

Γ((Γ ′; Γ ′′); Γ ′′′) � B

Γ(Γ ′) � B
εI

Γ(ε; Γ ′) � B

Γ(ε; Γ ′) � B
εE

Γ(Γ ′) � B
18The technique, of allowing two forms of premise combination in sequents, is due toDunn [13], details

of which can be found in Entailment volume 1 [1, §28.5] and one development of which is provided by
Belnap,Dunn andGupta [4]. For an extended introduction to sequent calculi of this form, consultRestall’s
An Introduction to Substructural Logics, Chapter 6 [41]. Bimbó [5] provides an introduction to these sorts
of sequent systems in the specific context of relevant logics.

19Id andCut are fundamental in the sense that they apply invariably to every formula, and to each struc-
ture without any discrimination. They appeal to no distinctive properties of any connectives or formulas
(unlike the specific rules for each connective), or of any particular form of structural combination (unlike
the structural rules). They appeal to formulas as such, and structures as such. Of course, a fundamental
theorem of proof theory for sequent systems is that the rule of Cut can be eliminated, in the sense that any
derivation usingCut can be transformed into a derivation in whichCut is not used. Appeals to Id for com-
plex formulas can also be traded in for appeals only to atomic formulas. These matters, though important
for the analysis of proof, are not central to our concerns here.

18



The remaining rules are left and right rules for each connective. These are totallymodu-
lar, in the sense that we can choose to include a connective or to leave it out. No rule for
one connective requires the presence of any other connective in the vocabulary.

Γ(A,B) � C
∧L

Γ(A∧ B) � C

Γ �A Γ ′ � B
∧R

Γ, Γ ′ �A∧ B

Γ(A) � C Γ(B) � C
∨L

Γ(A∨ B) � C

Γ �A
∨R

Γ �A∨ B

Γ � B
∨R

Γ �A∨ B

Γ �A Γ ′(B) � C →L
Γ ′(A→ B; Γ) � C

Γ ;A � B →R
Γ �A→ B

⊥R
⊥ � C

Γ(A;B) � C
◦L

Γ(A ◦ B) � C

Γ �A Γ ′ � B
◦R

Γ ; Γ ′ �A ◦ B

Γ(ε) � C
tL

Γ(t) � C
tR

ε � t

For R+, we add one more rule: contraction for intensional combination.

Γ(Γ ′; Γ ′) � B
IW

Γ(Γ ′) � B

With IW, we can derive new sequents, which could not be derived without it. For ex-
ample, we can derive ε � (A∧ (A→ B))→ B.

A �A B � B →L
A→ B;A � B

EK
A→ B; (A,A→ B) � B

EK
(A,A→ B); (A,A→ B) � B

IW
A,A→ B � B

∧L
A∧ (A→ B) � B

εI
ε;A∧ (A→ B) � B →R
ε �A∧ (A→ B)→ B

Theproof theory for logics likeRW+ andR+ iswell known, and so is the ternary relational
semantics. Given our perspective on collection frames, it is worth taking the time to
reconsider the relationship between proofs andmodels. Consider the proof given above,
of the sequent ε � (A ∧ (A → B)) → B. What does this say about R+ models? It
does not tell us that (A ∧ (A → B)) → B holds at every point in those models, only
that it holds at normal points, those points x where [ ]Rx. In other words, the sequent
ε � (A∧ (A→ B))→ B should tell us that

For every point x, if [ ]Rx then x 
 (A∧ (A→ B))→ B.
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Scanning back to our derivation to its second line, we haveA → B;A � B. This does
not tell us that if A → B is true at a point and that A is true at that point, then B is
true there too (if that were all the sequent said, the conditional would be irrelevant).
The appropriate way to understand the ‘cash value’ of the derivation of this sequent
according to our frames is that

For all x, y and z, if x 
 A→ B and y 
 A, if [x, y]Rz then z 
 B.

In the first of these cases, we have involved the R relation on empty multiset. In the
secondof these cases, we have used theR relation on a two-elementmultiset. The natural
thing to consider when it comes to the sequent (A∧ (A→ B))�B, then, would be to
understand the sequent as telling us this:

For all x and y, if x 
 A∧ (A→ B) and [x]Ry then y 
 B.

This is how we will understand validity of sequents on our frames. A single-premise
single-conclusion sequentA � B is valid on a frame if and only if:

For all x and y, if x 
 A and [x]Ry then y 
 B.

This agrees with the traditional understanding of validity of a sequentA�B on a frame
(that for each point x, if x 
 A then x 
 B too) when that frame is reflexive. (Take
any reflexive frame. If a sequent has a counterexample according to the old definition,
that provides a counterexample in the new definition too, by the reflexivity of the frame.
Conversely, if we had points x and ywhere [x]Ry andA holds at x butB fails at y, then
by heredity on our frame,Bmust also fail at x, since [x]Ry, and so we have a counterex-
ample according to the traditional definition). This understanding of validity diverges
only in cases where the frame is not reflexive.20 Since non-reflexive frames are a proper
generalisation of ternary relational frames, the question of how to interpret sequents
on them is open. We have argued here that invoking R, and evaluating the lhs of our
sequent at one point and the rhs at another is in keeping with how we have always
interpreted zero-premise and multiple-premise sequents on ternary frames. It is also in
keepingwith the interpretation of conditionals in these frames. It would be surprising if
the conditional-like notion of entailment in a relevant logic did not share in the features
that the semantics ascribes to the conditional in that logic. So, we proceed with this new
understanding of what it is for a sequent to be valid in a model.21

So, when is a sequent Γ � A valid in some model 〈P, R,
〉? We have considered
sequents of the form ε � A, those of the formA � B and those of the formA;B � C.
What about those involving the extensional combiner, the comma? When is the sequent
A,B �C valid in our frame? One candidate (generalising the case of the single formula

20The idea of dropping reflexivity as a condition of Kripke frames has been studied in connection with
relatives of intuitionistic logic [54, 40].

21Youmaywonder: What happens to the traditional understanding of validity on our frames? Isn’t that
notion of validity worth respecting, even on non-reflexive frames? Here we take succour in the fact that
we can be pluralists about validity [3], even relevant validity. The fact that a frame provides more than one
natural candidate for a notion of validity is, for us, a feature, not a bug.
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on the left) is to say that whenever x 
 A and x 
 B then when [x]Ry, we have y 
 C.
However, an equivalentwayof formulating this claimwill bemorenatural in our setting.
Instead, we can say thatA,B � C is valid on a frame if and only if

For all x, y and z, if x 
 A and y 
 B, if [x]Rz and [y]Rz, then z 
 C.

Theparallelwith the case for the semicolon is clear. We look for pointswhere the lhs for-
mulas are true, andwe combine them, usingR to locate where to check the rhs formula.
Herewe checkC at all common descendants ofx and ofy, rather than those points found
by combining x and y together. This choice allows us to give a particularly straightfor-
ward interpretation of the validity of sequents in our models. We start with the notion
of the shadow cast by a structure in a model.

definition 17 [the shadow cast by a structure] For a structure Γ its shadow {{Γ }}
in the model 〈P, R,
〉 is a set of points, defined recursively as follows:

• {{ε}} = {x ∈ P : [ ]Rx},
• {{A}} = {x ∈ P : (∃y ∈ [[A]])[y]Rx},
• {{Γ, Γ ′}} = {x ∈ P : (∃y ∈ {{Γ }})(∃z ∈ {{Γ ′}})([y]Rx∧ [z]Rx)},
• {{Γ ; Γ ′}} = {x ∈ P : (∃y ∈ {{Γ }})(∃z ∈ {{Γ ′}})[y, z]Rx}.

When a structure is a single formulaA, then {{A}}, the shadow it casts is not the formula’s
extension, [[A]], but rather, it is the set of points upward from some point in the exten-
sion. If R is reflexive, then {{A}} = [[A]], so where R is reflexive, the distinction between
shadows and extensionsmakes no significant difference. In anymodel, whether reflexive
or not, {{A}} ⊆ [[A]].

It isworthpausing tounderstand thebehaviourof shadows in a specific non-reflexive
frame. Considermultiset frame 〈R, <〉with themultiset relation given by taking amul-
tiset X of reals to relate to all and only those reals larger than each member of X. Here,
the underlying order@ is the order< onR. So, the extension [[A]] of a formula must be
upwardly closed onR. So, an extensionmust have one of the forms (−∞,∞), [r,∞),
or (r,∞) for some real r, or be empty. A shadow, on the other hand, cannot have
the form [r,∞). If [[A]] = [r,∞), then {{A}} = (r,∞), and if [[A]] = (r,∞) then
{{A}} = (r,∞) too. The possible values of shadows are (−∞,∞), and (r,∞) for each
real r, and the empty set of reals.

It is also worth pausing to note that the notion of a shadow can be applied equally
well in inhabited-multiset frames, provided that our structures donot contain themarker
‘ε’ for the empty structure. So, for the rest of this section, we will consider two kinds of
models: those on multiset frames, and those on inhabited-multiset frames. The first
kind will be models of the whole calculus, while inhabited-multiset frames can be used
asmodels for the fragment of the proof calculus in which ε is absent: that is, the calculus
without the rules εI, εE, tL and tR. We will call the calculi for RW+ and R+ without ε,
RW+

−ε and R+−ε respectively, to make explicit the absence of sequents with ε.
We have seen that the shadow {{A}} of a formulaA is related to its extension [[A]] in

a natural way. x ∈ {{A}} iff there is some y ∈ [[A]] where [y]Rx (that is, y @ x). This
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transition from extension to shadow is an operation on sets of points, and it is worth
singling out with some notation.

definition 18 [@ on sets of points] X@ is defined as {x ∈ P : (∃y ∈ X)y @ x}.

So, this lemma is immediate:

lemma 19 [from extensions to shadows] {{A}} = [[A]]@.

This operation satisfies two useful conditions.

lemma 20 [@ is monotone and idempotent] For any sets X and Y, if X ⊆ Y then
X@ ⊆ Y@. Furthermore, X@ = X@@.

Proof: For monotony, if z ∈ X@ then there is some x ∈ X where [x]Rz. Since x ∈ Y,
z ∈ Y@ too. For idempotence, we appeal to the density and transitivity of@. If z ∈ X@
then since there is some x ∈ Xwhere [x]Rz then by density there is someywhere [x]Ry
(so y ∈ X@) and [y]Rz, ensuring that x ∈ X@@. Conversely, if z ∈ X@@ then there
is some y ∈ X@ where [y]Rz and some x ∈ X where [x]Ry. By transitivity, [x]Rz,
ensuring that z ∈ X@.

The shadow of a formulaA is the set of points above that formula’s extension, [[A]]. A
shadow of a structure is not defined by taking the points above the extension of some
formula, but nonetheless, it too is a fixed point for the operation@.

lemma 21 [shadows and order] For each shadow {{Γ }}, we have {{Γ }} = {{Γ }}@.

To prove this, it is simplest to characterise the sets fixed under @ in general terms. We
first prove a more general lemma, for which Lemma 21 is a corollary. For this, we need
one more definition:

definition 22 [closed upwards and open downwards] AsetX is closed upwards
along @ if whenever x ∈ X and x @ x ′ then x ′ ∈ X too. A set X is open downwards
along@ if whenever x ∈ X, there is some x ′ @ xwhere x ′ ∈ X too.

In the multiset frame 〈R, <〉 discussed above, the intervals [r,∞) are closed upwards
but not open downwards, while the intervals (r,∞) are both closed upwards and open
downwards along the order<. The properties of being closed upwards and open down-
wards are related to the operation@ as follows:

lemma 23 [open and closed sets] If the relation @ is transitive, then if X is closed
upwards, then X@ ⊆ X. If @ is dense, then if X is open downwards, then X ⊆ X@.

The proof is a simple matter of unpacking the definitions:

22



Proof: Suppose@ is transitive and that X is closed upwards. Take x ∈ X@. So there is
some x ′ ∈ X where x ′ @ x. Since X is closed upwards, we have x ∈ X. Suppose@ is
dense andX is open downwards. Take x ∈ X. SinceX is open downwards we have some
x ′ ∈ Xwhere x ′ @ x. It follows that x ∈ X@.

So, the sets X that are closed upwards and open downwards are fixed points for the op-
eration@. Since on any collection frame, @ is transitive and dense, the shadow {{Γ }} of
any structure Γ is both closed upwards and open downwards, and is a fixed point for the
operation@.

Now we can return to the proof of Lemma 21.

Proof: Consider each kind of shadow, as given in Definition 17. A quick inspection of
each clause shows that if R satisfies Transitivity and Splitting, then the shadow is closed
upward and open downward. For one example, for {{ε}}, if x ∈ {{ε}}, for upward closure,
assume thatx @ x ′. Since [ ]Rx andx @ x ′wehave [ ]Rx ′ by transitivity, andx ′ ∈ {{ε}}.
For downward openness, since [ ]Rx, by Splitting we have some x ′ where [ ]Rx ′ (so
x ′ ∈ {{ε}}) and x ′ @ x, as desired.

For the intensional composition case, if x ∈ {{Γ ; Γ ′}}, for upward closure, assume
that x @ x ′. Since we have y ∈ {{Γ }} and z ∈ {{Γ ′}} where [y, z]Rx, and since x @ x ′,
by transitivity we have [y, z]Rx ′, and x ′ ∈ {{Γ ; Γ ′}} as desired. For downward open-
ness, since [y, z]Rx, by Splitting we have some x ′ where [y, z]Rx ′ and [x ′]Rx (so x ′ ∈
{{Γ ; Γ ′}}) and x ′ @ x, as desired.

The other two cases follow in the same way, so we can declare this lemma proved.

With this behaviour of shadows proved, we can see that the definition of the shadow of
an extensional structure canbe simplified. Since {{Γ, Γ ′}} = {x ∈ P : (∃y ∈ {{Γ }})[y]Rx}∩
{x ∈ P : (∃y ∈ {{Γ ′}})[z]Rx} = {{Γ }}@ ∩ {{Γ ′}}@, we have the following consequence:

corollary 24 {{Γ, Γ ′}} = {{Γ }} ∩ {{Γ ′}}.

With the definition of a structure’s shadow, the statement the condition for validity
on a model is straightforward.

definition 25 [model validity] A sequent Γ � A is valid in the model 〈P, R,
〉 if
and only if {{Γ }} ⊆ [[A]]. That is, the shadow cast by the structure Γ is restricted to the
extension of the formulaA.

So, we are in a position to state our soundness theorem:

theorem 26 [RW+ is sound for multiset frames] Any RW+ derivable sequent Γ�
A holds in each model 〈P, R,
〉 on a multiset frame. Furthermore, any RW+

−ε derivable
sequent holds in each model on an inhabited-multiset frame.

To prove the soundness theorem, it helps to establish the following facts about shadows
and contexts.
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lemma 27 [contexts preserve order, and are prime] If {{Γ }} ⊆ [[A]], then for
any context Γ ′(−), we have {{Γ ′(Γ)}} ⊆ {{Γ ′(A)}}. In this sense, contexts are order pre-
serving over valid sequents. Furthermore, {{Γ ′(A ∨ B)}} = {{Γ ′(A)}} ∪ {{Γ ′(B)}}, so
contexts are prime, and {{Γ ′(⊥)}} = {{⊥}} = ∅.

Proof: Both facts follow fromaneasy inductionon the constructionof the context Γ ′(−).
An atomic context Γ ′(−) the hole ‘−’ itself. In this case, primeness is trivial, and order
preservation follows from themonotony and idempotence (Lemma 20). If {{A}} ⊆ [[B]],
then by monotony, {{A}}@ ⊆ [[B]]@, but [[B]]@ = {{B}}, so {{A}}@ ⊆ {{B}}, and since
idempotence gives {{A}} = {{A}}@, we have {{A}} ⊆ {{B}} as desired.

For the induction steps, Γ ′(−) either has the form Γ ′′(−), Γ ′′′, or Γ ′′′, Γ ′′(−), or
Γ ′′(−); Γ ′′′, or Γ ′′′; Γ ′′(−), in which case preservation and primeness follow immedi-
ately from the properties holding for the simpler context Γ ′′(−).

For example, if {{Γ ′′(Γ)}} ⊆ {{Γ ′′(A)}}, then {{Γ ′; Γ ′′(Γ)}} = {x ∈ P : (∃y ∈
{{Γ ′}})(∃z ∈ {{Γ ′′(Γ)}})[y, z]Rx}, but since {{Γ ′′(Γ)}} ⊆ {{Γ ′′(A)}}, it follows that this set
is a subset of {x ∈ P : (∃y ∈ {{Γ ′}})(∃z ∈ {{Γ ′′(A)}})[y, z]Rx}, which is {{Γ ′; Γ ′′(A)}},
as desired. Similarly, given that {{Γ ′′(A∨B)}} = {{Γ ′′(A)∪ Γ ′′(B)}}, then {{Γ ′; Γ ′′(A∨

B)}} = {x ∈ P : (∃y ∈ {{Γ ′}})(∃z ∈ {{Γ ′′(A ∨ B)}})[y, z]Rx}, which is equal to
{x ∈ P : (∃y ∈ {{Γ ′}})(∃z ∈ {{Γ ′′(A)}} ∪ {{Γ ′′(B)}})[y, z]Rx}, which is {x ∈ P : (∃y ∈
{{Γ ′}})(∃z ∈ {{Γ ′′(A)}})[y, z]Rx} ∪ {x ∈ P : (∃y ∈ {{Γ ′}})(∃z ∈ {{Γ ′′(B)}})[y, z]Rx},
which is in turn {{Γ ′; Γ ′′(A)}} ∪ {{Γ ′; Γ ′′(B)}}. Finally, given that {{Γ ′′(⊥)}} = ∅, clearly
{{Γ ′; Γ ′′(⊥)}} = {x ∈ P : (∃y ∈ {{Γ ′}})(∃z ∈ {{Γ ′′(⊥)}})[y, z]Rx} = {x ∈ P : (∃y ∈
{{Γ ′}})(∃z ∈ ∅)[y, z]Rx} = ∅, as desired.

Nowwe can return to our proof of the soundness theorem. As is usual, it is a straightfor-
ward induction on the length of a derivation. The technique is standard, and there are
no surprises, despite the idiosyncratic interpretation of sequents to allow for the non-
reflexive frames.22

Proof: We prove soundness by induction on the length of a derivation for the sequent
Γ�A. The axiomatic sequentA�Aholds in everymultiset frame and in every inhabited-
multiset frames since {{A}} ⊆ [[A]]. The sequentε� t holds in everymultiset frame, since
in these frames we have {{ε}} ⊆ [[t]].

For the Cut rule, suppose we have {{Γ }} ⊆ [[A]] and {{Γ ′(A)}} ⊆ [[B]]. We wish to
show that {{Γ ′(Γ)}} ⊆ [[B]]. Here we appeal to fact that the context Γ ′ preserves order.
Since {{Γ }} ⊆ [[A]], we have {{Γ ′(Γ)}} ⊆ {{Γ ′(A)}}, and since {{Γ ′(A)}} ⊆ [[B]], we have
{{Γ ′(Γ)}} ⊆ [[B]] as desired.

That the extensional structural rules preserve validity on frames is an immediate con-
sequence of the fact that the outer context Γ(−) preserves order, and the extensional
structure is modelled by intersection of shadows. For example, for the weakening rule
EK, since {{Γ ′, Γ ′′}} = {{Γ ′}} ∩ {{Γ ′′}} ⊆ {{Γ ′}}, and since Γ(−) preserves order, we know

22The soundness proof shows that although the frames may be non-reflexive, the resulting logic is, non-
theless, reflexive, in the sense discussed by French [20].
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that if {{Γ(Γ ′)}} ⊆ [[B]] then we also have {{Γ(Γ ′, Γ ′′)}} ⊆ [[B]]. In the same way, associa-
tivity, commutativity and contraction are assured.

Most of the intensional structural rules follow in the sameway from theproperties of
multisets. For example, the associativity rule IB follows appeals to the compositionality
of R. {{(Γ ′; Γ ′′); Γ ′′′}} = {x ∈ P : (∃y ∈ {{(Γ ′; Γ ′′)}})(∃z ∈ {{Γ ′′′}})[y, z]Rx} un-
packing the definition of {{Γ ′; Γ ′′}} this set is identical to {x ∈ P : (∃y ∈ P)(∃u ∈
{{Γ ′}})(∃v ∈ {{Γ ′′}})([u, v]Ry ∧ [y, z]Rx)}. Applying compositionality, we see that
(∃y ∈ P)([u, v]Ry∧ [y, z]Rx) is equivalent to [u, v, z]Rx, usingTransitivity in one di-
rection and Splitting in the other. Thus, the set {{(Γ ′; Γ ′′); Γ ′′′}} simplifies (as expected) to
{x ∈ P : (∃u ∈ {{Γ ′}})(∃v ∈ {{Γ ′′}})(∃z ∈ {{Γ ′′′}})[u, v, z]Rx}where the left-associated
structure (Γ ′; Γ ′′); Γ ′′′ unwraps into the unassociated multiset [u, v, z]. A moment’s
reflection shows that the right-associated structure Γ ′; (Γ ′′; Γ ′′′) unwraps to exactly the
same set, so {{(Γ ′; Γ ′′); Γ ′′′}} = {{Γ ′; (Γ ′′; Γ ′′′)}}, showing that the associativity structural
rule IB is valid on frames. It is simpler to show that IC holds, since {{Γ ′; Γ ′′}} = {{Γ ′′; Γ ′}}
straightforwardly, given that [y, z] = [z, y] for each y and z.

The εI and εE rules hold in models on multiset frames (but not in models on
inhabited-multiset frames). Here, we have {{ε; Γ ′}} = {{Γ ′}} since {{ε}} = {x ∈ P : [ ]Rx}
and so {{ε; Γ ′}} = {x ∈ P : ∃y([ ]Ry ∧ ∃z ∈ {{Γ ′}}[y, z]Rx)}. However, if [ ]Ry
and [y, z]Rx then by transitivity, [ ] ∪ [z]Rx, i.e., [z]Rx. And conversely, by Splitting,
if [z]Rx then [ ] ∪ [z]Rx and so, there is some y where [ ]Ry and [y, z]Rx. So, our set
{x ∈ P : ∃y([ ]Ry∧ ∃z ∈ {{Γ ′}}[y, z]Rx)} is the set {x ∈ P : ∃z ∈ {{Γ ′}}[z]Rx}, which
is {{Γ ′}} itself, by Lemma 21.

It remains to verify the validity of each of the connective rules. The validity of the left
rules for conjunction, disjunction, fusion follow immediately from the truth conditions
for these connectives and the fact that the context Γ(−)preserves order. For example, for
◦L, if we know that {{Γ(A;B)}} ⊆ [[C]] holds in the model, then since {{A ◦ B}} = {x ∈
P : (∃y ∈ [[A ◦ B]])[y]Rx} = {x ∈ P : (∃w ∈ {{A}})(∃v ∈ {{B}})[w, v]Rx} = {{A;B}},
and the context Γ(−) preserves order, it follows that {{Γ(A ◦ B)}} ⊆ [[C]] too. The
reasoning for the left rules for conjunction is similar, and so is the left rule for t when
our attention is restricted to multiset frames.

The reasoning for the left rule for disjunction follows immediately from the prime-
ness of the context Γ(−). If {{Γ(A)}} ⊆ [[C]] and {{Γ(B)}} ⊆ [[C]] then indeed {{Γ(A ∨

B)}} = {{Γ(A)}} ∪ {{Γ(B)}} ⊆ [[C]]. The left rule for⊥ is trivial, given that {{⊥}} = ∅.
For the last left rule, for the conditional, to show that {{Γ }} ⊆ [[A]] and {{Γ ′(B)}} ⊆

[[C]] ensures that {{Γ ′(A → B; Γ)}} ⊆ [[C]], we appeal to the fact that Γ ′(−) preserves
order. Using this fact, it suffices to show that {{A → B; Γ }} ⊆ [[B]], for then we indeed
have {{Γ ′(A → B; Γ)}} ⊆ {{Γ ′(B)}} ⊆ [[C]] as desired. That {{A → B; Γ }} ⊆ [[B]]
follows from {{Γ }} ⊆ [[A]] by the definition of shadows for intensional combination. If
x ∈ {{A → B; Γ }} then there are y and z where y ∈ {{A → B}} and z ∈ {{Γ }} such that
[y, z]Rx. Since {{Γ }} ⊆ [[A]]we have z 
 A. Since y ∈ {{A→ B}}we have y 
 A→ B.
It follows from [y, z]Rx that x 
 B, i.e., x ∈ [[B]], as desired.

That completes the verification of the left connective rules. The right rules∨R and
∧R follow immediately from the truth conditions for the connectives, and we have al-
ready dealt with tR as an axiom. For→R and ◦R the verification is also straightforward.
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For ◦R, if {{Γ }} ⊆ [[A]] and {{Γ ′}} ⊆ [[B]], we wish to show that {{Γ ; Γ ′}} ⊆ [[A ◦ B]]. If
x ∈ {{Γ ; Γ ′}} then there are y, zwhere [y, z]Rx, y ∈ {{Γ }} and z ∈ {{Γ ′}}. So, we also have
y ∈ [[A]] and z ∈ [[B]], so x ∈ [[A ◦ B]] as desired. For→R, suppose {{Γ ;A}} ⊆ [[B]]. To
show that {{Γ }} ⊆ [[A → B]], suppose we have x ∈ {{Γ }}. To show that x ∈ [[A → B]],
suppose we have a y where y 
 A and [x, y]Rz. By Splitting, we have some y ′ where
[y]Ry ′ and [x, y ′]Rz. Since y ∈ [[A]] and [y]Ry ′ we have y ∈ {{A}}, and since x ∈ {{Γ }}

and [x, y ′]Rzwe have z ∈ {{Γ ;A}}, so z ∈ [[B]], as desired.
This completes the proof. Each rule of the sequent calculus is sound on multiset

frames. So, if a sequent Γ � A can be derived in RW+, on any multiset frame (whether
reflexive or not) we have {{Γ }} ⊆ [[A]]. Furthermore, if that sequent can be derived in
RW+

−ε, it also holds on any inhabited-multiset frame.

It is worth remarking on the role of the Transitivity portion of compositionality in the
proof of the soundness of the Cut rule. That case is handled by appeal to Lemma 27,
the fact that contexts preserve order. Inspection of the proof of Lemma 27 reveals that it
hinges on the monotony and idempotency of the@ operator, lemma 20. Showing that
@ is idempotent, in particular, appeals to the density and transitivity of@. That appeal
does not use the full Transitivity principle, but rather a restricted form involving only
singletons on the left, much as density is a restricted form of the full Splitting principle.
These observations suggest that collection frames that adopt only the restricted forms of
Transitivity and Splitting may be of interest for the study of weaker logics.23

Before proceeding with further results, let’s put this soundness proof to work, by
showing how to use some of the frames we have constructed can provide counterexam-
ples to sequents.

example 28 [refuting p∧ (p→ q) � q and s � r→ s] Start with 〈R, R〉, where
XRy iff y > ΣX. This is a non-reflexive frame onR, in which the underlying order on
points is<. So, extensions of formulas are the intervals [r,∞) or (r,∞) closed or open
at the left, together with R as a whole and the empty set. If we take [[p]] = [1,∞) and
[[q]] = [2,∞), then we have x 
 p → q iff for each y, if y 
 p (that is, if y ≥ 1) and
x+y < z, we have z 
 q (that is, z ≥ 2). It is easy to see that this obtains when x ≥ 1,
but if x < 1, we can find some value of y, (e.g. 1) and a value of z (e.g. 1+ x) such that
x + y < z and z 6≥ 2. So, [[p → q]] = [1,∞). So, in particular, 1 
 p ∧ (p → q),
and so, for example, 1 12 ∈ {{p ∧ (p → q)}} and 1 12 6∈ [[q]]. So this model provides a
counterexample to the sequent p∧ (p→ q) � q. As we would expect in at least some
frames for RW+, we have a violation of contraction.

This frame also provides a counterexample to sequents involving failures of rele-
vance, such as s � r → s. If we set [[r]] = [−3,∞) and [[s]] = [0,∞) then it is easy
to see that 1 ∈ {{s}}, while 1 6∈ [[r → s]], since −3 
 r and [−3, 1]R − 1 (since
−3 + 1 = −2 < −1) and−1 6
 s. These simple numerical frames provide the leeway
to explore a number of the distinctive features of the substructural logic RW+.

23Wewould like to thank Dave Ripley for pushing us for clarify the issues discussed in this paragraph.
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Another result that follows immediately is the fact that RW+ is a non-conservative
extension of RW+

−ε. The sequent (A→ A)→ B � B is derivable in RW+ as follows:

A �A
εI

ε;A �A →R
ε �A→ A B � B →L
(A→ A)→ B; ε � B

IC
ε; (A→ A)→ B � B

εE
(A→ A)→ B � B

This derivation makes use of ε. It might be asked whether any RW+ derivation of this
sequent must go through ε in this way. Inhabited-multiset frames give us an answer.
This sequent is not derivable in RW+

−ε.24

example 29 [RW+ is not conservative over RW+
−ε] Consider 〈P, R〉whereP is the

set {1, 2, 3, . . .} of positive natural numbers, and for inhabited multisets X, XRy iff
y = ΣX. R, defined in thisway, is both compositional and reflexive. This is an inhabited-
multiset frame. The underlying order@ is identity, so any set of points may be used as
the extension of a formula. Define 
 by setting [[p]] = P (so p is true everywhere) and
[[q]] = P\{1} (so q holds everywhere other than 1). In this model [[p → p]] = P, triv-
ially. It follows that (p→ p)→ q is true at every numbern ≥ 1, too, since for any such
n, and for anym ≥ 1wherem 
 p→ p (i.e., for anym ≥ 1) thenn+m 
 q, since
clearly, n +m ≥ 2. So, we have a counterexample to our sequent (p → p) → q � q
on our model. In particular, we have 1 ∈ {{(p→ p)→ q}}while 1 6∈ [[q]].

If wewish tomodel the stronger logicR+, wemust restrict our attention to a smaller class
of multiset frames. In ternary relational semantics, the traditional frame condition to
impose on RW+ models to validate contraction is Rxxx. Its analogue in multiset frames
is straightforward: [x, x]Rx. Oncewe have non-reflexive frames in view, however, we can
see that this frame condition is not general enough. Amore general form of contraction
on ternary frames is this condition:

Rxyz⇒ R2(xy)xz

corresponding to the validity of the sequentA→ (A→ B) �A→ B. If we choose a
normal point for y, then the condition becomes

x v z⇒ Rxxz

which, in thepresence of reflexivity gives usRxxx for everyx. In the absence of reflexivity,
no such consequence need follow. In the multiset frame onRwhere we setXRy iff y is

24In Humberstone’s terms [24, §1.2], logical frameworks apart from fmla need to be considered for
inhabited collection frames.
See Shay Logan’s “Deep Fried Logic” [29] for more on RW+

−ε.
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greater than every member of X, it is clear that whenever x @ z (that is, x < z) we have
Rxxz (that is, x < z). However, we never have Rxxx on this frame.

The appropriate understandingof contractiononarbitrarymultiset frames,whether
reflexive or not, is simple. A multiset rendering of the condition goes like this:

[x]Rz⇒ [x, x]Rz

The relation R is preserved when the multiset expands from one repetition of x to two.
If R is compositional, this condition will continue to hold in a more general form, using
the ground function g from definition 1:

lemma 30 [preservation for contracting relations] Whenever R is composi-
tional multiset relation where [x]Rz ⇒ [x, x]Rz for every x and z then if XRy and X ′
is another multiset where X ≤ X ′ and g(X) = g(X ′), then X ′Ry too.

Proof: Recall that X ≤ X ′ iff any object that is an element of X i times is a member of
X ′ at least that many times. The constraint that g(X ′) = g(X) means that the only
elements with non-zero multiplicity in X ′ have non-zero multiplicity in X too. So, X ′
differs fromX only by allowing elements that were already inX to be inX ′ more times.
Since X and X ′ are finite multisets, if we prove that XRy implies ([x] ∪ X)Ry, when
x ∈ X, we can repeat this process until we have built X ′ from X in a series of additions
of single elements.

Now, ifXRy and x ∈ X, thenwe have ([x]∪(X\x))Ry. By Splitting there is some z
where [x]Rz and ([z]∪ (X\x))Ry. Since [x]Rzwe have [x, x]Rz, and so, by transitivity,
([x, x] ∪ (X\x))Ry, i.e., ([x] ∪ X)Ry, as desired. Applying this process repeatedly, for
each additional element in X ′, we see that X ′Ry, and we have completed the proof.

To show that R+ is indeed sound for contracting multiset frames, we need to verify that
on each model on such a frame {{Γ }} ⊆ {{Γ ; Γ }}. But this is immediate: let’s suppose that
x ∈ {{Γ }}. ThenbyLemma21, there is some [y]Rxwherey ∈ {{Γ }} too. Now, since [y]Rx,
we have [y, y]Rx and so, we have that x ∈ {{Γ ; Γ }}. With this reasoning, the soundness
result for R+ on contracting multiset frames is proved.

theorem 31 [R+ is sound for contracting multiset frames] Any sequent Γ�
A derivable in R+ also holds in each model 〈P, R,
〉 on a contracting multiset frame.

For completeness, we need to show that if a sequent holds in all multiset frames then it
is derivable in RW+, and that if a sequent holds in all contractingmultiset frames, then it
is derivable in R+, then it. As is usual, the most straightforward way to prove complete-
ness is to prove the contrapositive, by showing that for any underivable sequent, one can
find a counterexample in some frame. In the case of the ternary relational semantics, as
with Kripke models for normal modal logics and intuitionistic logics, this is achieved by
constructing the canonical frame [41, 47, 45, 46], whose points are prime theories,25 and

25A set of formulas is a theory iff it is closed under conjunction introduction and provable implication,
and a theory is prime iff it contains a disjunction only if it contains at least one disjunct.
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where the normal points are those theories containing all logical truths, wherev is the
subset relation, and where R is defined syntactically: Rαβγ iff for eachA → B ∈ α, if
A ∈ β then B ∈ γ. It is a standard result that membership is an evaluation relation on
the canonical frame, defining α 
 A iffA ∈ α, which gives us a relation satisfying the
expected truth conditions, and that that any underivable sequent has a counterexample
in the resulting canonicalmodel. In addition, the RW+ canonical frame satisfies the RW+

conditions on the ternary relation, and the R+ canonical frame satisfies the contraction
condition. So, we can appeal to Lemma 16, to show that the canonical ternary relational
model for RW+ (or for R+) will also provide a multiset model (or contracting multiset
model), which gives exactly the same truth conditions on points, and so, counterexam-
ples to the same sequents. So, we have completeness for free:

theorem 32 [completeness for multiset frames] Each sequent that holds on ev-
ery reflexive multiset frame is derivable in RW+. Furthermore, each sequent that holds on
every contracting, reflexive multiset frame is derivable in R+.

So, multiset frames provide an elegant, simple class of models for RW+, unifying the
parts of the ternary relational frames. The compositionality condition on the multiset
relation R is a natural generalisation of the condition that inclusion (v) be a preorder,
to the general setting that we relate a collection of points to a point. The generalisation
goes so far as to include models in which the underlying order is not even reflexive.

However, not all collections aremultisets. In the rest of this paper, we will show that
we can generalise these results to other kinds of collections in a natural way. Wewill start
by considering sets.

3. set frames

Once you understandmultiset frames, it is straightforward to define set frames. We start
with the definition of compositionality for relations onP∗(P)×P, whereP∗(P) is the
set of finite subsets of P.

definition 33 [compositionality for set relations] A relationR onP∗(P)×
P is said to be compositional if and only for all sets X, Y and all points x and z,.

if XRx and ({x} ∪ Y)Rz then (X ∪ Y)Rz

Such a set relation R is reflexive iff for all points x ∈ P, we have

{x}Rx.

We have replaced talk of multisets of elements of P with finite subsets of P. The com-
positional multiset relations discussed in Example 4 can be all reframed as set relations.
Membership,Maximum, The Product, Some Product of and Between can all be defined
as set relations onω, and each is set relation so defined is compositional.
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The novelty with set relations, as opposed to multiset relations, is that they are, by
construction, contracting. There is no difference at all between {x, x}Ry and {x}Ry, and
since by reflexivity, we have {x}Rx, it follows that {x, x}Rx holds in every compositional
set relation R. Once we define the notion of a set frame, and the corresponding notion
of a set model, it will follow immediately that R+ is sound for set models.

definition 34 [set frames and set models] IfP is an inhabited set andR is a com-
positional set relation on P, then 〈P, R〉 is said to be a set frame. If
 is a relation be-
tween the set P and the set of atomic formulas, which is hereditary along R (so if x 
 p
and {x}Ry theny 
 p too), then 〈P, R,
〉 is said to be a setmodel, where
 evaluates
all formulas in the language of R+ as follows:

• x 
 A∧ B iff x 
 A and x 
 B.
• x 
 A∨ B iff x 
 A or x 
 B.
• x 
 A→ B iff for each y, zwhere {x, y}Rz, if y 
 A then z 
 B.
• x 
 A ◦ B iff for some y, zwhere {y, z}Rx, both y 
 A and z 
 B.
• x 
 t iff { }Rx.
• x 
 ⊥ never.

As withmultiset models, the evaluation relation
 on set models is hereditary across the
relation R. And as with contracting multiset models, the logic R+ is sound for set. The
soundness proof for RW+ can be rewritten, word-for-word, with with set singletons and
set union replacing multiset singletons and multiset union. Furthermore, any relation
compositional set relationR satisfies the contraction condition vacuously, so the contrac-
tion rule preserves validity on all set models. We have the following soundness theorem
for free:

theorem 35 [R+ is sound for set frames] Any R+ derivable sequent Γ � A holds
in each model 〈P, R,
〉 on a set frame.
A natural question arises. Is R+ complete for set frames? Here, any completeness theo-
rem will not be quite as straightforward as in the case for multiset frames and RW+. We
cannot simply take the canonical frame and show that it is a set frame. In general, con-
tracting ternary frames (or contractingmultiset frames) do not turn out to be equivalent
to set frames. In any set framewe have {x, x}Ry if and only if {x}Ry trivially, but the cor-
responding biconditional — Rxxy if and only if x v y (or [x, x]Ry iff [x]Ry) — does
not hold in all ternary relational frames for R+, or on all contracting multiset frames. In
general, only one direction of the biconditional holds.

example 36 [a ternary R+ frame that isn’t (equivalent to) a set frame] The
frame on the set P = {0, a, b} of points withN = {0}, wherev is identity and where
R is defined with the following table

R 0 a b

0 0 a b

a a ab 0ab

b b 0ab ab
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is not equivalent to a set frame. To read the table, the values in the x row and y column
in the table are the different values of z such that Rxyz. So, the ab in the a row and
a column indicates that Raaa and Raab. It is not too difficult to check that this is a
ternary R+ frame (it is associative, commutative and contracting), but it does not satisfy
the condition needed for equivalence to a set frame: that Rxxy if and only if x v y.
Here, Raab, but a 6v b. This is a ternary frame that is not equivalent to a set frame.

What goes for this ternary frame can go for the canonical frame for R+.26 So, there is no
guarantee that any canonical frame for R+ will be (equivalent to) a set frame. This raises
the question ofwhether set frames overgenerate, whether they determine a logic stronger
than R+. It might be thought that the stronger frame condition induced on a set frame
means that themingle axiomp→ (p→ p) (which is equivalent to (p◦p)→ p) holds
on our frames. It fails, as the following example shows.

example 37 [a set frame counterexample to mingle] Consider the inhabited-
set frame onω, where XRy iff y is in the interval bound by the set X. So, for example
the set {0, 2} is related to 0, 1 and 2 but no other elements ofω. This is frame on in-
habited sets. We can then extend this frame to construct a set frame using the technique
of Lemma 8, by adjoining an element∞ and choosing the R× extension of the relation
R. Here, { }R×∞ and {∞}R×∞ and for every other set X, XR×z iff (X\∞)Rz, to
make this a model for the whole of R+, including t.) In this model, the order relation
@ is the identity relation, since {x}R×y iff y = x, for every x (including∞). Let’s take
[[p]] = {0, 2}. Then it is straightforward that 0 
 p but 0 6
 p → p, since 2 
 p and
1 6
 p and {0, 2}R×1. So, since {0,∞}R×0, we have∞ 6
 p → (p → p), and since
{ }R×∞, we see that p → (p → p) fails at a normal point (at the only normal point,∞), giving us a counterexample to the sequent ε � p→ (p→ p), as desired.

So, set frames are sound for R+, but the standard techniques for completeness do not
suffice to show completeness for R+. It seems we must use another approach, or find
some way that these frames overgenerate R+. We will not, however, settle the question
here, so we leave it as a topic for further research.27

[open question] Is R+ complete for the class of all set frames?

As with multiset frames, we can move from set frames to inhabited-set frames, if we
loosen the requirement that the compositional relation R relate the empty set to points.
All of the results concerning inhabited-multiset frames generalise to inhabited-set frames.

26In fact, this ternary R+ frame is isomorphic to the canonical frame constructed from a small R+ algebra
on eight elements — the eight subsets of {0, a, b}, the propositions defined on that frame, and under the
operations, conjunction, disjunction, conditional, fusion, t and⊥, defined by the truth conditions on that
frame.

27Standefer [52] has shown that the logic of functional set frames is sound and complete with respect to
Urquhart’s semilattice logic, which is a proper extension of the {→,∧,∨}-fragment of R+.
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Inhabited-set frames on the real plane are surprisingly straightforward to construct, and
they have interesting properties of their own.28 We have the following result.

theorem 38 [R+−ε is sound for set frames] Any R+−ε derivable sequent Γ�A holds
in each model 〈P, R,
〉 on an inhabited-set frame.

Again, the proof of this theorem comes essentially for free, once we recognise that the
structural rule IW of intensional contraction satisfied on inhabited-set frames. We can
use an inhabited-set frame to show that the sequent (A → A) → B � B also fails in
R+−ε, so R+ fails to be conservative over R+−ε, just as RW+ is not conservative over RW+

−ε.

example 39 [R+ is not conservative over R+−ε] This time, consider the inhabited-
set frame 〈P, R〉where P = {0, 1, 2} andXRy holds when y is bounded by the setX. In
other words, XRy if and only if min(X) ≤ y ≤ max(Y). In this frame, the underlying
order is identity, so the relation is reflexive, any set of points is a possible extension of
a formula. Let [[p]] = {0, 2}. Then at p → p is satisfied nowhere, since for any point
x you choose, there is some point y (choose 2 if x is 0, and choose 0 otherwise) where
y 
 p, and where {x, y}R1, where 1 6
 p. So, at every point we have a counterexample
to the identity statement p→ p.

This means that every point in our frame supports (p → p) → q, since p → p

fails everywhere. In particular, 1 
 (p→ p)→ p, while 1 6
 p, so (p→ p)→ p � p
fails on this frame, and hence, it is not derivable in R+−ε.A fortiori, neither is the sequent
(p→ p)→ q � q.

4. list frames and tree frames

Different collections gather their elements in different ways. Sets collect elements with
no regard to order or multiplicity. Multisets allow their members to occur repeatedly,
but there is no record of the order of their arrival.It is natural to consider collections that
keep track of both multiplicity and order: lists. The list 〈a, a, b, c〉 is distinct from the
list 〈a, b, a, c〉, both of which are distinct from the list 〈a, b, c〉.

Thedefinitiongiven for compositionality in set andmultiset frames generalises nicely
to the context of list frames, butwewill need to be carefulwhen doing so: the definitions
were not attentive to matters of ordering, so we will need to pay attention to that here
when defining what it is to replace an element y occurring in some list by another list.
To this we turn, now.

definition 40 [list composition] If the list X is 〈x1, . . . , xn〉 and the inhabited
listY(yj) is 〈y1 . . . , yj, . . . , ym〉, thenY(X) is 〈y1, . . . , yj−1, x1, . . . , xn, yj+1 . . . , ym〉.

28Elsewhere [42], Restall explores features of frames on geometric spaces, and options for extending
geometric set frames with new points to bring in the empty set, in case one simply cannot do without t and
without ε.
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Given an inhabited set P, the set L(P) is the set of all finite lists of elements from P.

definition 41 [compositionality] A list relation R on L(P)× P is said to be com-
positional if and only if for all lists X and Y and for all points z,

(∃y)(XRy and (Y(y))Rz) iff (Y(X))Rz.

A list relation R is reflexive iff for all points x, we have

〈x〉Rx.

As with multisets, a compositional list relation between inhabited lists and points adds
the requirement that X be inhabited to the preceding definition. (Y(y)must of course
be inhabited, though of course it may just be the singleton list 〈y〉.)

definition 42 [list frames and list models] If P is an inhabited set and R is a
compositional list relation on P, then 〈P, R〉 is said to be a list frame. (If R is an
inhabited-list relation, then this is an inhabited-list frame.) If
 is a relation between
the set P and the set of atomic formulas, which is hereditary along R (so if x 
 p and
〈x〉Ry then y 
 p too), then 〈P, R,
〉 is said to be a list model, where 
 evaluates
all formulas in the language of R+ as follows:

• x 
 A∧ B iff x 
 A and x 
 B.
• x 
 A∨ B iff x 
 A or x 
 B.
• x 
 A→ B iff for each y, zwhere 〈x, y〉Rz, if y 
 A then z 
 B.
• x 
 A ◦ B iff for some y, zwhere 〈y, z〉Rx, both y 
 A and z 
 B.
• x 
 ⊥ never.

If R is a list relation, and not merely an inhabited-list relation, we can add the t clause.

• x 
 t iff 〈 〉Rx.

We can define validity for sequents on our models in the usual way. In fact, the defi-
nitions the extension [[A]] of a formula A carries over unchanged in the setting of list
frames, and the definition of the shadow {{Γ }} of a structure requires only one small
tweak, given themove frommultiset or set frames to list frames. References tomultisets
must be replaced by the corresponding references to lists, as follows:

• {{ε}} = {x ∈ P : 〈 〉Rx},
• {{A}} = {x ∈ P : (∃y ∈ [[A]])〈y〉Rx},
• {{Γ, Γ ′}} = {x ∈ P : (∃y ∈ {{Γ }})(∃z ∈ {{Γ ′}})〈y〉Rx∧ 〈z〉Rx},
• {{Γ ; Γ ′}} = {x ∈ P : (∃y ∈ {{Γ }})(∃z ∈ {{Γ ′}})〈y, z〉Rx}.
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With this, we can define validity on a model as before. The sequent Γ � A is valid on
〈P, R,
〉 iff {{Γ }} ⊆ [[A]].

We have seen that logic RW+ is sound and complete for multiset frames. The logic
R+ is sound and complete formultiset frames with contraction, and that R+ is sound for
set frames. A natural question is what logic is sound and complete for list frames. List
frames will not validate the structural rules IC and IW, so the logic will be weaker than
RW+. Onemight think that list frames validate TW+, a close relative of RW+ that eschews
the structural rules IC and IW, but that thought is not borne out, as we will show.

lemma 43 The following structural rules are valid on list frames.

Γ(Γ ′; (Γ ′′; Γ ′′′)) � B
IB

Γ((Γ ′; Γ ′′); Γ ′′′) � B

Γ((Γ ′; Γ ′′); Γ ′′′) � B
IBc

Γ(Γ ′; (Γ ′′; Γ ′′′)) � B

Proof: It is straightforward to show that {{Γ ′; (Γ ′′; Γ ′′′)}} = {{(Γ ′; Γ ′′); Γ ′′′}}, given the
associativity of list composition, and the compositionality of the relation R. The proof
used for Theorem 26 (see page 25) carries over here with only notational changes, like
so: {{(Γ ′; Γ ′′); Γ ′′′}} = {x ∈ P : (∃y ∈ {{(Γ ′; Γ ′′)}})(∃z ∈ {{Γ ′′′}})〈y, z〉Rx} un-
packing the definition of {{Γ ′; Γ ′′}} this set is identical to {x ∈ P : (∃y ∈ P)(∃u ∈
{{Γ ′}})(∃v ∈ {{Γ ′′}})(〈u, v〉Ry ∧ 〈y, z〉Rx)}. Applying compositionality, we see that
(∃y ∈ P)(〈u, v〉Ry∧ 〈y, z〉Rx) is equivalent to 〈u, v, z〉Rx so the set {{(Γ ′; Γ ′′); Γ ′′′}}
simplifies (as expected) to {x ∈ P : (∃u ∈ {{Γ ′}})(∃v ∈ {{Γ ′′}})(∃z ∈ {{Γ ′′′}})〈u, v, z〉Rx}
where the left-associated structure (Γ ′; Γ ′′); Γ ′′′ unwraps into theunassociated list 〈u, v, z〉.
Similarly, the right-associated structure Γ ′; (Γ ′′; Γ ′′′) unwraps to exactly the same set, so
{{(Γ ′; Γ ′′); Γ ′′′}} = {{Γ ′; (Γ ′′; Γ ′′′)}}, showing that the associativity structural rule IB is
valid on list frames.

The structural rule IB is valid in ternary frames for TW+, but the rule IBc is not. The
latter rule can be used to derive the sequentA ◦ (B ◦C)� (A ◦B) ◦C, which does not
hold in TW+.29 Rather than the structural rule IBc, the usual structural rule paired with
IB for TW+ is the rule IB ′.

Γ(Γ ′; (Γ ′′; Γ ′′′)) � B
IB ′

Γ((Γ ′′; Γ ′); Γ ′′′) � B

This rule, despite its importance in the study of relevant logics, is not valid on inhabited
list frames.

lemma 44 The rule IB ′ is not valid on list frames.

Proof: For the counterexample, let the framebe 〈ω,R〉on inhabited lists fromω, where
〈x1, . . . , xn〉Ry iff x1 = y. For this frame, x @ y iff x = y, so any set of points is an
extension, and this frame is reflexive. On this frame, set [[p]] = {1}, [[q]] = {2} and
[[r]] = {3}. Let’s check the validity of (q;p); r � p ◦ (q ◦ r) on this model. Here,

29We will leave it to the reader to find a counterexample, for which we suggest using John Slaney’s pro-
gram MaGIC http://users.cecs.anu.edu.au/~jks/magic.html.
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{{q;p}} = {x : 〈2, 1〉Rx} = {2}, and so, {{(q;p); r}} = {x : 〈2, 3〉Rx} = {2}, too. On the
other hand, [[q◦r]] = {x : 〈2, 3〉Rx} = {2}, and so, [[p◦(q◦r)]] = {x : 〈1, 2〉Rx} = {1},
and hence, {{(q;p); r}} 6⊆ [[p ◦ (q ◦ r)]], and (q;p); r � p ◦ (q ◦ r) is not valid on our
model. Since it is derivable, using IB ′, this rule is not valid on list frames.

This counterexample uses one natural way of forming inhabited list frames from a given
set P of points and suggests another natural example.

[first] Say that XRy iff X = 〈x1, . . . , xn〉 and x = x1. 〈x〉Rx clearly holds. It is
only slightly more work to see that the compositionality condition, ∃z(XRz and
Y(z)Ry) iff Y(X)Ry, holds.

[last] Say that XRy iff X = 〈x1, . . . , xn〉 and x = xn.

Each compositional multiset relation R (on inhabited multisets, or on all multisets) can
be lifted to a list relation (correspondingly, on inhabited lists, or all lists) too, where we
set XR ′x if and only if m(X)Rx, where m(X) is the multiset of members of the list
X defined in the obvious way.30 So, all of the other compositional multiset relations
we have considered, like sum , product ,membership, etc., transfer naturally to this
setting, albeit withoutmaking any use of the distinctivelynon-commutative nature of the
list structures being related. Another example of a functional compositional list relation
is given by any semigroup.

example 45 [lifting a semigroup] If 〈P, ∗〉 is a semigroup (if ∗ is an associative bi-
nary operation on P) then the inhabited-list relationR∗, given by setting 〈x〉R∗y iff x =
y and 〈x, x1, . . . , xn〉R∗y iff there is some zwhere 〈x, x1, . . . , xn〉R∗z andy = x∗z, is
both compositional and functional. If, in addition, P is a monoid with identity e, then
we can extend this to a list relation, setting 〈 〉R∗y iff y = e.

The logic that is sound and complete for list is not TW+, but rather the associative
Lambek calculus.31 Muchwork on associative Lambek calculus uses a different language
than the one we have been considering, often with the addition of another conditional,← and without t.32

In the transition frommultisets to lists, we noted thatmultisets take account ofmul-
tiplicity but not order, whereas lists mind them both. There is still more structure to
jettison. Lists are implicitly associative. For example, the list 〈a, b, c〉 is indifferent to
whether it was formed by concatenating 〈a〉with 〈b, c〉 or by concatenating 〈a, b〉with
〈c〉. The final collections wewill look at are ones that paymore attention to how the col-
lections were formed, namely trees. We will focus on rooted binary-branching trees.

Leaf-labelled, rooted, binary-branching trees, or just trees, for the remainder of the
section, are familiar objects. Given a setP of points, T(P) is the set of all inhabited, finite

30Here is the ‘obvious way’:m(〈 〉) = [ ],m(〈x, X〉) = [x] ∪m(X).
31 Lambek [28] introduced two calculuses, one associative and one non-associative, the latter of which

does not appear here.
32For example, see Restall [41, 307ff] orMoot [35, 66ff.]. SeeDošen [12] for an early discussion of frames

for Lambek calculus.
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trees where each node has exactly 0 or 2 successors and each of whose leaves is labelled
with an element ofP. The treeswill be oriented, so that theydistinguish the left successor
node from the right successor node. As an example, let P = {b, c}, then the following
three (distinct) trees are elements of T(P).

•

cb

•

bc

•

•

cb

c

Rather than draw trees in a two-dimensional array, we will adopt a more compact no-
tation, specifying the leaves of the tree by their labels. The example trees above would
be represented as follows: (b, c), (c, b), and (c, (b, c)).33 The following definition for-
malises this idea.

definition 46 [trees] Given a set of points P, the binary trees over P are defined as
follows.

• For all x ∈ P, x is a tree.
• If L and R are trees, (L, R) is a tree.

To maintain the notational similarity with the other collections, we will use (x) for the
singleton tree of x.

definition 47 [tree composition] If X is an inhabited tree and Y(x) is a tree with
a distinguished leaf labelled x, then Y(X) is the tree that results by replacing the leaf x
with the tree X.

As an example of tree composition, take the letX be (b, c) and let Y(b) be (c, b). Then
Y(X) is (c, (b, c)), which is the rightmost tree in the diagram above, obtained by replac-
ing the b node in the middle tree by the leftmost tree.

definition 48 [compositionality] A tree relationR on T(P)×P is said to be com-
positional if and only if for all trees X, Y ∈ T(P) and for all points z,

(∃y)(XRy and (Y(y))Rz) iff (Y(X))Rz.

A tree relation R is reflexive iff for all points x, we have

(x)Rx.

33The linear notation for trees has a natural connection to combinatory terms, and so to combinatory
logic. For an introduction to combinatory logic, see [6]. We would like to thank an anonymous referee for
pointing out this connection.
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definition 49 [tree frame and tree model] If P is an inhabited set and R is a
compositional tree relation on P, then 〈P, R〉 is said to be a tree frame. If 
 is a re-
lation between the set P and the set of atomic formulas, which is hereditary along R (so
if x 
 p and (x)Ry then y 
 p too), then 〈P, R,
〉 is said to be a list model, where

 evaluates all formulas in the language of R+ as follows:34

• x 
 A∧ B iff x 
 A and x 
 B.
• x 
 A∨ B iff x 
 A or x 
 B.
• x 
 A→ B iff for each y, zwhere (x, y)Rz, if y 
 A then z 
 B.
• x 
 A ◦ B iff for some y, zwhere (y, z)Rx, both y 
 A and z 
 B.

Tree frames are rather easy to come by. Here are two examples.

[groupoid] Let (G, ·) be a groupoid. To defineR, wewill use amapping τ from T(G)
toG as follows: τ((x)) = x and τ((X, Y)) = τ(X) · τ(Y). Define R as follows:
(x)Rx, for all x, and XRy iff τ(X) = y. It is straightforward to see that R is a
compositional.

[join semi-lattice] Let (S,+) be a join semi-lattice. Define x � y iff x + y = y.
Set (x)Rx and, adapting τ from the previous example, defineXRy iff τ(X) � y.
As in the previous example, it is straightforward to show that R is compositional.

We will now relate the tree frames to some more standard ternary frames. For this, we
will introduce some notation using square brackets, which should not be confused for
multisets as in earlier sections: Here, Y[x] is to be understood as the tree Y with a dis-
tinguished leaf x, while Y[x, y] is Y with two distinguished leaves, Y[(x, y)] is Y with
a distinguished pair of adjacent leaves (x, y), Y[(x, y), (u, v)] with two distinguished
pairs of adjacent nodes, and Y[x, (y, z)] is a distinguished triple of leaves, where one is
adjacent to a pair.

lemma 50 Each ternary frame 〈P, R,v, N〉 determines a reflexive tree frame 〈P, R ′〉 by
setting

• (x)Ry i� x v y,
• (x, y)R ′z i� Rxyz,
• If Y is a tree with two or more leaves, then Y[(x, y)]R ′z i� for some u, Y(u)R ′z
and (x, y)R ′u.

You will notice here that there is nothing in the tree frame that corresponds to the setN
of normal points, since our trees are essentially inhabited.

Proof: The proof proceedsmuch as in the proof of Lemma 12. We need to verify thatR ′
is coherent. There is nothing to check for clause 2.

34The clause for⊥ can be added. It is omitted here since the other propositional constant we have been
considering, t, is not included.
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Tocheck the final clause,weneed toprove that ifY[(x, y)] is the same tree asY ′[(x ′, y ′)],
then

(∃z)(Y(z)R ′u∧ (x, y)R ′z) iff (∃z ′)(Y ′(z ′)R ′u∧ (x ′, y ′)R ′z ′)).

If Y has 1 leaf, then x = y = x ′ = y ′, and the displayed biconditional is satisfied by
the first and second clauses of the definition. If Y has either 2 or 3 leaves, then x = x ′

and y = y ′, and the displayed biconditional is satisfied.
Let X[(x, y), (x ′, y ′)] be the tree Y with the two distinguished pairs of adjacent

leaves (x, y) and (x ′, y ′). AssumeXhasn > 3 leaves. Suppose (∃z)(X[z, (x ′, y ′)]R ′u∧
(x, y)R ′z). The treeX[z, (x ′, y ′)] hasn− 1 leaves, so by the inductive hypothesis, this
is equivalent to (∃z)(∃z ′)(X[z, z ′]R ′u ∧ (x, y)R ′z ∧ (x ′, y ′)R ′z ′). This, in turn,
is equivalent to (∃z ′)(X[(x, y), z ′]R ′u ∧ (x ′, y ′)R ′z ′) by the inductive hypothesis,
which establishes the desired biconditional.

The reflexivity conditionon R ′ is satisfied by the reflexivity of v and an argument
similar to that of Lemma 12 establishes the compositionality conditions.

So, every ternary frame generates a tree frame. A straightforward inductive argument
shows that the extensional structural rules are all sound for tree frames, as are the op-
erational rules, excluding the rules for t and for ε. This suffices for the adequacy of the
logic B+−ε, given by the connective rules and the extensional structural rules, but without
the intensional structural rules and IC, IB, and without εI or εE, with respect to tree
frames.

theorem 51 The logic B+−ε is sound and complete with respect to tree frames.

Tomodel the basic substructural logic B+, we need to addεI andεE to our repertoire of
rules, and to do this in a natural way corresponding to our treatments of lists, multisets
and sets, wewould need to allow an empty tree, ( ), such that the tree (( ), R) is identical
to the treeR. We leave explorationof this, and further developments in collection frames,
to future work.
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