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Abstract: In this paper, I defend contingentism, the natural idea that some things exist contin-

gently. Had my parents not met, I would not have existed. It is perhaps surprising that an

everyday idea like contingentism needs defence, but natural reasoning principles concerning

possibility and necessity on the one hand, and the existential and universal quantifiers on the

other, have led some to necessitism, the alternate view, that everything that exists, exists neces-

sarily. ¶ Almost all recent work on the semantics of possibility, necessity and the quantifiers—

and its metaphysics—makes essential use of possible worlds models. These models have proved

useful for analysing the formal and structural properties of modal logics, but it is less clear that

these models help fix the meaning of our modal vocabulary, given that we have no grasp of what

counts as a possible world independent of our grasp of what counts as possible. In this paper, I

develop an alternate inferentialist semantics for the modal and quantificational vocabulary, not

as a rival to possible worlds models, but as an explanation of how it is that the concepts we do

employ can be modelled using possible worlds. I then use this inferentialist semantics to clarify

the contingentist’s commitments, and offer answers to necessitist objections.

♢ ♦ ♢

We like to think that we understand basic logical concepts like the universal quanti-

fier (‘every’, ∀) and the existential quantifier (‘some’, ∃). Indeed, we teach our intro-

ductory logic students how to distinguish valid arguments from invalid arguments in

the language of first-order predicate logic. The same goes for the modal concepts of

possibility (♢) and necessity (□). While there isn’t universal agreement about the cor-

rect principles of reasoning governing possibility and necessity, the basic contours of

propositional modal logic have been well understood for many years.
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When we combine modal logic with the quantifiers, though, much less is settled. A

host of conceptual and metaphysical issues are raised when we attempt to understand

the interaction of quantification and possibility. For instance: suppose it is possible

that something has feature F (that is, that ♢∃xFx) does it follow that there is an ex-

isting thing such that it’s possible that it has feature F (∃x♢Fx)? On some accounts of

modal predicate logic [35, 75], the answer is yes, it does follow. However, it is not at all

obvious that the conclusion follows from the premise. After all, it is possible that, had

history gone differently, the dodos would have survived into the 21st Century. That is,

it is possible that (had we made better choices as a species), there would have been 21st

Century descendants of the dodos that were alive in the 17th Century. (Call such crit-

ters 21st Century dodos for short.) Had things gone differently, there would have been

21st Century dodos. Does it follow from this that there is something that is a possible

21st Century dodo? What on earth could such a thing be? To say that a merely possible

(but not actual) 21st Century dodo exists seems like a substantial metaphysical commit-

ment, and it is one that may be contested [41; 49, Chapter 8].

Similar issues arise when we consider the interaction between quantifiers and temporal

vocabulary: if at some future time there is something that has feature G, does it follow

that there is now something that will (at that later time) have feature G? A thicket of

conceptual and metaphysical issues arise immediately from this one inference, con-

necting the quantifiers and modal (and temporal) operators.

Since we do not yet have a clear understanding of quantified modal logic, perhaps

our grasp of its components—the quantifiers, and the modal operators—was less firm

than we might have first thought. Different views can be mapped in a number of differ-

ent ways. One disagreement is between the actualists and the possibilists [19, 38, 40]. In

recent years, the discussion of these issues has revealed a division between two camps,

the necessitists (for whom, of necessity, all objects there are exist necessarily) [35,36,75]

and the contingentists [38, 39] (for whom it is contingent what objects there happen to

be). A contingentist will say that my merely possible daughter could have existed but

does not actually exist, thereby rejecting the inference from ♢∃xFx to ∃x♢Fx,
1

while

the necessitist grants the inference, since my merely possible daughter, existing in those

circumstances where she is my daughter, must exist in this one too, since it by neces-

sitist lights, it necessary that everything that exists, exists necessarily.

♢ ♦ ♢

The most recent extended discussion of the logical and metaphysical issues arising

in the combination of quantification and modality is found in Timothy Williamson’s

Modal Logic as Metaphysics [75]. This discussion, like almost every treatment of modal

metaphysics since the 1960s, makes substantial use of possible worlds models for modal

predicate logic. Possible worlds models have provided a significant conceptual advance

in our understanding of modal logics, and they have fuelled an explosion of work in

philosophical logic in the last 70 years. We have learned a great deal about the logic of

modality, using these tools.

However, it is less clear that possible worlds models help us fix the meaning of modal

and quantificational vocabulary. Possible worlds models for modal logic feature a col-

lection of ‘points’ at which statements in our modal language are evaluated. It is, of

course, suggestive to think of these as “possible worlds”, but when it comes to the truth

1
Contingentists reject the inference from ♢∃xFx to∃x♢Fx if the ‘∃’ quantifier is taken to have existential

import, at least.
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conditions of formulas in our modal models, these points are a purely structural de-

vice. The models have their formal properties, independently of what we take points

to be. For the models to be in some way connected to the concepts that we employ in

the languages we use, these structures must in some way be connected to our practice.

However, it is by no means clear that we have any independent understanding of what

a possible world is, prior to our grasp of the notions of possibility and necessity. As

Arthur Prior famously put it:

... possible worlds, in the sense of possible states of affairs are not really individu-

als (just as numbers are not really individuals). To say that a state of affairs obtains

is just to say that something is the case; to say that something is a possible state of

affairs is just to say that something could be the case; and to say that something is

the case ‘in’ a possible state of affairs is just to say that the thing in question would

necessarily be the case if that state of affairs obtained, i.e. if something else were

the case ... We understand ‘truth in states of affairs’ because we understand ‘nec-

essarily’; not vice versa ... To use a distinction I once heard Quine insisting upon,

what we have in [a translation between the modal logic s5 and monadic first-order

predicate logic] may be a model for modal logic, but it is not an interpretation of the

modal words. [50, p. 54, emphasis his]

Any insight gained from employing models for modal logic is partial, since if we wish

to use possible worlds models as a representation of how things really are (and can be)

modally speaking, we must rely either on an identification between the indices of a

possible world model and some antecedently given class of possible worlds (however

these are to be understood) — and it is not at all obvious that this can be achieved in any

theoretically or practically satisfying fashion — or we must give some other account of

how and why it is that these models accurately represent modal truth. Merely stating

that a given model represents modal reality does not make it so, and neither does it ex-

plain how these models connect to the concepts we actually employ. If we want to use

possible worlds models in our modal explanations, we must do the work to explain the

relationship between these models and our modal concepts, in some way or another.

Otherwise, “possible worlds” as the indices of modal models (and the possibilia that in-

habit the domains of such worlds) are a theoretical device, whose effectiveness relies

on a promissory note, which might be called in at any time.

Of course, the flexibility of modal models has benefits as well as these theoret-

ical costs. What can be interpreted as possible worlds can also be understood as mo-

ments of time in models for the temporal logic of reasoning about the past and the fu-

ture [29, 62], or as scenarios in models of epistemic logic and the information that is

open to us [4,23,56]. As we have seen, issues of temporal and epistemic reasoning raise

parallel questions to those raised in the interaction of modality and the quantifiers. In

what follows, it will be useful to keep the parallels beyond the traditional concepts of

possibility and necessity in mind, though the notions of metaphysical modality will be

central.
2

In this paper, we will strike out on a less-frequented track for exploring the land-

scape of modality and quantification. I will harness the resources from proof theory to

address these questions, a framework that does not make direct use of possible worlds

2
To specific concerning the scope of my discussion in this paper: I do not have the space to consider

questions concerning the identity predicate, or matters of higher order logic. The discussion here will be

limited to first order quantified modal logic without identity, though this is not an essential limitation of

my approach. Higher order logic and identity can be treated in a similar way to the modal predicate logic

discussed here, though to do in sufficient depth so would make what is an already long paper unmanageable.
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models.
3

This different perspective will give us fresh insight to interpret our modal

and quantificational vocabulary, and a new way to assess what is at stake concerning

different principles governing their interaction. Along the way, we might just learn

something more about possible worlds and the objects that reside therein.

♢ ♦ ♢

So, in the next section (Section 1) I rehearse the treatment of the Barcan formula in

models for quantified modal logic, for contingentists and for necessitists. In Section 2,

I introduce a hypersequent proof theory for the modal logic s5, and explain how it can

be used as a formal account of the meaning for modal vocabulary, which does not start

with a commitment to an ontology of possible worlds, but that can be used to eluci-

date patterns in our use of modal vocabulary. In Section 3, I introduce the treatment of

quantifiers in this hypersequent calculus, and the options for contingentists and ne-

cessitists, showing that there is a natural way for the contingentists to interpret the

quantifiers in a manner consonant with their commitments. In Section 4, we reexam-

ine variable domain models for contingentist quantified modal logic, and we see that

the proof theorist’s view of models provides an alternate explanation for why those

models accurately give an account of the behaviour of modal concepts without com-

mitting the contingentist to a seemingly problematic ontology of merely possible ob-

jects. However, the proof theory of quantified modal logic raises its own questions,

and in Section 5 I will explore the resources in the proof theory itself to define wider

quantifiers—quantifiers that at least seem to put pressure on contingentist commit-

ments. However, making use of the concept of ampliation, from medieval discussions

of modal reasoning, we will see how the wider quantifiers so-defined are intelligible

on a properly contingentist basis, without making any concessions to necessitism.

In a short final section, I conclude, taking stock of what we have seen, and sketch-

ing avenues for further exploration. After the conclusion, there is an extended technical

appendix, where I collect together the definitions, and state and prove the soundness

and completeness results linking the proof theory and the model theory of the modal

predicate logic under discussion, for those readers to whom those technical details

matter.

1 modal model theory and barcan formulas

We have seen that there is little agreement around the interaction between the quan-

tifiers and the modal operators. Two contentious principles have come to be known as

Barcan formulas, after Ruth Barcan Marcus [5–7], who explicitly introduced discussion

of these principles in the 20th Century. These can be stated using the universal quan-

tifier an necessity, or in a dual form, with possibility and the existential quantifier.

∀x□Fx → □∀xFx ♢∃xFx → ∃x♢Fx

The universal/necessity form says that if everything is necessarily F, then it is necessary

that everything is F. By necessitist lights, this rings true. If everything that is exists

3
Here is a parallel to keep in mind: the proof theory of first-order logic (whether in the form of natural

deduction [48], sequent calculus [28], tableaux [67], etc.) does not make use of a domain of quantification

or the rest of the apparatus of Tarski’s semantics. The logic that results is equivalent to that given by Tarski’s

model theory (that is the point of the soundness and completeness theorems after all), but if you learn first-

order predicate logic by way of learning natural deduction, the domain of quantification is nowhere in your

instruction manual.
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necessarily, then if everything is necessarily F, then no matter how things go, every-

thing would be F, because (even if things had gone differently) if there were some thing

that is not F, then (as a matter of fact) that thing—which in that other circumstance

fails to be F—is something that is not necessarily F.

The contingentist need not be convinced by this reasoning, for she may respond

that just because it is possible that something fails to be F, any such thing that fails to

be F had things gone that way, may not actually exist. Perhaps everything (that exists)

is necessarily F, but this doesn’t preclude the possibility other things existing which fail

to be F. The Barcan formulas provide one locus of disagreement between contingen-

tists and necessitists, and it sits right at the interaction between quantifiers and modal

operators.

If we are to use models to try to clarify this disagreement, we might reason like this:

A possible world counterexample to the Barcan formula ♢∃xFx → ∃x♢Fx will have

some world w at which ♢∃xFx holds and at which ∃x♢Fx fails. If ♢∃xFx holds at w,

then there is some (accessible
4
) world v at which ∃xFx holds. In these models, this

means that there is some value d (taken from the domain of the model) where the open

formula Fx holds, at world v, when the variable x is assigned the value d.

On the other hand, for∃x♢Fx to fail at w, we need there to be no objects available to

assign x that would make ♢Fx at w. Otherwise, the existentially quantified statement

will turn out to be true. Now, since Fx holds at v when x is assigned d, and from the

point of view of w, v counts as possible, it looks very much like the object d we saw

before would be available to do the job of witnessing the truth of ∃x♢Fx at w.

To block this move, the natural response of the contingentist is to say that the ob-

ject d might not be available for substitution at w, since it need not exist at w. For a

quantified statement ∃xGx to hold at w we need some object e at w where Gx holds at

w when x is assigned e. The objects available at w to interpret the quantifiers (call them

the domain at w: Dw) need not be the same as the objects available at other worlds,

such as v. If the object d, which witnesses ∃xFx at v is not available at Dw, we cannot

move from ♢∃xFx, which says that there is some world featuring an object that is an

F, to ∃x♢Fx, which commits us to the presence here of some object that happens to be

an F at some world. If the objects that are present vary from world to world, the order

you select world and object matters, so the order of the quantifier and modal operator

matters, too. If the same objects are available for choice at each world, the choices are

independent of each other, and the Barcan formulas hold.

So much is quite standard when it comes to the behaviour of variable domain mod-

els for modal logics [16; 27; 31, part iii; 70]. There are many more details and complica-

tions, but this is enough to introduce the key issues. Variable domain models are the

well-understood way to give an account of first-order predicate modal logic in which

the Barcan formulas can fail, and at which, what exists is a contingent matter.

♢ ♦ ♢

I will focus on three distinct issues raised by these varying domain models, follow-

ing Linsky and Zalta’s influential article “In Defense of the Simplest Quantified Modal

Logic” [35].

First, if we are to take these models at face value, we are committed, in some sense, to

the different domains of objects existing at each world. In any model that is a coun-

4
If the modal logic is weaker than s5, or if it is a multi-modal logic, we may need to keep track of an acces-

sibility relation, but in what follows, this is not important, so I will drop consideration of modal accessibility

from now on.
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terexample to a Barcan formula, we have objects which exist at other worlds and do not

at the actual world. So, if we interpret these models in a naı̈ve fashion, taking the do-

main at a world to literally consist of the objects at that world (and not merely be theo-

retical devices to represent those objects), then the contingentist’s models seem to con-

tain objects that do not exist, by their own lights. This seems to strain credulity, with-

out an account of how non-existent objects can play an explanatory theoretical role.

On the other hand, if the contingentist takes their models of other possible worlds and

their denizens to be models, and not to be taken as a literal description of how things

are, then the one who makes use of such models owes us an explanation of work these

models manage to do, and what we can learn from them. How is it that models with

this structure can, in any way, represent features of the modal and quantificational

concepts we employ?

Second, the logic of these possible worlds models with varying domains, almost invari-

ably, involves making a revision to first-order predicate logic, and a rejection of some

important inference principles. Suppose a term t has a value that is present at some

worlds, but not the world w. The sentence “t exists” (whether this is represented in our

language as ∃x x = t or in some other way) should turn out to be false at w on contin-

gentist lights. However, the universal generalisation “everything exists” (whether rep-

resented as ∀y∃x x = y, or in some other way) is true, since every thing (the denizens

of the domain at w) exists (at w). So, we have a counterexample to the inference from

∀x A(x) to A(t), which is traditionally understood as the fundamental rule of univer-

sal quantifier elimination.

Similarly the inference from A(t) to ∃x A(x) has a counterexample, since at w, t

does not exist, but it does not follow that there is something (at w) that does not exist.

We have wrenched the quantifiers away from their standard classical interpretation,

and this, at least according to Linsky and Zalta, comes at a significant theoretical cost.

Third, once we have varying domain possible worlds models, it is straightforward to

interpret predicates in such a way that their extension (at a world) goes beyond the

domain of objects that exist at that world. After all, the open sentence “x does not exist”

is true (at w) of some the denizens of worlds other than w. This violates what has come

to be known as serious actualism, the thesis that it is not possible for an object to have

a property without also existing [43]. For the serious actualist, a nonexistent person is

not a person that also has the property of nonexistence. It does not have the property

of being a person, it does not have the property of nonexistence. It does not exist, and

hence, has no properties.) Many contingentists are also serious actualists [1, 9, 38, 41],

and more work must be done to show either that the use of varying domain models

does not violate serious actualist commitments, or that those commitments may be

jettisoned.

Linsky and Zalta presented these three issues as considerations against the use of vary-

ing domain modal logics and in favour of necessitism and the adoption of the Bar-

can formula. To these three objections, Williamson has recently added another con-

sideration, in by way of his analysis of logical truth in terms of his notion of meta-

physical universality. A formula in the language of modal predicate logic is metaphysi-

cally universal when its universal generalisation
5

is true on its intended interpretation.

Fa → Fa is metaphysically universal, because under the intended interpretation,

∀X∀x(Xx → Xx) is true.

5
In a higher order logic, for all non-logical constants are to be generalised.
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So, ∃y a = y is metaphysically universal, because ∀x∃y x = y is true. Williamson

then argues that an intended model structure for modal predicate logic should validate

all the metaphysically universal sentences, since on his account, logical truths should

be understood as those that are metaphysically universal [75, §3.3; 76]. Williamson

then argues that intended model structures validate the Barcan formulas. Since∃y x =
y is metaphysically universal, it holds at all worlds in all intended model structures. So,

take any d in the domain of w (Dw), and assign x the value d. Since ∃y x = y holds at

world v too (by metaphysical universality), there must be some e in Dv where when y

is assigned the value e, x = y holds at v. This can happen (given a standard semantics

for identity) only when e is d. The d chosen from Dw was arbitrary, so we have shown

that Dw ⊆ Dv, for any worlds w and v whatsoever, i.e. the domains are equal. This

suffices for the Barcan formulas to hold in these models, since varying domains were

required to generate a counterexample. So, the contingentist must either reject the

criterion of metaphysical universality, or avoid one or other of the platitudes for the

interpretation of the logical constants used in this argument.

None of these four considerations are presented as a decisive argument against the

rejection of the Barcan formulas or against contingentism — there are a number of dif-

ferent moves the contingentist can make, both concerning metaphysical universality

and the details of the semantics for the quantifiers and identity — but it does pose a

significant explanatory challenge to the contingentist. To respond to this challenge,

and other challenges concerning the status of modal model theory, the contingentist

needs resources to understand modal semantics better. Forms of semantics beyond

model theory will help, so it is time to turn to proof theory, to see if insights from this

domain can be used to properly interpret our modal vocabulary, and thereby to answer

some of the questions raised about modal models with varying domains.

2 sequents and hypersequents

In a series of papers [47, 51–57, 59, 60], I have explored an approach to the proof the-

ory of classical propositional logic and its extensions to modal logic, and first and sec-

ond order predicate logic, in which the proofs are not merely a technical device for de-

marcating the logically valid formulas, but rather, are understood as articulating the

rules for the use of the logical vocabulary. The proof rules for ∧, ∨, →, ¬,∀, ∃, □ and

♢ are understood as governing assertions and denials
6

using those concepts—that is,

they provide a semantics. In this paper, I will use these resources elaborate the scope

for a rigorous, coherent, defensible, and hopefully illuminating semantic framework in

which the Barcan formulas, and the push and pull between contingentism and neces-

sitism may be evaluated.

The central idea in this account is that of a sequent Γ � ∆ consisting of two finite

collections of sentences Γ and ∆ from our formal language. A sequent can be seen as

constraining the positions one could take in a discourse or in a reasoning situation—to

derive the sequent Γ � ∆ is to show that position [Γ : ∆] (in which each sentence in Γ

6
The proof rules also govern inferences involving those concepts, as well as assertion and denial. I do

not have time to get into the connection between multiple-premise and multiple-conclusion sequents and

inferences from a context in which some things are ruled in and some things are ruled out, but the account I

have given elsewhere [59,60], concerning sequent derivations with a singled-out item in focus, can be readily

applied in this setting, but space forbids developing that connection in this paper, since adding focus to the

hypersequent derivations presented below would be to add a technical nicety that is completely orthogonal

to the issues closest to hand. Suffice it to say that those niceties could be added with no complications other

than having to work through what amount to routine details.
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is asserted an each sentence in ∆ is denied) is out of bounds. The sequent Γ � ∆ said to

be valid if the corresponding position [Γ : ∆] is out of bounds.

One way to understand the bounds is to say that the sequent Γ � ∆ is valid and

only if it is impossible for each sentence in Γ to be true and each sentence in ∆ to be

false. That is true enough, but this explanation uses concepts we wish to explain—in

particular, a notion of possibility, or logical satisfiability, at its heart. Rather, we build

up the account of the bounds piece-by-piece, starting from the simplest cases.
7

The

most simple case of a valid sequent is an Identity sequent like this,

A � A

which says that a position [A : A] in which the one and the same claim (here, A) is

both asserted and denied, is out of bounds. Identity sequents are at the core of the

notion of a position being out of bounds. At its heart, a position is out of bounds when

it is self-undermining. When we attempt to give with one hand (by asserting A) and take

with the other (by denying it). This condition depends only on the identity of the item

asserted and denied, and not on its structure or content. The same holds for some

other constraints on the bounds. These are the other so-called structural rules. First,

weakening:

Γ � ∆
KL

Γ,A � ∆

Γ � ∆
KR

Γ � A, ∆

according to which if a position [Γ : ∆] is out of bounds, it remains out of bounds when

either more assertions or denials are added. The rule of contraction:

Γ,A, A � ∆
WL

Γ,A � ∆

Γ � A, A,∆
WR

Γ � A, ∆

makes explicit that repetitions of assertions or denials have no special extra force.
8

The

most significant structural rule is the Cut rule:

Γ � A, ∆ Γ, A � ∆
Cut

Γ � ∆

according to which if a position [Γ : ∆] is in bounds (if it isn’t out of bounds: that is,

there is no clash in asserting each member of Γ and denying each member of ∆) then if

there were a clash involved in denying A (if Γ � A, ∆ is valid), that is, if A is undeniable

(relative to the background position [Γ : ∆]) then there is no clash involved in asserting

A (again, given [Γ : ∆]). In other words, if A is undeniable given [Γ : ∆] then asserting

A is simply making explicit what is already implicit in [Γ : ∆]. Adding the assertion of

A to is no more out of bounds than [Γ : ∆] itself.
9

7
This recursive account of the bounds has the same kind of structure as the recursive explication of truth

in a model from the simplest cases in model theory.

8
If the ‘collections’ of assertions and denials were sets and not multisets or lists, this rule would be redun-

dant. It is good to make it explicit, because in most proof theory it is simpler to assume that the premises

(left-hand side) and conclusions (right-hand side) of sequents form multisets and not sets.

9
The form of the Cut rule I have given is the so-called additive cut rule, in which the side formulas Γ and

∆ are shared between both premises of the rule. A multiplicative Cut rule

Γ � A, ∆ Γ ′, A � ∆ ′

mCut

Γ, Γ ′ � ∆, ∆ ′

is possible, where we allow for a Cut on sequents with distinct side-formulas. The multiplicative Cut rule is
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To go beyond these structural features of the bounds to the distinct behaviour of

the connectives and quantifiers, we need to appeal to rules for those connectives and

quantifiers. I will examine the behaviour of classical propositional connectives, and

then the modal operators, and then in the next, the quantifiers.

The classical connectives can be introduced uniformly with a series of invertible

rules, which can be applied from top to bottom or from bottom to top.

Γ � A, ∆
======== ¬Df

Γ,¬A � ∆

Γ,A, B � ∆
========== ∧Df

Γ,A ∧ B � ∆

Γ � A, B,∆
========== ∨Df

Γ � A ∨ B, ∆

Γ,A � B, ∆
=========== ∨Df

Γ � A → B, ∆

These rules define the bounds governing judgements using the connectives in terms of

the bounds governing judgements involving their constituents. So, we can use these as

rules to interpret assertions or denials of our involving the defined connective in terms

of assertions or denials of their constituents. The classical negation rules, governed by

¬Df show that the asserting ¬A has the same force as a denial of A. For conjunction,

an assertion of A ∧ B has the same force as the assertion of A and the assertion of

B. The denial of A ∨ B has the same force as the denial of A and denial of B. To deny

A → B has the same force as asserting A and denying B.

These count as ‘definitions’ because the rules suffice to fix the behaviour of the con-

nectives involved, insofar as two concepts introduced with rules of the same shape (say,

for example, ∨1 and ∨2, both disjunctions), then there is no open position where one

could assert a 1-disjunction and deny a 2-disjunction, or vice versa.

A ∨1 B � A ∨1 B
∨1Df

A ∨1 B � A, B
∨2Df

A ∨1 B � A ∨2 B

A ∨2 B � A ∨2 B
∨2Df

A ∨2 B � A, B
∨1Df

A ∨2 B � A ∨1 B

The same goes for the other connectives, too. These defining rules govern the behaviour

of the propositional connectives by uniquely characterising them—the rules charac-

terise the concepts, rather than merely describing some constraints they satisfy.
10

A

longer argument [57] shows that a language governed by a consequence relation sat-

isfying our rules of identity, weakening, contraction and Cut can be conservatively ex-

tended by the propositional connectives given by these defining rules. That argument

uses Gentzen’s cut elimination argument [28], together with the fact that Gentzen’s left

and right rules for each connective can be recovered from each defining rule, like this.

justified by way of the weakening rule and additive Cut.

Γ � A, ∆
K

Γ, Γ ′ � A, ∆, ∆ ′

Γ ′, A � ∆ ′

K

Γ, Γ ′, A � ∆, ∆ ′

Cut

Γ, Γ ′ � ∆, ∆ ′

We can conversely, use contraction and multiplicative Cut to retrieve the original additive Cut in the same

way. In the rest of this paper, I will switch between additive and multiplicative Cut rules as needed without

further mention.

10
I have in mind here the distinction between these defining rules and the axioms for a modal operator,

such as an s5 necessity. These axioms describe constraints satisfied by the □ in question without uniquely

characterising it. We can have two non-equivalent necessity operators both satisfying the s5 axioms.
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The derivation below

Id

A ∨ B � A ∨ B
∨Df

A ∨ B � A, B
K

Γ,A ∨ B � A, B,∆

Γ,A � ∆
K

Γ,A � B, ∆
Cut

Γ,A ∨ B � B, ∆

Γ, B � ∆
K

Γ,A ∨ B, B � ∆
Cut

Γ,A ∨ B � ∆

Shows how the traditional disjunction left rule:

Γ,A � ∆ Γ, B � ∆
∨L

Γ,A ∨ B � ∆

can be justified in terms of Id, ∨Df, K and Cut, and as with unique definability, this

conservative extension argument works for each connective in the vocabulary [57]. We

can justify the usual Gentzen rules for negation conjunction and the conditional

Γ,A � ∆
¬R

Γ � ¬A, ∆

Γ � A, ∆ Γ � B, ∆
∧R

Γ � A ∧ B, ∆

Γ � A, ∆ Γ, B � ∆ →L

Γ,A → B � ∆

in terms of the defining rules, given Id and Cut. The rules ∨L, ∧R and →L differ from

the defining rules for the connectives. They are not invertible—and neither should we

expect them to be. The rule ∨L tells us some of what is involved in asserting the dis-

junction A ∨ B. We should not expect this to be equivalent to any combination of

assertions and denials involving A and B. After all, there are some things we can do

with a disjunction that we could not do without it. Having a single item we can deny

whose denial has the same significance as the denial of A and the denial of B gives us

something new. Its assertion allows us to say something we may not have been able to

say without that concept. The defining rule ∨Df defines disjunction in the sense that

it uniquely characterises the bounds for assertions and denials of disjunctions.

In this way, we have a semantics for a vocabulary involving the classical propositional

connectives, in that we have defined rules for the coherence of positions involving

assertions and denials in that vocabulary. The resulting relation of coherence is ex-

actly the same as that delivered by truth tables for propositional logic, but we have not

started with the notion of truth. Gentzen’s sequent calculus, which we have defined in

a roundabout way, is sound and complete for classical propositional logic. A sequent

Γ � ∆ is derivable if and only if there is no evaluation which assigns each member of

Γ true and each member of ∆ false.

This is not to say that the notion of truth is altogether absent from this style of proof

theory. If we move from the referee’s position, where we stand apart and judge posi-

tions like Γ � ∆ for coherence, to the player’s standpoint, where we make those asser-

tions and denials, we see that someone who asserts Γ and denies ∆ is (in some sense
11

)

taking each member in Γ to be true and each member of ∆ to be false. Further, if we

have taken up the position [Γ : ∆] and if Γ � A, ∆ is valid, then there is a sense in which

A, too, is taken to be true in [Γ : ∆], since it is undeniable—the only coherent option

that takes a stand on it is to assert it, and that option is coherent if the position [Γ : ∆]

11
Since we can ‘try on’ assertions and denials under suppositions, or when taking someone else’s position

as a starting point in our reasoning, this ‘taking to be true’ need not involve belief or a commitment any wider

than the scope of the dialogue or that supposition.
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is coherent.
12

This does not go far enough to ground a full-blooded and robust notion

of truth, but we can go so far as to draw the connection between truth in a position and

truth in a model, and that connection becomes very tight when we move from finite

positions to refined positions for which we fill Γ and ∆ out to take a stand on more sen-

tences of the language [54,57].
13

None of this moves us beyond truth in a model to truth

per se, because nothing tells us which of these idealised positions counts as the truth.

However, we can say a little more. To take the position [Γ : ∆]—to assert each member

of Γ and to deny each member of ∆ is to take each member of Γ to be true and each

member of ∆ to be false, and to take the whole truth (in that language) to be given by

one of the ideal positions extending [Γ : ∆]. What we have taken to be true in asserting

Γ and denying ∆ is whatever is true in each of those ideal positions extending Γ � ∆.

Which of those positions is the truth? To single one out is to move beyond [Γ : ∆] to a

stronger position, adding more assertions or denials, and choosing between some of

the ideal positions extending [Γ : ∆].
This understanding of proof theory and its use in semantics is fit for the norma-

tive pragmatist [13, 14], who takes a semantic theory to be formulated in rules for use.

The account is pragmatist in the sense that the theory governs acts—in this case, acts

of assertion and denial (or of accepting and rejecting)—and it is normative in that the

theory gives rules or norms governing those acts—in this case, the norms governing po-

sitions, combinations of assertions and denials, and the outer boundary of the space

of such positions. There is more to say concerning the norms governing assertion (and

denial), and the role of such norms in semantics, but this is enough to go on with for

the moment.
14

It is time to consider the modal operators.

♢ ♦ ♢

Let’s consider modal reasoning, and the norms governing the modal operators □ and

♢. Consider this simple stretch of deductive reasoning featuring the modal operator

♢, for possibility:

Suppose it’s possible that either A or B (i.e., suppose ♢(A ∨ B)). So, in

some possibility, we have either A or B (i.e., there we have A ∨ B). So,

there are two cases, A, and B. In the first case, since here we have A, it

follows that where we started, it is possible that A (i.e., ♢A). In the other

case, since here we have B, it follows that where we started, it’s possible

that B (i.e., ♢B). In either case, therefore, we have that it’s either possible

that A or it’s possible that B (that is, ♢A ∨ ♢B). So, we have shown that if

it is possible that either A or B, then either A is possible or B is possible

(i.e. ♢(A ∨ B) → (♢A ∨ ♢B)).

That was a small piece of modal reasoning, deriving the complex claim ♢(A ∨ B) →
(♢A∨♢B). We moved from the supposition ♢(A∨B) to reason with the constituent

claim A∨B—which we granted, for the sake of the argument, but not in the same way

12
This reasoning undergirds the validity of the Cut rule, and it has its critics [21,63,64]. One way to quickly

defend it is to acknowledge that we are limiting our attention to the kinds of issues that are expressed in

polar questions. When we inquire as to whether or not A holds (for well-posed issues A), to rule out one

‘yes’ or ‘no’ option is to leave the other [61].

13
See the appendix of this paper for some of the details on how to fully refine a position, and the connec-

tion between fully refined positions and models.

14
For example, I have said nothing concerning norms governing correct assertion, and the large literature

discussing these norms [12, 17, 33, 37, 72, 73]. The fact that I have not discussed these does not mean that I

take them to be unimportant or unrelated to the bounds of assertion and denial discussed here.

Greg Restall, gr69@st-andrews.ac.uk january 20, 2025 Version 0.991

http://consequently.org/writing/mlce-ge2/
mailto:gr69@st-andrews.ac.uk


http://consequently.org/writing/mlce-ge2/ 12

that we supposed ♢(A ∨ B), in order to prove the conditional. We asserted A ∨ B ‘in

some possibility’. With that A ∨ B granted, we split into two different cases. In the

A case, back in the home context, we concluded ♢A. In the B case, back in the home

context, we concluded ♢B. So in either case, we have ♢A ∨ ♢B, and discharging our

original supposition that ♢(A∨B) we derived the conditional ♢(A∨B) → (♢A∨♢B).

In modal reasoning, we typically transform a modalised statement □A or ♢A into its

constituent claim A—with some given shift in context. Given that the word ‘context’

is used in many different ways in semantics, I will reserve the ‘zone’ for the different

discourse regions, introduced by the modal transitions characteristic of this sort of

reasoning. In stretch of reasoning given above, the supposition of ♢(A ∨ B), and the

conclusion of ♢A∨♢B occurs in one zone, while the case-split into the A case and the

B case occurs in another. The transition from the first zone to the second occurs where

we say “so, in some possibility, we have either A or B.”

The proof theory of modal logic can take these zone shifts very seriously, using hy-

persequents allowing for formulas to be asserted and denied not just in a single zone,

but in many. A simple hypersequent (or simply, a hypersequent)
15

has the form:

Γ1 � ∆1 | · · · | Γn � ∆n

A hypersequent is a nonempty multiset of sequents. Where a single sequent Γ � ∆

represents a bound on combinations of assertions and denials taken together, a hy-

persequent represents a bound on combinations of assertions and denials distributed

across a number of different zones in a discourse. While there is a clash between as-

serting A and denying A in the one zone, there need be no clash between asserting A

in one zone and denying A in another. It might be altogether coherent to grant that A

is the case, but to concede to an alternative scenario a circumstance in which A fails,

so we should expect a position, split into two zones, [A : | : A] may well be coherent.

A key insight in the hypersequent proof theory of modal logics is that cross-zone

connections are facilitated by the modal operators. It is out of bounds to grant, in one

zone, that A is necessary, and to deny A in another. Similarly, it is out of bounds to

grant A in one zone, and to deny that A is possible in another. That is, these two hyper-

sequents are valid:

□A � | � A A � | � ♢A

In the kind of modal reasoning we will focus on, concerning bare counterfactual pos-

sibility and necessity, we keep track only of the different zones, and not any notion of

‘relative possibility’ or ‘nearness’. For the hypersequent proof theory for s5 we need

only keep track of a number of different zones, not anything more than that.

In referring to hypersequents we have some new syntax. We will useH as a variable

ranging over for hypersequents,
16

and Γ � ∆ | H is the hypersequent H with the

sequent Γ � ∆ added, analogously to Γ,A being the multiset Γ with the formula A

added. Before looking at how the structural rules are to be understood in this setting,

we start with the defining rules for necessity and possibility:

Γ � ∆ | � A | H
=============== □Df

Γ � □A, ∆ | H

Γ � ∆ | A � | H
============== ♢Df

Γ,♢A � ∆ | H
15

I say ‘simple’ hypersequent in contrast to tree hypersequents, that have a more complex modal struc-

ture [2, 20, 46, 47], fit for a wider range of modal logics.

16
The formal definition (see the Appendix) allows forH to be empty, in the statement of rules like this,

while, hypersequents themselves must contain at least one sequent.
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The idea is straightforward: to deny □A in a zone of a discourse is out of bounds (given

the other commitments in Γ � ∆ andH) iff denying A in some zone is out of bounds

(relative to those commitments). That is, □A is undeniable in a given zone iff A is

undeniable in any zone. To assert ♢A in a zone of a discourse is coherent iff asserting

A in some zone is coherent. Possibility and necessity trade on this shift of zones.

The hypersequent structure in the proof theory plays a role in fixing the interpretation

of the modal operators. Possibility and necessity are not logical constants in the same

sense as the classical propositional connectives. They are not constant—not only in the

sense that there are many different modal logics, but in the stronger sense that even if

we fix on one logic as the correct account of necessity, one can have a multi-modal logic

in which there is more than one ‘necessity’ operator satisfying that logic. The axioms

and theorems governing necessity are not enough to fix its meaning. In a multi-modal

logic (say, given by a model with two different accessibility relations governing each

necessity operator). Nonetheless, these defining rules define the connectives, relative

to the hypersequent structure. If we agree to interpret □ using □Df, then you and I

agree on the interpretation of □, even though we could have very different views on

what formulas of the form □A are true.
17

Agreement on modal operators trades on

coordination on the zone shifts used in our reasoning with them.

The structural rules for hypersequents can be motivated in the same sort of way as in

the nonmodal case, except that we keep track of zones. Identity is as before

A � A

since an assertion of A clashes with a denial of A—in the same zone. Of course, there

need be no clash between an assertion of A in one zone and a denial of A in another.

Weakening comes in more forms, allowing for internal and external weakening.

Γ � ∆ | H
KL

Γ,A � ∆ | H

Γ � ∆ | H
KR

Γ � A, ∆ | H

H
KE

Γ � ∆ | H

For KE, if a position is out of bounds, then adding extra zones (in which other things

are asserted and denied) is not going to help. The contraction rules can be understood

both internally and externally too:

Γ,A, A � ∆ | H
WL

Γ,A � ∆ | H

Γ � A, A, ∆ | H
WR

Γ � A, ∆ | H

Γ � ∆ | Γ � ∆ | H
WE

Γ � ∆ | H

If it is incoherent to assert Γ and deny ∆ in two different zones of the discourse, it’s

incoherent to assert Γ and deny ∆ in one. For asserting Γ and denying ∆ in two different

zones of the discourse commits you to nothing more than you are committed to in

asserting Γ and denying ∆ in one, if there is nothing different in the two zones—and

there isn’t, since we have individuated those zones purely in terms of what is asserted

and denied in them.
18

17
This is completely analogous to agreement about ∨, given that we agree to guide our use of ∨ by way

of the defining rule ∨Df. There, agreement depends only upon the comma in the sequent structure. For □
and ♢, we need to agree on more—on the hypersequent separator “|”. Once you and I agree on what counts

as an alternative zone to what, in a given a discourse, we can fix on the interpretation of □ and ♢, even if we

disagree on what statements involving □ and ♢ are true.

18
Consider the analogy: If Fa, Fb, Γ � ∆ is out of bounds, where Γ and ∆ say nothing more about a or

b, then so is Fa, Γ � ∆ since nothing in the position Fa, Fb, Γ � ∆ says that a and b must be different
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The additive Cut rule is a straightforward generalisation of the rule in the sequent

context:

Γ � A, ∆ | H Γ,A � ∆ | H
aCut

Γ � ∆ | H
according to which if A is undeniable in first zone in the coherent context Γ � ∆ | H,

then adding it as an assertion in that zone is coherent. The multiplicative variant of

Cut, in which contexts are merged

Γ � A, ∆ | H Γ ′, A � ∆ ′ | H ′

mCut

Γ, Γ ′ � ∆, ∆ ′ | H | H ′

is equivalent to the additive variant in the presence of contraction and weakening:

Γ � A, ∆ | H Γ,A � ∆ | H
mCut

Γ, Γ � ∆, ∆ | H | H
WE

Γ, Γ � ∆, ∆ | H
WL/WR

Γ � ∆ | H

Γ,� A, ∆ | H
KL/KR

Γ, Γ ′ � A, ∆,∆ ′ | H
KE

Γ, Γ ′ � A, ∆,∆ ′ | H | H ′

Γ ′, A � ∆ ′ | H ′

KL/KR

Γ, Γ ′, A � ∆, ∆ ′ | H ′

KE

Γ, Γ ′, A � ∆, ∆ ′ | H | H ′

aCut

Γ, Γ ′ � ∆, ∆ ′ | H | H ′

So, as before, we have a suite of structural rules. We extend them with the modal rules,

and the other connective rules, generalising the account to hypersequents rather than

sequents, but keeping the rules as before. So here, for example, are the rules for con-

junction, disjunction and negation:

Γ,A, B � ∆ | H
============== ∧Df

Γ,A ∧ B � ∆ | H

Γ � A, B,∆ | H
============== ∨Df

Γ � A ∨ B, ∆ | H

Γ,A � ∆ | H
============ ¬Df

Γ � ¬A, ∆ | H

As before, these rules are uniquely defining and conservatively extending, once we

have moved to the setting of hypersequent positions. As before, two connectives intro-

duced with rules of the same shape are interderivable, and hence, indistinguishable as

far as the bounds of positions are concerned. Similarly, rules of the form of Gentzen’s

left and right rules for each connective may be defined in terms of our defining rules,

identity and Cut, and a Cut elimination argument proved for he resulting system. The

result is a conservative extension fact, showing that any position ruled out of bounds

may be done so on the basis of the concepts occurring in that position. Adding new

concepts governed by defining rules does not interfere with the bounds for positions in

the prior vocabulary. Concepts given by defining rules are free additions to our vocabu-

lary in the sense that they are uniquely defined (relative to the hypersequent structure)

and they do not interfere with any prior positions.

things. So if Fa, Fb, Γ � ∆ is out of bounds, so is Fa, Γ � ∆. In the same way, in taking up the position

Γ � ∆ | Γ � ∆ | H we are simply committing ourselves to the possibility of everything in Γ holding

and everything in ∆ failing, and the possibility of everything in Γ holding and everything in ∆ failing, and

everything inH. That is no more and no less than the possibility of everything in Γ holding and everything

in ∆ failing, and everything inH, which is what is said by Γ � ∆ | H.
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Here is an example derivation, using defining rules and the structural rules.

A ∨ B � A ∨ B
∨Df

A ∨ B � A, B

♢A � ♢A
♢Df

A � | � ♢A
mCut

A ∨ B � B | � ♢A

♢B � ♢B
♢Df

B � | � ♢B
mCut

A ∨ B � | � ♢A | � ♢B
K,W

A ∨ B � | � ♢A, ♢B
♢Df

♢(A ∨ B) � ♢A, ♢B
∨Df

♢(A ∨ B) � ♢A ∨ ♢B

This derivation gives us another account of how to get from ♢A∨♢B from ♢(A∨B)—

it has a similar structure to the everyday reasoning given at the introduction to this

section, though the particulars are different. Take the intermediate hypersequent in

the derivation

A ∨ B � | � ♢A | � ♢B

The fact that this hypersequent is derivable means that asserting A ∨ B (in one zone),

while denying ♢A (in another) and denying ♢B (in another) is out of bounds. We have

given an account of a proof theory for the modal logic s5 in which the connectives are

defined by way of rules for use, governing assertion and denial of modal formulas—in

different zones, as one would expect in modal reasoning. There is more to say about

hypersequent proof theory for propositional modal logic [8,45,52], but instead of stay-

ing here, we will move at last, to the quantifiers.

3 quantifiers, definedness and the barcan formulas

Combining the hypersequent defining rules for modal operators with the natural rules

for classical quantifiers is a recipe for delivering the Barcan formulas. Defining rules for

the classical quantifiers are simple to extend to the hypersequent settings [57].

Γ � A(n), ∆ | H
=============== ∀Df

Γ � ∀xA(x), ∆ | H

Γ,A(n) � ∆ | H
=============== ∃Df

Γ,∃xA(x) � ∆ | H

Denying a universally quantified judgement is out of bounds just when it is out of

bounds to deny an arbitrary instance. Asserting an existentially quantified judgement

is out of bounds just when it is out of bounds to assert an arbitrary instance. Here,

arbitrariness and generality is governed by the side condition implicit in these rules:

the singular term n must be absent from the premise hypersequent, except for its use

in the formula A(n). In the context of standard sequents, these rules suffice for classi-

cal predicate logic: We can derive all of the first-order classical validities, as you would

expect.

The extension to the hypersequent setting ensures that the inference can be applied

in any zone in any modal reasoning context. This means, however, that we can also

prove the Barcan formulas, interleaving the defining rules for the quantifiers and the
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modal operators in this way:

∀x□Fx � ∀x□Fx
∀Df

∀x□Fx � □Fn
□Df

∀x□Fx � | � Fn
∀Df

∀x□Fx � | � ∀xFx
□Df

∀x□Fx � □∀xFx →Df

� ∀x□Fx → □∀xFx

∃x♢Fx � ∃x♢Fx
∃Df

♢Fn � ∃x♢Fx
♢Df

Fn � | � ∃x♢Fx
∃Df

∃xFx � | � ∃x♢Fx
♢Df

♢∃xFx � ∃x♢Fx →Df

� ♢∃xFx → ∃x♢xFx

If we are contingentists, then these derivations should not strike us as compelling, and

it is worth taking our time to consider why this is so, and where the inference breaks

down.

While it would be a mistake to assert ∀x□Fx and deny it at the same time (the first

sequent indeed is out of bounds), is it a mistake to assert∀x□Fx and to deny □Fn? This

depends on the status of the term n, and the status of singular terms as we shift from

zone to zone is exactly what is at issue when it comes to understanding the interaction

between modal and quantificational judgements. If we assume, at the outset, that,

as a matter of necessity, all singular terms must denote, this is to set the terms of the

debate decisively in favour of the necessitist. In the interest of keeping our theoretical

options open, we would do well to at least countenance the notion that singular terms

might denote in one zone of a discourse while fail to denote in another. To require

terms to operate in the same way across zones is to import necessitist assumptions at

the outset.

Excursus on names: Before continuing with this train of thought, it is worth saying something

about the status of the terms such as n used in the defining rules for the quantifiers. I will call

them names, chiefly to distinguish them on the one hand from variables (we can reserve variables

for use with quantifiers in formulas) and from arbitrary terms which may include, for example,

function symbols. The important feature of these names is that they are inferentially general. They

satisfy the condition that if some (hyper)sequent featuring the name n is derivable, then so is

the result of globally replacing n by any other term of the same general syntactic category. That

is the crucial feature in the traditional Gentzen Left/Right sequent rules, or natural deduction

introduction and elimination rules for the quantifiers. Inferential generality ensures that if I have,

on the one hand, a proof of∀xA(x) (which I derived from a proof of A(n), where I have made no

other assumptions from n) and I infer A(t) from this, for some term t, then I could have used

the original proof of A(n) while replacing the name n everywhere by t. This will only work, in

general, if the result is still a proof. For this, we need the norms governing n to be satisfied by

t, too. That is, we require there to be no inferential norms specific to n. It is inferentially general.

This is the feature of names which is important in what follows, and it is what underwrites the

semantics of the quantifiers. End of excursus

Returning to the putative proofs of the Barcan formulas, we see that the proofs break

down if we move to a free logic in which we not only allow terms to fail to denote (so

much is standard [26, 57]), but we allow denotation failure to vary from zone to zone.

This is exactly the shift the contingentist desires, for whether a term counts as suit-

able to substitute for a quantifier should differ from zone to zone. What exists here

might fail to exist there (and what exists now might not have existed before now, and

might cease to be, in the future). So, it is natural to generalise the defining rule for the

quantifiers for free logic to the hypersequent case like this:

Γ, n � A(n), ∆ | H
=============== ∀Df

Γ � ∀xA(x), ∆ | H

Γ, n, A(n) � ∆ | H
=============== ∃Df

Γ,∃xA(x) � ∆ | H
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Now we extend our zones in our hypersequents to not only keep track of those formulas

asserted (on the left) and denied (on the right) but we have added the term n to the

left hand side of a zone. We allow terms in sequents to keep track of which terms are

suitable substitutions for the quantifiers. To rule a term in as suitable for substitution

in some zone, it is added left hand side of the sequent. To rule it out we add it to the

right. Then the defining rules for the quantifier are then motivated on contingentist

lines. To deny ∀xA(x) is to take there to be something (which we call n) that doesn’t

satisfy A(x). That is, in this zone we rule n in, and deny A of it. To assert ∃xA(x) is to

take there to be something (again, call it n) that satisfies A(x). We rule n in and assert

A of it.

We take ruling terms in and out as suitable substitutions for our quantifiers as the

basic constituents of sequents and hypersequents. It is natural, though, to consider

representing this basic act of ruling a term in or out as expressible in the object lan-

guage in a formula. This is the job of the so-called ‘existence’ predicate. We will follow

Feferman [26] in representing this with a postfix downward arrow, connoting denota-

tion.

Γ, t � ∆ | H
=========== ↓Df

Γ, t↓ � ∆ | H
The free logic that results is a simple extension of first-order predicate logic allowing

for nondenoting terms. We cannot pass from ∀xA(x) to A(t) without making explicit

the extra assumption that the term t indeed does take a value. (If ‘t’ does not pick out

a thing then the fact that everything is A does not mean that A(t), after all.) Making

that assumption explicit is simple:

∀xA(x) � ∀xA(x)
∀Df

∀xA(x), n ⊢ A(n) ↓Df

∀xA(x), n↓ � A(n)
∧Df

∀xA(x) ∧ n↓ � A(n) →Df

� (∀xA(x) ∧ n↓) → A(n)

With the modified quantifier rules, the derivation of the Barcan formulas break down,

and they do so in an informative way. We can proceed this far with the derivations:

∀x□Fx � ∀x□Fx
∀Df

n,∀x□Fx � □Fn
□Df

n, ∀x□Fx � | � Fn

but to go further, to generalise on the n in the zone containing Fn to conclude ∀xFx,

we need our hypersequent to contain n on the left in that zone, not in the other: we

would need to have derived ∀x□Fx � | n � Fn because then we could continue:

∀x□Fx � | n � Fn
∀Df

∀x□Fx � | � ∀xFx
□Df

∀x□Fx � □∀xFx

In the absence of a rule that would allow terms to migrate from zone to zone, like this:

t, Γ � ∆ | Γ ′ � ∆ ′ | H
t Migration

Γ � ∆ | t, Γ ′ � ∆ ′ | H
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the standard derivation of the ∀/□ Barcan formula is blocked, and it is blocked in a

principled way. In fact, in the system with the standard structural rules and the defin-

ing rules for □ and the free quantifiers ∀ and ∃ there is no derivation of the Barcan

formula. This hypersequent, for example, cannot be derived:

a, Fa,□Fa, ∀x□Fx � b, Fb,□∀xFx | a, b, Fa � Fb,∀xFx

so, the hyperposition, consisting of two zones like this, is not out of bounds:[
a, Fa,□Fa, ∀x□Fx : b, Fb,□∀xFx | a, b, Fa : Fb,∀xFx

]
There is no clash involved in first asserting ∀x□Fx, and taking the term a to denote,

and so, also asserting □Fa and Fa, while at the same time taking the term b to fail to

denote, denying Fb, and also denying □∀xFx, while second, granting the alternative

possibility according to which a and b both denote, granting Fa, while still denying Fb,

and in this possibility denying∀xFx. Such a package of commitments coheres with the

meaning rules for the quantifiers and modal operators, and there is no clash.

In fact, this is this hyperposition is, in an important sense, fully refined (see Defini-

tion 5 on page 36 for details). For example, in any zone in which a universally quantified

formula is asserted, each instance is asserted (so, since∀x□Fx is in the first zone, □Fa

is in that zone, because a denotes there). In any zone in which a universally quanti-

fied sentence is denied, some instance is denied (since ∀xFx is denied in the second

zone, there is some instance, namely Fb—since b denotes in this zone—that is denied

there). If there is some zone at which □A is denied, then A is denied in some zone,

and if □A is asserted in some zone, A is asserted in every zone. The ‘downward’ con-

sequences of each formula (its consequences concerning its subformulas) are spelled

out in a comprehensive way.

This fully refined hyperposition neatly corresponds to a variable domain model with

two worlds, one of which has as domain {a} (where bears property F in that world)

and the other, domain {a, b} (where the extension of F is {a} alone). In the first world,

∀x□Fx is true since □Fa is true (and this world’s domain is {a}), while □∀xFx is false

since in the second world∀xFx fails, since there, Fb fails (and b is in the domain at this

world).

This construction of a model from a fully refined hyperposition is perfectly gen-

eral. The procedure of filling out an underivable hypersequent by decomposing com-

plex formulas and supplying instances for quantified formulas, and adding zones to

witness modal formulas, results in a systematic and canonical model construction for

a variable domain quantified s5, as I spell out, in the Appendix. A model, then, cor-

responds to an available hyperposition. What start off as inference rules in the proof

system then can be understood as the truth conditions for the connectives, operators

and quantifiers of the language.

♢ ♦ ♢

This hypersequent system of rules for the connectives, quantifiers and modal opera-

tors provides a well-behaved semantics, consistent with contingentist’s motivation in

rejecting the Barcan formulas—even though the free logic modifications to quantifi-

cation used here
19

are originally motivated by very different concerns [26]. Once we

admit that it is coherent that a singular term might actually refer but also fail to refer

19
... and explored in my paper “Generality and Existence 1” [57].
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had things gone differently, then the hypersequent calculus provides us an apt inter-

pretation, fit for giving a normative pragmatic semantics for a language governed by

contingentist norms.

The result is a quantified modal logic with a possible worlds ‘semantics’ in which

the variable domain models for a contingentist modal logic have their place, but they

are explained by and grounded in something more fundamental, the norms we em-

ploy to govern our use of the modal operators and the quantifiers.
20

To return to the

distinction drawn by Arthur Prior, mentioned above (see p. 3), the proof rules provide

an interpretation of the modal vocabulary, along with the quantifiers and the connec-

tives. The possible worlds ‘semantics’ provides a way to model this vocabulary, but as

for fixing what that vocabulary means, we must look elsewhere.

The inference rules fix meaning in another important sense. If you and I employ

vocabulary in a way governed by those inference rules, then the rules will allow us to

communicate. As we saw above (page 9), an “or” out of your mouth is equivalent to an

“or” out of mine, at least as far as the bounds of discourse (and entailment, equivalence,

etc.) go, if we apply the same rules. The same goes for the quantifiers, provided we

agree on the predicate/term structure of the language we are using. We no more need

to agree on whether this or that term denotes, than we need to agree on whether this or

that claim is true, for us to coordinate on the meaning of the quantifiers.

∀1xA(x) � ∀1xA(x)
∀1Df

∀1xA(x) � A(n)
∀2Df

∀1xA(x) � ∀2xA(x)

∀2xA(x) � ∀2xA(x)
∀2Df

∀2xA(x) � A(n)
∀1Df

∀2xA(x) � ∀1xA(x)

Similarly, we do not need to agree on what things are possible and what things are

necessary to coordinate on the meaning of the modal operators: we need only to agree

on when we are making discourse shifts from one modal zone to another.

□1A � □1A
□1Df

□1A � | � A
□2Df

□1A � □2A

□2A � □2A
□2Df

□2A � | � A
□1Df

□2A � □1A

Coordinating on zone shifts and the defining rules enough structure on which to

leverage disagreement on matters of what is possible and what is necessary. Once we

are able to modalise, to not only engage in the practice of asserting and denying in the

sense of flatly describing how we take things to be, but to also apply those assertion

and denial norms in situations of planning, considering options for future action, and

even ruminating on what could have been, we find ourselves engaging in just these sort

of zone shifts, and modal vocabulary can take root [34].
21

20
Of course, this is not to say that our everyday modal or quantificational notions are identical to the con-

cepts picked out by these precise definitions, any more than the material conditional ‘→’ corresponds pre-

cisely to our everyday use of ‘if ’. Rather, the sharply delineated concepts introduced here by way of a defin-

ing rule are the kinds of things we can freely define (against the background of an assertoric practice with

a selected notion of zone shift), and which recognisably do the same kind of work we accomplish with our

everyday notions of necessity and possibility. Our everyday modal concepts may or may not exactly comply

with the defining rules for ♢ and □, but insofar as they do, we can explain the fit with possible worlds models

by appealing to these norms for using those concepts.

21
Mark Lance and Heath White’s “Stereoscopic Vision” [34] makes the case that the conceptual structure

arising out of human agency, involves two forms of modal zone shift. Subjunctive modalizing involves alter-

native ways things could go or could have gone. It arises when we plan the future, or retrospectively evaluate
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Furthermore, we not only have an inferentialist semantics for the quantified modal

language, we also have an explanation for why possible worlds models actually man-

age to correctly model the truth-conditional behaviour of the language we use. The

soundness and completeness theorem of the Appendix spells out, in detail, how the

natural variable-domain possible worlds models have the structure that represents the

pre-existing semantics of a language with concepts governed by these defining rules.

When we attend to the detail of the completeness proof and the models that are gen-

erated, we see that notion of a ‘possible world’ as motivated by that proof is neither a

mere uninterpreted algebraic device in some mathematical structure, nor an unanal-

ysed primitive metaphysical commitment nor a theoretical posit required for an ex-

planatory theory. The ‘possible worlds’ that arise naturally from the construction of a

model from a given hyperposition are the result of starting with the commitments in-

curred in a discourse where we utilised a number of different modal zones, and treat-

ing those commitments, together, as describing some structure. The issues that arise

in the introduction of models therefore bring us back to the perceived shortcomings

and theoretical weakness of possible worlds semantics with varying domains, and of

contingentism more generally, so let us turn to these questions in the next section.

4 possible worlds models and possibilia

In Section 1, we discussed Linsky and Zalta’s three complaints about varying domain

models for modal first-order predicate logics. Now, in the light of the semantics for

the modal operators and quantifiers, and this new view on varying domain models,

we can consider these objections in turn. First, recall that Linsky and Zalta claimed

that if we are to take these models seriously, we are then committed to the existence

of these putatively non-existent possibilia. Second, they argued that rejecting classical

first-order predicate logic for a free logic comes at severe theoretical cost. Third, they

stated that varying domain models make it all too easy to violate the constraints of se-

rious actualism, by allowing for true predications (statements of the form Ft) without

existential commitment. So, statements like Ft∧¬t↓ (t has property F, despite not ex-

isting) can be satisfied in varying domain models, so this lacuna should be addressed,

at least for contingentists with serious actualist scruples. To these three objections, we

added a fourth, from Williamson: that the logic of varying domain models cannot be

metaphysically universal, since they allow for rejection of the Barcan formulas.

In this section, I will start by responding to the first objection, explaining how it is

that a contingentist, utilising the inferentialist semantics given above, can help them-

selves to the use of varying domain models, while incurring no existential commit-

ment to mere possibilia. Then we will address head-on the shift to free logic and al-

lowing for non-denoting terms, addressing Linsky and Zalta’s second objection. This

response will bring along with the means to respond to Williamson’s argument con-

cerning metaphysical universality. Then, we will finally address Linsky and Zalta’s third

objection, concerning the putative tension between variable domain models for con-

tingentism and serious actualism.

the difference our choices and actions make. Epistemic modalizing involves different views of how things ac-

tually are. It arises when we consider different perspectives on what is the case, and when we attempt to

resolve disagreements. For social creatures like us, who attempt to act on the basis of shared views, it is to be

expected that we consider alternatives in these two different ways. The technical results in this paper can

apply equally to both kinds of zone shift, but the focus is on the subjunctive ‘metaphysical’ modality in most

of the literature on necessitism and contingentism. However, it is a strength of the hypersequent approach

that it allows for a uniform treatment of both metaphysical and epistemic modals [56].
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♢ ♦ ♢

How does the ontological commitment arising out of the use of possible worlds mod-

els with varying domains look when viewed from an inferentialist perspective? If we

think of modal models as reifications of fully refined available positions, it is tempting

to think that the only ontological commitment that ensues is that incurred in the use of

the abstract formal or mathematical machinery used to construct models. If you think

of models as mathematical constructions that witness various formal properties, then

theoretical commitment to the kinds of abstract constructions of models from their

components is the price you must pay.
22

However, that is not the issue with commit-

ment to the mere possibilia inhabiting the non-actual worlds of our models. The point

of these models is not that they merely represent logical space and abstract properties.

The issue is that these models purport to represent how things are. To put things in a dif-

ferent way: truth in a model is taken to provide a model of truth, simpliciter [30]. So, let

us take seriously the commitment we incur when we think of the kinds of models that

arise when we attempt to model truths in our modal and quantificational vocabulary.

So, we start with a given an interpreted languageL, including the quantifiers and

modal operators, defined on contingentist lines, and let’s start from a position [Γ : ∆],
where Γ contains sentences and terms that we rule in, and ∆ contains sentences and

terms we rule out. To make the task as stringent as possible, let’s start with Γ con-

taining all the sentences inL that are, in fact, true, and all the terms inL that denote,

while ∆ contains all the sentences that fail to be true and all the terms that fail to de-

note. What does a model arising out of this position look like? If there is no sense in

which we can endorse that model and the theoretical and ontological commitments

that ensue, then this is indeed a mark against the variable-domain model theory.

For a start, if disjunction inL indeed has the semantics given by ∨Df, then we can

be sure that A ∨ B ∈ Γ if and only if either A ∈ Γ or B ∈ Γ , since A ∨ B ∈ ∆ if and

only if A, B ∈ ∆, and our position is a partition: A ∈ Γ iff A ̸∈ ∆. The quantifiers,

however, are not necessarily so well behaved in [Γ : ∆]. We might have an existentially

quantified sentence∃xA(x) in Γ while the language supplies no term t where A(t) and

t are both in Γ . For example, our language might supply a sentence like “there is a ura-

nium atom on the surface of Pluto” without supplying a singular term t such that “t is

a Uranium atom on the surface of Pluto” is a true sentence inL. This is the point, in the

model construction, where we extend our language with a stock of singular terms, to

be supplied as witnesses for the truth of existential quantifications and the untruth of

universal quantifications. If we find ourselves committed to ∃xA(x) without endors-

ing A(t) for any available term t, then we extend our language with a fresh term n,

and we grant A(n), while ruling n in as having a value in this zone. Which value does

n take? In our case of the putative uranium atom on Pluto, we have no way of specify-

ing which uranium atom we mean, and so, the singular term n does not act very much

like a name in the traditional sense. There is no particular given object (whether on

Pluto or elsewhere) such that I am committed to that item being a uranium atom on

Pluto, and if there are many such atoms, there is nothing to say that the term n takes

one as its referent over the other. The existentially quantified claim can be satisfied

in any number of different ways, by different witnesses. However, extending our lan-

guage with a term serving as a witness for that existentially quantified statement, is

in some sense, a way of spelling out the commitment incurred in the existential claim.

We may not be able to name such an item, or identify it in any informative way, but it

22
The view of possible worlds as abstract representations is affirmed in different ways by figures such as

Alvin Plantinga [42] and Robert Stalnaker [68, 69].
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to deny that we can supply a term for just such an item (calling the suspect X, for the

sake of the argument) would be to reject the original claim. To say that there is some

uranium atom on Pluto is to say that there is some object to take as the value for this

given name, were we in a position to name it. So, let us consider that our position has

indeed been refined so far as to contain witnesses for each quantified statement, at

the cost of extending our language with sufficiently many fresh terms, as needed. The

existential commitment incurred by adding these singular terms to our vocabulary is

no more and no less than that incurred by the original existentially quantified claim

we started out with.

The case of witnesses for the truth of existentials and the untruth of universals is

parallel to the case of the truth of possibility and untruth of necessity claims. When-

ever ♢A is in our set Γ of truths, to refine our hyperposition, we may need to add a fresh

zone in which A is asserted. This zone provides a witness for the possibility claim in

just the same way that a fresh term is added as a witness to a quantified claim. Adding

such a zone does not incur only the ontological cost of the ordered pair of sets of sen-

tences and terms involved in the new zone. We started out, granting that ♢A is true—

we granted that it is possible that A, and it is this commitment that is spelled out by

the addition of a fresh zone, at which A is asserted. If, for example, I supposed A (in

this fresh zone, in the salient sense for modal reasoning), and continued reasoning,

to finally arrive at some absurd conclusion, this would show that my original commit-

ment, to the possibility of A, was mistaken. To grant that A is possible comes with

its own costs. The commitment incurred must result in an available position, and if

it clashes with my other commitments, including any other commitments concerning

what is possible and what is necessary, something must give. So, the spelling out of

the original commitment to ♢A, in terms of the opening up of a new zone—in which

the consequences of commitment to A (as a possibly counterfactual alternative) can

be tested—has its own risks. This commitment to a zone at which A is granted is not,

however, commitment to the truth (simpliciter) of A. It is only commitment to A’s pos-

sibility, and, implicitly, a commitment to whatever else the possibility of A involves.

When we move from talk of refined positions (with their zones and claims and

terms ruled in and ruled out), to thinking of models with their worlds, and domains

and extensions of predicates at each world, the same question seems to arise with wit-

nesses to possibility claims as arises with witnesses to existential claims. When it came

to witnesses for∃xA(x), and the shift to A(n), the question of which object n is meant

naturally arises. When we consider the parallel issue for zones and worlds, the poten-

tial difference between commitment to worlds and commitment to objects is clarified.

When we move from ♢A to consider a ‘possible world’ at which A is true, we have a sim-

ilar issue arising as we did for uranium atoms on Pluto. Which A-world do we mean?

There may well be very many possible worlds at which A obtains. As far as zones and

full refinement goes, our language can get very specific, and full refinement will force

our zones to take one side or other for every disjunction they assert, and which pro-

vide witnesses for each existentially quantified statement. So, each zone gives rise to a

world which settles each sentence in the language under discussion (see Definition 11

and Lemma 5 on page 42). However, this need not determine a world in any metaphys-

ically rich sense, since if we expand the language with new predicates or terms, there

is no guarantee that what was specific enough to count as a world in the original lan-

guage is a world in the expanded language. If we have a new predicate F, our original

fully refined zone will not settle whether each item counts as an F or not, and what was

specific enough to be a unique world at one level of analysis is now a whole family of
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worlds, when viewed more closely. Our level of commitment for our modal vocabu-

lary is more suited to talking about possibilities than possible worlds [32], since there is

nothing in our language that allows us to identify worlds, let alone, to count them.
23

Fully refined positions, and the models we might take them to describe, involve

not only quantification and modality, but their interaction. In the general case (such

as when we refine a starting position which affirms ♢∃xFx but denies ∃x♢Fx), we in-

troduce fresh terms in fresh zones, which may not be taken to denote in our original

starting zone.[
a, ♢Fb, ♢∃xFx : b, Fb, Fa, ♢Fa, ∃x♢Fx | a, b, Fb, ∃xFx : Fa, ♢Fa

]
Here the starting zone (the first of the two in the hyperposition) takes the object a

to exist, and to fail to have property F, both in fact, and in the alternative possibility

described by the second zone, where b is also taken to exist. These are the only two

zones in this hyperposition, so ♢Fa can be denied in both positions, since Fa is ruled

out everywhere. This a is the only object countenanced in the first zone, so∃x♢Fx may

be denied in the first zone, too. However, since ♢∃xFx is affirmed in the first zone, the

second was introduced to affirm ∃xFx. For this, we added a fresh term b, as a witness

for the quantifier in this zone. Here, b is taken to exist, and Fb is granted. This means

that ♢Fb cannot be denied in the original zone (that would clash with affirming Fb in

the second), but this is compatible with the denial of ∃x♢Fx, since b can be taken to

fail to denote in the first zone, and to therefore not be a suitable substitution for the

existential quantifier there.

This is one way to spell out the theoretical commitments of denying the Barcan

formula, and in this way, the mere possibilia of items, such as b, must be allowed to

at least this extent. There is a kind of theoretical commitment here, above and beyond

the commitment to the raw uninterpreted syntax. The construction of the refined posi-

tion, and any model it may be taken to describe, is a way of spelling out what is involved

in the joint commitment to ♢∃xFx and to ¬∃x♢Fx.

However, it does not follow that there is, in the commitment undertaken in up-

holding this hyperposition any sense in which claims made in the second zone must

be treated as be treated as flat descriptions of some scenario that obtains. Claims made

in that zone are not taken to be true (recall, we introduce other zones not by suppos-

ing how things are, but by supposing things go otherwise), but we are committed to

taking these claims to be jointly possible. The kind of counterfactual commitment is

analogous to a present description of how things were in some past historical period.

Commitment to a present description of past events does not make those past events

23
So, at least in first-order logic with identity, if I have a singular term t, and I consider a model for a

languageL involving t, there is nothing to determine one single correct way to extend that model to interpret

a language with a fresh predicate F. Perhaps Ft should turn out to be true in the extension, perhaps it should

turn out to be false. However, this is a determinate issue. Of that object (named t), the question of whether it

has property F or not is something to be settled by extended model. In some extensions it does, and in other

extensions it doesn’t. Even if there are two objects in the new model, one with property F, and one without,

and each of which satisfies all the same (non-identity) predicates as the object that is t in the original model,

one of them will satisfy the sentence x = t, while the other will not. The corresponding issue does not

arise for modal models, at least in our vocabulary, since in this language there is no ‘identity’ predicate for

worlds. A starting model can be expanded to a new model where the original world w splits into two variants

w+
and w−

, where a given fresh proposition p is true at w+
and false at w−

, and there is no fact of the

matter concerning which of w+
and w−

is ‘the same world’ as w in the original model. Is this difference

in expressive power between the first-order and modal vocabulary a bug or a feature of modal language? If

you think it is a shortcoming to be overcome, then hybrid logic, which extends the standard modal logic with

more expressive power, is the natural next step [3, 11, 15].
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actually occur in the present. Using the term b as if it denoted an object does not need

to be identified with using the term b to in fact denote an ‘as if object’.

Of course, if we treat the different zones as descriptions of different places, then

it is natural to think of the term b in some counterfactual zone as referring to an ac-

tually existing object which is a member of the domain of the world described by that

zone. Such a reading of the modal model theory is natural and understandable, and

it has the same conceptual form as a model of a temporal logic that conceives of the

different moments of time as points on a line distributed in space, each present at

the same time. The difference between different times, ordered from earlier to later

has the same structure as the points in a line oriented in space. The past moments of

time are not literally present now, any more than counterfactual scenarios actually ob-

tain. Treating different zones as if they described worlds that actually obtain but are

elsewhere in modal space is to recast the counterfactual modality in spatial terms. The

metaphor can be very useful indeed, in just the same way that a present-to-us-in-the-

moment timeline can represent features in space all at once features that only actually

obtain over a period of time. However, that structural analogy remains an analogy,

and the terms that would have denoted had counterfactual scenarios obtain no more

denote any existing thing than terms that did denote past objects must be treated as

denoting objects still exist now [62].

♢ ♦ ♢

Let’s turn to the second objection from Linsky and Zalta: that the rejection of classi-

cal quantification theory and adoption of a free logic comes at too great a theoretical

cost. The appropriate reply to this objection to deny that the cost is in any way signifi-

cant. The free logic underlying this account is natural, straightforward, and indepen-

dently motivated on theoretical and scientific grounds [26]. Williamson, in Modal Logic

as Metaphysics makes a case to the effect that employing a language that countenances

non-denoting terms is unscientific.

For a restriction to completely free logic undermines the application of scientific

method by permitting one to hold on to a universal generalization after one of its

instances has been refuted: one denies Ga but still asserts ∀xGx by also deny-

ing ∃y a = y, still retaining the constant a in the language. We assume that

the formal languages under consideration in this chapter are well designed in the

relevant sense, so that metaphysical universality implies truth. For our present

aim is neither to model natural languages, for example in their use of fictional

and mythological names...nor to stick to what is knowable a priori in some sense,

which might exclude whether some names refer. Rather, our business is to clar-

ify the structure of metaphysical universality in a broadly scientific spirit. Non-

referring uses of ‘Pegasus’ have no more place in such an enquiry than they have

in physics or zoology. Of course, the term ‘phlogiston’ did occur in scientific lan-

guage, but if it failed to refer (rather than referring to an empty kind) then its pres-

ence in any scientific theory was a defect in that theory. Consequently, we should

not distort our formal language by allowing for such a term. [75, pages 131–132]

There is a lot here, but a response seems at hand for the contingentist and the defender

of free logic. The use of a free logic does not undermine the application of scientific

method, because there is an ambiguity in the expression “hold on to a universal gen-

eralization after one of its instances has been refuted.” We assert ∀x x↓ (everything

exists) while denying
1
0↓. Have we held on to the generalisation and denied one of its

instances? In the bare grammatical sense, yes, where G(a) is an instance of ∀xG(x) for
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any singular term a. However, there is another sense in which ∀x x↓ is not refuted by

¬(1
0↓), since the term

1
0 is ruled out as an appropriate substitution for the quantifier

any discourse in which
1
0 is ruled out as nondenoting. There, we take

1
0 to not refer,

and so, it is not a counterexample to the universal quantifier—it is not an instance at

all.

More serious is Williamson’s appeal to scientific discourse in his rejection of free

logic and his defence of the constraint of metaphysical universality. This, it seems to

me, is the core of his defence of necessitism, and the appeal to scientific discourse

seems to me misplaced, at least when it comes to mathematics, which surely counts as

a science if anything is. Mathematical discourse is shot through with what the math-

ematicians take to be non-referring terms, like these:

1

0
{x : x ̸∈ x} lim

x→0

sin x

x

Then there are expressions like these, which are found in the most scientific of texts

(whether pure mathematics, applied mathematics or one of the other sciences), and

these expressions sometimes refer, and sometimes do not, depending the behaviour

of their components.

lim
n→∞an

∞∑
n=0

an f ′(x)

∫b

a

f(x) dx {x : ϕ(x)}

The same can be said for recursion theory, computer science, and other theoretical dis-

ciplines. Reasoning about termination of algorithms and the definedness of functions

is widespread. Now, of course it is in some sense possible for us to strip our mathemat-

ical and scientific discourse of such terms—or rather, it’s possible for us to stop doing

mathematics in the usual manner, and restrict ourselves to a much more limited lan-

guage, free of undefined and non-denoting terms. However, it is by no means clear

that the language which admits of partial functions and non-denoting terms is in any

sense more defective than a language which manages to do away with them. The free

logic of these non-denoting terms is thoroughly classical, and straightforward to work

with [26].

If non-denoting terms have their use in these contexts, it seems no more problem-

atic to allow for the possibility that terms which do denote (like names for seemingly

contingently existing objects) might have failed to denote had things gone differently,

and analogously, we may employ terms which do not denote, but might have denoted

in different scenarios. The hypersequent calculus treats non-denoting mathematical

terms and names for contingently existing objects in a uniform same manner. The dis-

cipline of ruling terms in our out in zones in a hypersequent keeps track of those terms

that are appropriate instances for the quantifiers in those zones, and it is done in a way

which respects the strictures and conventions of scientific discourse.

Since we have not seen any objection to the use of free quantification other than a con-

servative appeal to retain non-free classical logic, and a rejection of the language of

mathematics as it is actually used, combined with an idiosyncratic characterisation of

the logical validity with metaphysical universality,
24

we can pass over this objection,

and turn to the one objection that remains.

24
I say ‘idiosyncratic’ because to characterise the logical truths as the metaphysically universal statements

means that we must countenance truths like∃x∃y∃z(x ̸= y∧y ̸= z∧x ̸= z) as logically true. Taking each

statement of the form “there are at least n things” to be logically valid is by far a greater revision of classical

first-order logic than the admission of non-denoting terms into the vocabulary.
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♢ ♦ ♢

Linsky and Zalta are correct to note that models for variable-domain quantified modal

logics allow for violations of serious actualist scruples. The rules I have employed so far

do not rule a position like this [
Fa : a

]
out of bounds. We can grant Fa yet rule a out as non-denoting. Yet how can a bear the

property F without existing?

We will see that there is a way to develop the semantics presented here in harmony

with serious actualism, but we must be careful. Making positions like this is essen-

tial to the project of contingentism, whether actualist or not. After all, if the term a

does not denote, then the sentence a↓ is false, and hence, its negation is true. So, this

position had better remain available: [
¬a↓ : a

]
It should be coherent to say that a does not exist, while at the same time, ruling a out

as nondenoting. Serious actualism cannot be understood as the claim that whenever

a sentence A(t) involving a term t is true, then t must denote, since ¬1
0↓ is a true

sentence involving the nondenting term
1
0 . We respect serious actualist scruples by

requiring that only objects are the bearers of properties, and nonexistence, for exam-

ple, is not a property. However, if we wish to constrain our language so that primitive

predicates always predicate properties then indeed our rules can be extended to respect

this constraint. We simply impose the following connection between predication and

denotation:

ti, Γ � ∆ | H
FL

Ft1 · · · tn, Γ � ∆ | H
If, in a given position it would be out of bounds to take ti to denote, then in that po-

sition it would also be out of bounds to predicate F of the tuple t1, . . . , tn. If this is

thought to be a constraint on the predication of properties, then it is straightforward

to express this constraint in the hypersequent calculus at the level of predication for

primitive properties, and this constraint is imposed on the system discussed in the

Appendix.

However, this might not be the end of the story concerning serious actualism, since

perhaps our language might have means of expressing genuine properties or rela-

tions beyond the device of predication with an atomic n-place predicate. Lambda ab-

straction is often taken to be one such way of forming complex predicates. For any

open sentence A(x), we can treat (λx.A(x)) as a complex predicate expression, where

(λx.A(x))t is taken to be equivalent to A(t), whenever the term t is free for x in A(x).

We cannot take every such λ term to be a predicate expressing a property on serious ac-

tualist lights, at least if such an equivalence holds universally, since (λx.¬x↓) is a per-

fectly acceptable term, and the direct equivalence has (λx.¬x↓)1
0 equivalent to ¬1

0↓.
1
0

does not exist. We would like to not be forced back into saying that
1
0 has the complex

property of non-existence.

We can have the benefit of λ abstraction, retaining the idea that all λ abstracts de-

note properties that are existence-entailing, in the way the serious actualist wants, by

modifying the way that abstraction is evaluated. The idea is familiar. The traditional

conversion of (λx.A(x))t by directly syntactically substituting the term t inside the

context A(x), to return A(t) is a call-by-name evaluation strategy, where the substi-

tution occurs purely syntactically, replacing the term t in the context A(·). This may be
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contrasted with a call-by-value evaluation strategy, which asks us to evaluate the term t

first, and then substitute the result of the evaluation into the context A(x) [44]. In free

logic, this can be expressed using the identity predicate, variables and the existential

quantifier. To evaluate (λx.A(x))t, we find a value for t and substitute that into the

context. This holds if and only if ∃x(x = t ∧ A(x)). If we use a call-by-value evalu-

ation strategy for λ abstraction, then we have a uniform way of showing that all such

predications are indeed existence entailing, whether simple or complex. It is straight-

forward to see why
1
0 cannot have the property of nonexistence, since there is no thing

that is
1
0 to be the bearer of such a property. There is no bar, on this account, for serious

actualist scruples to be respected, in a systematic and thoroughgoing way.

♢ ♦ ♢

This ends my discussion of these objections to contingentism and varying domain se-

mantics.
25

The upshot is that modal models are useful representations which can give

us insight into the behaviour of modal and quantificational concepts. Given that the

semantic labour of interpreting the connectives, quantifiers and modal operators is

discharged by the proof theory and not the model theory, and the model theory is also

grounded in the proof theory, we have an independent explanation of how it is—and

why it is—that Kripke models can give us insight into the interaction between modal

concepts and quantifiers. There is nothing in such an explanation that leads the nor-

mative pragmatist away from any contingentist sympathies they may have had at the

outset. The ontology of domains of non-actual worlds does not, in itself, lead the nor-

mative pragmatist to necessitism.

However, the success of the inferentialist semantics for contingentist modal logic

does not mean that the logical language we have defined in the proof theory and the

model theory is a stable stopping point. There are reasons to explore wider quanti-

fiers, allowing for more substitutions into open sentences that the world-bound in-

zone existence-entailing quantifiers ∃ and ∀. It is easy to see this in the model theory,

since it is natural to take the union of the domains across all worlds in a model as a

trans-world domain available for quantification everywhere, but the attraction of in-

terpreting wider quantifiers is not restricted to model theory: it has an equally com-

pelling proof-theoretic motivation. In fact, the motivation to allow for substitution of

terms available in one zone into statements formed in another has been considered

by philosophers for quite some time, long before the development of possible worlds

semantics and varying domains. In the next section we will turn first to medieval dis-

cussions of ampliation, and what this means for quantified modal logic, contingentism

and necessitism.

5 ampliation and possibilist quantification

Reflection on the logic of our thought and talk of what exists and what does not exist is

not a new phenomenon. Medieval logicians, in particular, thought deeply about many

of these issues [24, 25, 71]. These logicians did not have the same account of quantifi-

cation, of scope and binding that we take for granted today, and as a result, many of

their analyses seem foreign to us. However, they were aware of subtle issues in mean-

ing, and drew sophisticated distinctions in order to account of the structure of our

thought and talk, and we can learn from what they have to say.

25
That is not to say, of course, that all questions about contingentism have been answered, and all objec-

tions silenced. This paper, however, must come to an end somewhere, and there is more to do before we get

to that point. See the conclusion for a discussion of further points to explore.
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To be specific, let’s fix on the work of John Buridan (c. 1300–1358/61) [18, 77]. For Buri-

dan, claims like these:

Socrates is human Plato is human Socrates is teaching Plato

were all true while Socrates and Plato were contemporaries and while the first was

teaching the second. Some time afterward, Socrates died. After Socrates died, it would

no longer be correct to say Socrates is human, since at these later times, Socrates no

longer exists [18, Intro. §3.4]. If, at this later time we were to take a census of every

human, we would not find Socrates on that list. To be human is to exist, and to die is to

cease to exist, so since Socrates has died, it is not the case that he is human. Similarly,

after Socrates’ passing, it is no longer true to say that Socrates is teaching Plato, since

for teaching to occur, the teacher and the student must both exist.

However, for Buridan and other medievals, it remains true to say that Socrates was

human. This is true the later time, not because “Socrates is human” was true at the

earlier time (that would be a modern tense-logical analysis of the truth conditions of

the claim), but rather, because the introduction of the past tense “was” ampliates the

predicate “is human” so that it takes in more items: it not only supposits for things that

are human, it also takes past humans. Once the predicate is ampliated, past objects fall

under it, as well as present objects, and the statement Socrates was human is true, since

Socrates is a no-longer-existing item, that was, indeed, human.

Similarly, the past tense of the term died also ampliates for past objects, so it is

correct to now say that Socrates died, even though Socrates is not present now to have

the property of having died. Socrates is not present now at all. It is the past Socrates

who died, not some present item who used to be the person Socrates. Similarly, it is

true now to say that Socrates taught Plato, because the past tense ampliates the term

“teaches” to range over more than just the presently existing teacher-student pairs.

The introduction of tensed vocabulary modifies the range of application of predicates

in this way.

What holds for the use of names like Socrates also holds for what we now recognise to

be quantificational judgements. On this account, the statement

All people are alive

is true, because no past (or future) tense is applied, and so the terms “people” and “alive”

have their original senses. Since all the currently existing people are, by definition of

what it is to be a person, in fact, alive, this statement is true. However, for Buridan,

the claim

Some people have died

(and so, those people are not alive) is also true, because the past tense in “have died”

ampliates “Some people” to include not only present people but past people, too. Some

people have died is true because Socrates has died, and Socrates was a person. This

does not conflict with the truth that all people are alive, because although Socrates was

a person, being dead, he is not a person any more, and so, is no counterexample to the

general truth that all people are alive. In just the same way, for Buridan it is correct to

say that

Someone taught Plato
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since the past tense in taught ampliates “Someone” to include not only present people

but past people, and Socrates again fits that bill.

To translate these notions into our current vocabulary—and to consider the modal

analogy to the temporal case—we can see that some of these claims are expressible in

the language of contingentist modal predicate logic. If we consider two zones, one at

the time Socrates (s) and Plato (p) were both alive, and the other after Socrates had

died, and the claim that Socrates teaches Plato (Tsp), we have the following terms and

atomic statements ruled in and ruled out in each zone:[
s, p, Tsp : | p : s, Tsp

]
In the first zone, s, t and Tsp are ruled in, while in the second, s (having died) is ruled

out, and so, Tsp goes with it. However the modal vocabulary allows for us to recover

the fact that Socrates taught Plato, with a zone-shifting ♢ operator. We have[
s, p, Tsp : | p, ♢Tsp : s, Tsp

]
In the second zone we can make the modal claim, since in the first zone, it is affirmed

that Socrates is teaching Plato, even though Socrates is not present in the second zone.

The zone-shift is marked in modern vocabulary with an explicit modal (or tense) opera-

tor on the judgement, rather than as a shift in the range of application of the predicate,

but the technique is not that different.

The claim someone teaches Plato (let’s formalize it for the moment as ∃x Txp, ignor-

ing the one in someone) is implicitly granted in the first zone, while it can be either

affirmed or denied in the second. What we know in the second is that Socrates cannot

be a witness to ∃x Txp, since he is ruled out in that zone, and the existential quantifier

is existentially committing: it restricts its attention to terms ruled in.

The same goes for the claim someone could teach Plato if we formalise that as∃x ♢Txp,

where the existential quantifier has wider scope that the modal operator. Socrates can-

not count as a witness for this claim in the second zone, because again, Socrates is ruled

out of contention. However, if we were to substitute s for x in ♢Txp, the result would

be true, since we have already granted ♢Tsp. Medievals such as Buridan had no such

qualms. Even though Socrates no longer exists, someone taught Plato and someone could

teach Plato count as true since the past tense (and possibility, in the modal case) widen

out the range of “teach” to past and merely possible objects, and the quantifier (to use

the anachronistic term) “someone” can pick out non-existent objects when ampliated.

Ampliation, understood in this way, is a form of extension of meaning from a home con-

text to a wider context, marked by the introduction of tenses or modal operators. This

kind of extension and transfer happens across temporal and modal shifts in a number

of different ways. We have already seen cases like this:

Socrates did exist. Now, he doesn’t.

Where the term Socrates, taking a value in the past context, is pulled forward to the

present context, where the value is no longer to be found, but the term is taken to

be meaningful nonetheless. The pronoun ‘he’ is subordinate to the original ‘Socrates’,

across the temporal shift. Similar dependence relations obtain between anaphoric

pronouns and their antecedents across modal shifts, like this:

I could have had a pet dodo. However, it doesn’t exist.
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This phenomenon is called modal subordination [65, 66]. On a natural reading of these

claims, the pronoun she occurs outside the scope of the possibility claim that serves as

its antecedent.
26

This is of a piece with claims like Socrates did exist, now he doesn’t, where

Socrates is available for reference in under the scope of the “did” in did exist and is then

pulled forward outside that scope to be referred to in the present One way to think of

these claims is to think of the quantification or variable selection as occurring first in

the alternate zone, and then some shifting operator, moves that variable, to where it

can apply in another zone, so claim about me having a dodo is then rendered:

♢∃x(Dxg ∧ ¬@x↓)

which takes the choice for the value of x to occur under the scope of the possibility op-

erator, and then inside that scope, we use an actuality operator (@) to break out of that

context, to return the actual world.
27

However, such a rendering finds a modal opera-

tor where the grammar of the claims made do not include it. There is no explicit shift

in the however. The second claim is rather, outside the scope of the possibility operator

in the first. An alternative reading is worth exploring, and if we are not employing a

dynamic semantics and syntax (which is more natural in representing the discourse

shifts in play in the dialogue) then to render the scope interactions appropriately we

make the choice for the variable x is made outside the possibility operator. For that,

to work, though, we need choose as witness for the quantifier, my merely possible dodo,

since at the site of choice it does not exist. The syntax is something like this:

∃♢x(♢Dxg ∧ ∼x↓)

There is a choice for x where, had things been different, x would have been my dodo,

but it is not the case that x exists. This avoids the need for a silent scope-breaking

actuality operator, and it is clear what the intended semantics for these wider possibilist

quantifiers must be:

n � | Γ � A(n), ∆ | H
=================== ∀♢

Df

Γ � ∀♢xA(x), ∆ | H

n � | Γ,A(n) � ∆ | H
=================== ∃♢

Df

Γ,∃♢xA(x) � ∆ | H

We simply relax the requirement that the fresh term n take a value in the zone of ap-

plication to a weaker requirement that the name be defined somewhere. So, we have

genuinely possibilist quantifiers define ∀♢
and ∃♢

.
28

These are defining rules for the

quantifiers, with exactly the same properties of unique definability and conservative

extension as the contingentist quantifiers. If defining rules suffice to give meaning to

an expression for a normative pragmatist, then these quantifiers make as much sense

as the narrower, existence-entailing ones.

Furthermore, these new quantifiers to not commit us to reject the contingentism

that motivated variable domain semantics and the original quantifiers. These remain,

26
This is akin to donkey sentence “every farmer who owns a donkey beats it”, where the pronoun it is an

anaphor for “donkey” which is under the scope of the quantification in the antecedent.

27
Although I do not present the semantics of the actuality operator in terms of inference rules here, it

is not hard to adapt the system in the Appendix to include it. Simply (optionally) mark one zone in each

hypersequent as an ‘actual’ zone, with the intended interpretation that assertions and denials in this zone

commit the speaker to taking those assertions and denials actually hold. Then, an assertion of @A in any

given zone is out of bounds iff the assertion of A is out of bounds in the zone marked as actual [56].

28
I use “’∀♢

” and “’∃♢
” for these quantifiers, since from the contingentist’s perspective, the requirement

for n to be an appropriate substitution into∀♢xA(x) is that is defined somewhere, that is, it possibly denotes.

From the contingentist’s perspective, they are possibilist quantifiers.
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and still have the interpretation we originally gave them. The wider quantifiers ∀♢
and

∃♢
are motivated by a more generous interpretation of what it is to be an appropri-

ate substitution instance: a term is appropriate to substitute into a quantifier if it is

at least minimally defined, that is, if it takes a value in some zone or other. Considera-

tions of ampliation and modal subordination motivate the introduction of these wider

quantifiers, not as a rejection of the contingentists commitments, but rather, as a mo-

tivation to increase the expressive power of the logical vocabulary.
29

Adding possibilist

quantifiers to your conceptual arsenal does not mean a rejection of your contingentist

commitments, but it does give you vocabulary with greater expressive power.

♢ ♦ ♢

Adding possibilist quantifiers gives rise to a puzzle for the contingentist. With the

quantifiers defined by these more liberal rules, new Barcan formulas are now derivable.

∀♢x□Fx � ∀♢x□Fx
∀♢

Df

n � | ∀♢x□Fx � □Fn
□Df

n � | ∀♢x□Fx � | � Fn
∀♢

Df

∀♢x□Fx � | � ∀♢xFx
□Df

∀♢x□Fx � □∀♢xFx →Df

� ∀♢x□Fx → □∀♢xFx

∃♢x♢Fx � ∃x♢♢Fx
∃♢

Df

n � | ♢Fx � ∃x♢♢Fx
♢Df

n � | Fn � | � ∃x♢♢Fx
∃♢

Df

∃♢xFx � | � ∃x♢♢Fx
♢Df

♢∃♢xFx � ∃x♢♢Fx →Df

� ♢∃♢xix → ∃x♢♢Fx

Of course, these versions of the Barcan formulas need cause no trouble for the contin-

gentist. We have granted that it is possible that (had things gone differently) I have a

pet dodo. So, we could say of it that had things gone differently, it would have been my

pet dodo. In other words, there ‘is’ something—in the wider sense, not of something

that exists, but in the sense of some‘thing’ that could have existed—such that it is my

possible pet dodo. The wider ∃♢
possibilist quantifier no more entails existence than

a corresponding ‘eternalist’ quantifier that ranges over past, present and future exis-

tences must collect everything that it quantifies over into a domain of things that each

exist now.
30

The motivation of the failure of the Barcan formulas, with their original

existentially committing reading, remains.

If we have both ∀♢
and ∀ around, which is more suited to be considered the genuinely

universal quantifier? In some sense, ∀♢
is the more universal of the quantifiers, since

it has wider scope. We can see this, because we may use the existence predicate ↓ as a

scope restrictor to define the narrower contingentist quantifiers∀x and∃x in terms of

their possibilist cousins,∀♢x and ∃♢x. ∀xA(x) is equivalent to ∀♢x(x↓ → A(x)), and

∃xA(x) is equivalent to ∃♢x(x↓ ∧ A(x)). These derivations show that we can replace

29
Compare Cresswell, in Chapter 7 “Possibilist Quantification” in his Entities and Indices [22], where these

wider quantifiers are introduced. As with Cresswell, the argument here is that possibilist quantification can

make sense of a range of linguistic phenomena. Various things we can say have a natural possibilist reading,

which do not have a natural reading when all quantifiers are interpreted narrowly.

30
Of course, the contingentist who is not troubled by this is the contingentist who has made peace with

rejecting Quine’s dictum that to be is to be the value of a bound variable. My merely possible dodo is a poten-

tial value of a variable in a possibilist quantification, by virtue of her possible existence, but she, nonetheless,

still stubbornly fails to exist.
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one by the other on one side of a hypersequent.
31

Γ � ∀xA(x), ∆ | H
=============== ∀Df

Γ, n � A(n), ∆ | H
===================== K,W

n � | Γ, n � A(n), ∆ | H
====================== ↓Df

n � | Γ, n↓ � A(n), ∆ | H
======================== →Df

n � | Γ � n↓ → A(n), ∆ | H
======================== ∀♢

Df

Γ � ∀♢x(x↓ → A(x)), ∆ | H

Γ,∃xA(x) � ∆ | H
=============== ∃Df

Γ, n, A(n) � ∆ | H
===================== K,W

n � | Γ, n, A(n) � ∆ | H
====================== ↓Df

n � | Γ, n↓, A(n) � ∆ | H
======================== ∧Df

n � | Γ � n ∧ A(n) � ∆ | H
======================== ∃♢

Df

Γ,∃♢x(x↓ ∧ A(x)) � ∆ | H

Conversely, there is no way to reconstruct ∀♢
in terms of the vocabulary not using the

possibilist quantifiers. So, if we were after economy of conceptual resources, we could

take ∀♢
or ∃♢

as primitive and ∀ and ∃ as defined using the existence predicate ↓. This

should not, though, be confused with conceptual priority. The account spelled out here

shows how we could think of the zone-based quantifiers ∀ and ∃ as primary, and the

possibilist quantifiers are introduced by processes of ampliation, where we take the

primary (in-zone) semantics of ruling in and ruling out (whether of terms or of sen-

tences) as fundamental, and cross-zone application of terms is allowed when neces-

sary, by a process of ampliation. These remarks are not offered as a knock-down ar-

gument against the treatment of outer, possibilist quantifiers as secondary, but as a

suggestion for the kinds of lines of development that the inferentialist semantics for

modality and quantification opens up for us.

6 further questions and concluding thoughts

As I indicated above, this discussion is only the beginning of the exploration a proof-

first treatment of first-order modal logic and of its significance for semantics and

metaphysics. In this brief concluding section, I will point to further developments,

raise some questions, and take stock.

The logic I have discussed is simply first-order modal logic, with inner and outer quan-

tification. I have said nothing here about the identity predicate, and nothing about

second- or higher-order (cf. [74, 75]). Neither have I considered other natural enrich-

ments of the modal language, such as formalisations that allow for a more explicit

object-language reference to worlds, such as is found in hybrid logic. Each of these

issues can be explored in an inferentialist manner [53, 56, 58]. In particular, proof sys-

tems for hybrid logic [15] can be given a natural inferentialist treatment, by way of la-

belling zones, so these directions of research are natural avenues to explore the norms

for use for a richer and more expressive language.

Once we consider identity, we have more questions concerning the divergence be-

tween the treatment of epistemic and metaphysical or subjunctive modalities. There

are good reasons to think treat identity statements (between names or variables, at

least) are necessary in a metaphysical or subjunctive sense, but they are by no means

necessary in the epistemic sense. These considerations can be developed inferentially

in ways that allow for the common treatment of what can be unified (metaphysical and

epistemic alternativeness are treated as zone shifts), and distinctive treatment of what

must remain distinct (the rules for the identity predicate treat the different kinds of

31
And, in general, if A can be replaced by A ′ on one side of a hypersequent, a judicious use of Cut and Id

shows that you can replace them on the other side, too.
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zone shift in different ways) [56]. There is much scope for a unified treatment of iden-

tity, which must wait for some careful and patient work, but the outline of the devel-

opment seems clear enough [58].

Above and beyond the questions of how to develop the logic, metaphysical issues re-

main too. If ↓ is understood as an existence predicate then the outer quantifier ranges

over things that do not exist, violating Quine’s dictum that to be is to be the value of a

variable, if you think of existence as identified with being. Here, the temporal analogy

seems apt. There are plenty of things that did exist but no longer do, and if we talk

of them (and quantify over them), we are not committed to their present existence:

we picked them out, after all, as things that did exist but no longer do. We must also

consider the thought that it must be the widest quantifier as the most significant one

that is the most existentially committing. A contingentist who makes use of possi-

bilist quantification cannot agree with this judgement, and perhaps some succour can

be found in the fact that the inferentialist proof system here allows for the definition

of even wider quantifiers that omit the definedness condition completely:

Γ � A(n), ∆ | H
================ ΠDf

Γ � ΠxA(x), ∆ | H

Γ,A(n) � ∆ | H
=============== ΣDf

Γ, ΣxA(x) � ∆ | H

These quantifiers are even wider than the possibilist quantifiers: ∀♢
and ∃♢

are found

by restricting Π and Σ to possible existents. These more general quantifiers allow for

statements like: Σx□¬x↓ (some things necessarily do not exist), which follows from

the truth □¬1
0↓. Since quantifiers like this are definable, there seems to be reason

to push against the conclusion that the widest quantifiers are the most important for

questions of what exists.

Another metaphysical question that we have not addressed is the issue of the truth-

makers of modal claims. Here, neither the model theory nor the proof theory for modal

logic gives much of an answer as to what in the world might make modal statements

true. If you think that every truth deserves a truthmaker, then the question is wide

open what makes true a claim of the form ♢A or □A. Since there is no real agreement

about what might count as the truthmaker of the quantified claims∀xA(x) or∃xA(x),

it is not clear that either the proof theory or the model theory will be of much help in

this inquiry, since both the proof theory and the model theory give some kind of ac-

count of truth conditions but nothing akin to truth makers. However, perhaps the proof

theory may give an alternative perspective on these issues.

Finally, questions around serious actualism arise concerning the difference between pred-

icates that express properties (that are existence entailing) and those predicates that

do not [43]. These scruples are encoded in the predicate rules: the only way to have

property F (in a given context) is to exist (at that context). As we saw, not every open

sentence determines a property in that sense. (Pegasus does not exist. Pegasus does

not have the property of nonexistence in the sense that matters for the actualist.) A sim-

ilar kind of distinction between predicates holds for identity and indiscernibility and

epistemic modality. If a and b are the same thing, then any feature of a is a feature of

b. However, epistemic modalities do not necessarily respect identity: being known to

be identical to a is not a feature something can have, since it may well be that a is the

same thing as b, but a is known to be identical to a and b is not known to be identical to

a. So, in an epistemic modal logic with identity, we need to keep track of which (sim-

ple or complex) predicates express features and which do not. We also need to keep

track of which predicates express properties in the sense salient for serious actualism,
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and which do not. Is the feature/non-feature distinction for the epistemic logician the

same as the property/non-property distinction for the actualist? There are different

options to explore here, and different modal logics that arise, as we do so.

Of course, I do not expect the interventions here in this paper to settle any of the ques-

tions raised here, or even to significantly shift the debate between necessitists and

contingentists. Nonetheless, I hope to have offered some new tools we can use for un-

derstanding, clarifying and refining some of the fundamental concepts that we find

ourselves using as we think about our world and our place in it.

formal appendix

In this technical appendix, I collate the formal definitions of the proof system discussed here,

the class of models that result, and I prove the soundness and completeness theorems connect-

ing them. To keep this appendix relatively short, I will discuss the rules for ¬, ∨, ♢, the inner

quantifier ∃, the outer quantifier ∃♢
, and the “existence” predicate ↓, leaving the other connec-

tives, necessity and the universal quantifiers aside.
32

The proof rules and modelling conditions for each logical concept are independent of the

other concepts: in particular, the results apply equally to a language with only the inner quan-

tifier ∃, or only the outer quantifier ∃♢
, and for a language containing both. At all times, our

results will apply to any first-order languageL whose logical concepts are some selection from

among (¬, ∨, ∃, ∃♢
, ♢, ↓) given some countable family Var of first-order variables, and some

stock of function symbols (including countably many zero-ary function symbols, i. e. constants,

or names), and predicates of any desired arity. We allow for formulas to contain unbound vari-

ables, and in what follows, whenever we substitute a term inside some formula (or hyperse-

quent), we require that the formula be free to substitute in that position, i.e., that no variables

that were free in the term become bound under that substitution.

definition 1 [hypersequents]: A hypersequent in L is a nonempty finite multiset of pairs of

finite multisets of formulas and terms fromL.

We call each pair of multisets of formulas in a given hypersequentH a sequent inH. Order does

not matter in hypersequents, either the ordering of sequents inside hypersequents, or the or-

dering of formulas in the left or the right of a sequent inside the hypersequent. As an example,

notation Γ, A � ∆ | H represents a hypersequent in which there is one sequent Γ, A � ∆,

and the remaining sequents together form the multiset H of sequents.
33

In this first sequent,

A occurs at least once on the left, and the remaining formulas on the left, if any—including any

further occurrences of A—form the multiset Γ , while ∆ is the multiset of formulas on the right.

Here, any or all of Γ and ∆ andHmay be empty.

definition 2 [derivations]: A derivation of a hypersequentH is a finite tree of hypersequents,

in which each leaf is an axiom, each transition is an instance of a rule.

The axioms and rules of this proof system are given in Figure 1 (see page 35). The axioms are

identity hypersequents of the form ⋆ � ⋆, where ⋆ may be either a formula, or a term. Similarly,

in the structural rules of left and right (internal) and external weakening and contraction, and

(additive) cut, the active item may be either a formula or a term, so for concision, we represent

either case, ambiguously, with a ⋆ in the table of rules. There are term rules governing the de-

finedness of different kinds of singular terms in the vocabulary (variables take a value in at least

32
As usual, you could either treat them as defined concepts, given the usual definitions in terms of the

available vocabulary, or you could give them the rules one would expect, generalising the given rules for the

selected primitive vocabulary.

33H is another hypersequent in the case that it is nonempty.
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⋆ � ⋆ Id

Γ � ∆ | H
KL

Γ, ⋆ � ∆ | H

Γ � ∆ | H
KR

Γ � ⋆, ∆ | H

H
KE

Γ � ∆ | H

Γ, ⋆, ⋆ � ∆ | H
WL

Γ, ⋆ � ∆ | H

Γ � ⋆, ⋆, ∆ | H
WR

Γ � ⋆, ∆ | H

Γ � ∆ | Γ � ∆ | H
WE

Γ � ∆ | H

Γ � ⋆, ∆ | H Γ, ⋆ � ∆ | H
Cut

Γ � ∆ | H

H
Spec

n
t

H[n := t]

x � | H
VarL

H

ti, Γ � ∆ | H
FL

Ft1 · · · tn, Γ � ∆ | H

ti, Γ � ∆ | H
fL

ft1 · · · tn, Γ � ∆ | H

Γ � A, B, ∆ | H
=============== ∨Df

Γ � A ∨ B, ∆ | H

Γ, A � ∆ | H
============ ¬Df

Γ � ¬A, ∆ | H

A � | Γ � ∆ | H
=============== ♢Df

Γ, ♢A � ∆ | H

Γ, t � ∆ | H
=========== ↓Df

Γ, t↓ � ∆ | H

Γ, n, A(n) � ∆ | H
================ ∃Df

Γ,∃xA(x) � ∆ | H

n � | Γ, A(n) � ∆ | H
=================== ∃♢

Df

Γ,∃♢
xA(x) � ∆ | H

Figure 1: Structural rules, term rules, and defining rules

one zone; complex terms are defined only at zones at which their constituents are defined, and

similarly, atomic predications of terms are true only at zones at which those terms are defined),

as motivated by serious actualist considerations.

When constructing proofs and derivations, it is most natural to work with multisets rather

than sets of formulas, because we wish to keep track of the use of a given formula in justifying an-

other.
34

When it comes to models cutting things so finely is often more trouble than it is worth.
35

When our attention turns to hypersequents that are not derivable, we pass from hypersequents

to sets, and to mark this difference, we use different terminology.

definition 3 [positions, hyperpositions, extension and coverage]: A position inL is a pair

of sets of formulas and terms fromL. (Positions need not be composed of finite sets.) The posi-

tion [X ′ : Y ′] extends [X : Y] when X ⊆ X ′ and Y ⊆ Y ′. ¶ A hyperpositionP inL is a non-empty

set of positions inLwhere no position inP extends any other position inP. (This is the nonre-

dundancy condition on hyperpositions.) ¶ The hyperposition P ′ extends P (written P ⊑ P ′)
when for each [X : Y] in P there is some [X ′ : Y ′] in P ′ extending [X : Y]. ¶ Analogously, the

hypersequentH is covered by the hyperpositionP when for each Γ � ∆ inH there is some position

[X : Y] inP where each member of the multiset Γ (or ∆) is in the set X (or Y) respectively.

So, for example [p : r | q : s] is extended by [p, q : r | q : s] which is extended by [p, q : r, s].

The set [p : q : r | p, q : r, s] is not a hyperposition because it violates the nonredundancy

condition. We impose the nonredundancy condition for two reasons: first, if position [X : Y]

is extended by [X ′ : Y ′], then making the assertions and denials recorded in [X ′ : Y ′] (in some

zone of a discourse) counts as making those assertions and denials recorded in [X : Y] too, so

as far as keeping track of the commitments in dialogue goes, nonredundant positions suffice.

Second, if we restrict our attention to nonredundant hyperpositions, the following lemma holds:

34
One appeal to A might be used to justify B where a different use of A might refute C.

35
At least for models where the underlying logic is classical or constructive, and not so substructural so

as to reject the contraction rule.
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lemma 1 [extension is a partial order]: IfP ⊑ P ′ andP ′ ⊑ P thenP = P ′.

Proof: Take any position [X : Y] in P. We show that this position is also in P ′. First, since P ′
extends P, there is some [X ′ : Y ′] in P ′ extending [X : Y]. Then, since P extends P ′ there is

some [X ′′ : Y ′′] inP extending [X ′ : Y ′], and a fortiori, [X : Y]. SinceP is nonredundant, [X : Y]

is the only position in P extending [X : Y], so [X : Y] = [X ′ : Y ′] = [X ′′ : Y ′′], and hence,

[X : Y] is also inP ′. This reasoning also works in reverse, so all positions inP are also inP ′, so

by extensionality,P = P ′.

Our interest in hyperpositions arises from our desire to understand what cannot be derived. A

hyperposition is said to be available if that particular combination of assertions and denials, par-

titioned into different zones, is not ruled out by the meaning rules. To make availability precise,

we must clarify the connection between the possibly infinite hyperpositions, and hypersequents,

which are by design, finite.

definition 4 [hyperpositions, hypersequents and availability]: A hyperpositionP is avail-

able when no hypersequentH covered byP is derivable.

So, for example, the position [n, ♢p : q | q : p, n] is not available because it covers the derivable

sequent ♢p � | � p.

An available hyperposition represents how things might be thought to be, modally speaking Of

course, I could assent to the claim that something is possible, without entertaining any scenario

in which that possibility take place; I might take a disjunction to hold without taking either dis-

junct to hold, and I might take there to be an item that satisfies condition A(x) without being

able to identify any such thing. However, if I grant a possibility statement, a disjunction or an

existentially quantified claim, I am inviting for my claim to be spelled out in one of these ways. A

hyperposition is fully refined if each of the claims it explicitly makes is spelled out in just this sort

of way:

definition 5 [full refinement]: A hyperposition P is fully refined if and only if the following

conditions hold:

• If [ft1 · · · tn, X : Y] ∈ P then t1, . . . , tn ∈ X.

• If [Ft1 · · · tn, X : Y] ∈ P then t1, . . . , tn ∈ X.

• For each variable x occurring free inP, for some [X : Y] ∈ P, x ∈ X.

• If [A ∨ B, X : Y] ∈ P then either A ∈ X or B ∈ X.

• If [X : A ∨ B, Y] ∈ P then A, B ∈ Y.

• If [¬A, X : Y] ∈ P then A ∈ Y.

• If [X : ¬A, Y] ∈ P then A ∈ X.

• If [♢A, X : Y] ∈ P then for some [X ′ : Y ′] ∈ P, A ∈ X ′.

• If [X : ♢A, Y] ∈ P then for every [X ′ : Y ′] ∈ P, A ∈ Y ′.

• If [X, t↓ : Y] ∈ P then t ∈ X.

• If [X : t↓, Y] ∈ P then t ∈ Y.

• If [X, ∃xA(x) : Y] ∈ P then for some term t, both t, A(t) ∈ X.

• If [X : ∃xA(x), Y] ∈ P then for every term t, either or A(t) ∈ Y or t ∈ Y.

• If [X, ∃♢xA(x) : Y] ∈ P then for some term t and some [X ′ : Y ′] ∈ P, t ∈ X ′, and A(t) ∈ X.

• If [X : ∃♢xA(x) : Y] ∈ P then for every term t, either A(t) ∈ Y, or for every [X ′ : Y ′] ∈ P,

t ∈ Y ′.
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Fully refined positions are specific about the claims they make. As we will see, they are a mere

hop, skip and a jump away from models for our logic. So, the following lemma will be the key in

proving completeness, but it is interesting for its own sake, as well:

lemma 2 [hyperposition refinement]: For any available hyperpositionP in languageL, and any

extensionL ′ ofLwith denumerably many more constants, there is some fully refined and available hyper-

positionP∗ inL ′ extendingP.

Proof: This is a standard construction, familiar from tableaux calculi [10, 67]. We work in L ′,
starting with our original hyperpositionP. We select a formula in a position insideP to which

one of the conditions apply, and we insert the new items as required by the refinement con-

ditions, sure at least one of the possible results is indeed an available position. For the ♢-left

condition (dictating what is required when ♢A occurs in the left of a position), we add a fresh

position in which A occurs by itself in the left. For the ∃- and ∃♢
-left conditions, we add a fresh

constant from the supply added inL ′ as witnesses. A fully refined hyperposition is the limit of

this procedure, under the extension ordering, when every formula has been processed. The only

exception to this structure is the variable condition, which requires that any variable occurring

unbound in a formula inP must occur positively in some position. For this, we appeal simply to

the term rule VarL, which delivers this result immediately: if a given hyperposition is available,

it is safe to add a fresh zone at which any variable at all (whether present or absent inP ), at no

cost to the position.
36

The rules of the proof calculus ensure that at each stage, we have an available position. I will

illustrate this with enough examples to show how the result is proved.

Consider the disjunction clauses: for a disjunction in the right of a position, it is always safe

to add both disjuncts to the right of that position, since by the following derivation

Γ � A ∨ B, A, B, ∆ | H
∨Df

Γ � A ∨ B, A ∨ B, ∆ | H
W

Γ � A ∨ B, ∆ | H

if the position with A∨B, A, B on the left is not available, then so is the corresponding position

in which A ∨ B (without the A and the B) is also not available. For a disjunction on the left the

derivation must use Cut and Id.

Id

A ∨ B � A ∨ B
K

Γ, A ∨ B � A ∨ B, ∆ | H
∨Df

Γ, A ∨ B � A, B, ∆ | H

Γ, A, A ∨ B � ∆ | H
K

Γ, A, A ∨ B � B, ∆ | H
Cut

Γ, A ∨ B � B, ∆ | H Γ, B, A ∨ B � ∆ | H
Cut

Γ, A ∨ B � ∆ | H
So, if a hyperposition with A ∨ B on the left in some position is available, then either the result

of adding A to the left of that position, or the result of adding B to the left of that position must

be available. If both are unavailable, then this reasoning shows that the original position must

be unavailable, too.

We can reason in the same way for the ♢ conditions. First, for the left, since we have this

derivation:

A � | ♢A, Γ � ∆ | H
♢Df

♢A, ♢A, Γ � ∆ | H
W

♢A, Γ � ∆ | H
36

The VarL rule is what ensures that free variables in the calculus always take values at some zone or other,

as is expected by their behaviour in the quantifier rules. In this calculus, variables are not inferentially gen-

eral among singular terms, as this rule holds for variables, but does not for arbitrary terms, which may fail

to denote at all zones.
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it follows that any available hyperposition with ♢A in the left component of some position may

be extended to an available hyperposition with some position with A on the left. Conversely, for

the right rule, the following derivation shows that any available hyperposition with ♢A on the

right of one position may be safely extended to include A on the right of any given position.
37

Γ � ♢A, ∆ | Γ
′ � A, ∆

′
| H

Id

♢A � ♢A
♢Df

A � | � ♢A
K

Γ
′
, A � ∆

′
| Γ � ♢A, ∆ | H

Cut

Γ � ♢A, ∆ | Γ
′ � ∆

′
| H

Finally, we consider the ∃♢
conditions, leaving the remaining conditions as a straightforward

exercise. First, we show that if we have any available hyperposition in which ∃♢xA(x) occurs on

the left in a position may be safely extended with a fresh name n, where n is on the left of a new

position, while A(n) is on the left in the original position.

n � | A(n), ∃♢
xA(x), Γ � ∆ | H

∃♢
Df

∃♢
xA(x), ∃♢

xA(x), Γ � ∆ | H
W

∃♢
xA(x), Γ � ∆ | H

For ∃♢xA(x) in the right of an available hyperposition, we must show that for any term t, we

may either safely extend the hyperposition with A(t) on the right of this same position, or we

can safely extend it so that the term t is on the right of each position. Since we have the derivation

in Figure 2 (for any selected sequent Γ ′ � ∆ ′ in the original hypersequent), we are assured that

one of these two possibilities is open to us.

This completes the proof.

The atoms in a fully refined hyperposition determine the status of each complex formula, in the

manner discussed above (see p. 3). As such, they will be key to facilitating the connection be-

tween the logic characterised by this proof system and the class of models.

definition 6 [vdqs5 model]: A variable domain quantified s5 model is a structure M consisting

of (a) A non-empty set W of worlds; (b) For each world, W, a set Dw, the domain at W; (Given the

family Dw of domains for each w ∈ W, the global domain D∗ is

⋃
w∈W Dw); (c) An interpre-

tation [[·]] assigning values to each predicate and function symbol as follows: (c1) For each n-ary

function symbol f, [[f]] is a partial function Dn
∗ ⇀ D∗, such that if [[f]](a1, . . . , an) ∈ Dw, then

a1, . . . , an ∈ Dw. (c2) For each n-ary predicate F, [[F]] is a function W → (Dn
∗ → {0, 1}) such

that if [[F]](w)(a1, . . . , an) = 1 then a1, . . . , an ∈ Dw.

Models provide truth conditions in terms of more general satisfaction conditions, using assign-

ments of values to variables.

definition 7 [assignments of values]: An assignment α of values to variables, given a lan-

guageL and model ⟨W, {Dw : w ∈ W}, [[·]]⟩ is a function from the set Var of variables to D∗.

As usual, we say that the assignment α ′ is an x-variant of α if α ′ assigns the same values to all

variables as α does, except possibly the variable x.

Given an assignment of values to variables and the interpretation of terms in a given model

M, we can give values to each term:

37
It is an easy exercise to simplify this derivation for the special case in which the selected position is the

same position as that containing ♢A.
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definition 8 [interpretation of singular terms]: For any model M forLwe define the in-

terpretation partial function [[·]]α, for all singular terms (including those with free variables) by

induction on the structure of a term:

• [[x]]α = α(x), for each variable x.

• [[f(t1, . . . , tn)]]α = [[f]]([[t1]]α, . . . , [[tn]]α) when each [[ti]]α is defined, and when [[f]] is defined

on those values; and is undefined otherwise
38

Each singular term is a rigid designator in the sense that a term t’s denotation [[t]]α does not

depend on a choice of world. The object denoted by a term t may exist in some worlds and not

in others, and the predicates satisfied by that object may well vary from world-to-world, but in

these models, but denotation is not world relative.

definition 9 [satisfaction conditions in vdqs5 models]: For any model M = ⟨W, {Dw :

w ∈ W}, [[·]]⟩, a world w in W and an assignment α of values to the variables, we determine the

satisfaction relation ⊨ on terms
39

and formulas as follows:

• M, w, α ⊨ t iff [[t]]α ∈ Dw.

• M, α, w ⊨ Ft1 · · · tn iff [[F]](w)([[t1]]w, . . . , [[tn]]w) = 1

• M, w, α ⊨ t↓ iff M, w, α ⊨ t.

• M, w, α ⊨ ¬A iff M, w, α ̸⊨ A.

• M, w, α ⊨ A ∨ B iff M, w, α ⊨ A or M, α, w ⊨ B.

• M, w, α ⊨ ♢A iff M, w ′, α ⊨ A for some w ′ ∈ W.

• M, w, α ⊨ ∃xA iff M, w, α ′ ⊨ A for some x-variant α ′ of α, where α ′(x) ∈ Dw.

• M, w, α ⊨ ∃♢xA iff M, w, α ′ ⊨ A for some x-variant α ′ of α.

As is usual, we will say that if M, w, α ⊨ A then A is true at world w under assignment α, in

model M, and similarly, if M, w, α ̸⊨ A then A is false. For terms, we say that t exists at w (under

α) or doesn’t exist, depending on whether M, w, α ⊨ t obtains or not. If ⋆ is either a term or a

formula, we will use the generic terms holding and failing to cover both distinctions.

One crucial feature of models like these is that the only contribution of a singular term (whether

a name, a variable, or a complex function term) to the satisfaction of a formula is given by way of

its semantic value: we can substitute one term by another (with the same semantic value) at no

change to satisfaction. We appeal to this fact at a surprising number of places in this Appendix,

so it is worth calling out with another lemma.

lemma 3 [semantic value lemma]: For each termtand namen, If [[t]]α = [[n]], then for each formula

A, M, w, α ⊨ A iffM, w, α ⊨ A[n := t]. ¶Similarly, for each variablex (not free int) if [[t]]α = α(x),

then for each formula A, M, w, α ⊨ A[n := x] iff M, w, α ⊨ A[n := t].

Proof: This proof is a straightforward induction on the truth conditions for the formula A. The

assumption that [[t]]α = [[n]] (or that [[t]]α = α(x)) ensures that the result holds when A is a

predication, and then this fact suffices to complete the proof, noting that t is required to be free

for n in A.

These models are sound and complete for our hypersequent proof system, not just in the sense

that each provable formula is true at every world of every model (under any assignment), but in

the strong sense that no derivable hypersequent has a counterexample in any model.

38
Note that n may be zero, so this clause applies to zero-ary function symbols, i.e. constants, and this

definition allows for such constants to be undefined by [[·]].
39

Since our hypersequents include terms as well as formulas, extending the satisfaction relation to terms

makes the presentation simpler.
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definition 10 [counterexamples, validity and verifying positions]: A model M (and as-

signment α) is a counterexample to a hypersequentH iff for each sequent Γ � ∆ inH there is

some world w in M where for each ⋆ ∈ Γ , ⋆ holds at w under α, and for each ∗ ∈ ∆, ∗ fails at w

under α. ¶We say that a hypersequentH holds on the model M iff M is not a counterexample to

Hunder any assignment. ¶A hypersequent is vdqs5 valid if and only if it holds on every model.

¶We think of hyperpositions as dual to hypersequents, so given a hyperpositionP composed of

positions [Xi : Yi] we say that the model M (and assignment α) verifiesP iff for each position

[Xi : Yi] there is some world w in M where (under α) each member of Xi holds at w and each

member of Yi fails.

theorem 4 [soundness for vdqs5 models]: No derivable hypersequent has a counterexample in any

vdqs5model. That is, if the hypersequentH is derivable, it is vdqs5 valid.

Proof: The proof is an induction on the derivation of the hypersequentH. Any counterexample

to an axiomatic identity sequent is impossible by definition, so the base case is proved. For each

rule, it suffices to show that from a counterexample to the conclusion of a rule, we may find a coun-

terexample to at least one premise of that rule. This holds immediately for the structural rules of

weakening and contraction: any counterexample to the conclusion simply is a counterexample

to the premise. ¶ Similarly, for Cut, any counterexample to the conclusion is a counterexample

to one premise or other: take the world w and assignment α at which the sequent Γ � ∆, the site

of the cut (formula or term) is evaluated. At this world, if the item ⋆ fails at w (under α), then this

model is a counterexample to the first premise of the inference, and if it holds, it is a counterex-

ample to the second premise. ¶ For Spec
n
t , the final structural rule, any counterexample M, α

to a hypersequentH[n := t] can be transformed into a counterexample M ′, α toH, by setting

M ′
to be the same as the model M, except that [[n]] is set to be [[t]]α. This is a counterexample to

H, given Lemma 3.

Now for the term rules: for FL and fL, we note that Ft1 · · · tn is true at w under α only when

[[t1]]α, . . . , [[tn]]α are defined and in Dw, and similarly [[ft1 · · · tn]]α is defined and in Dw only

when [[t1]]α, . . . , [[tn]]α are defined and in Dw, so any counterexample to the conclusion is, by

construction, a counterexample to the premise. ¶ For VarL, we note that for any model and as-

signment α that serves as a counterexample toH, and any variable x, the assignment α gives x

a value in D∗, which means the value is in Dw for some world w. The sequent x � has a coun-

terexample at w, since x takes a value at is present at that world, so our model (and assignment)

serves as a counterexample to premise hypersequent, too.

Finally, for the defining rules, we note that the ∨, ¬, ♢ and ↓ rules are immediate: any coun-

terexample to the conclusion simply is a counterexample to the premise, and vice versa. ¶ For

∃Df if we have a model in which there is a world at which n is defined and A(n) is true (under the

assignment α) then under this assignment,∃xA(x) is true, since A(x) holds when x is assigned

the value [[n]] (by Lemma 3). So, our model that is a counterexample to the premise sequent is

a counterexample to the conclusion. Conversely, if ∃xA(x) holds at a world w in our model M,

under α, then it follows that there is some x-variant α ′ of α where α ′(x) ∈ Dw and A(x) holds

at w under α ′. Since n is a fresh name (as is required for this rule) then under model M ′
which

is like M except we assign [[n]] = α ′(x), then in M ′
, A(n) holds (under α ′) by Lemma 3, and

n is defined at w. The other formulas in Γ , ∆ and H do not contain n, so their values are un-

changed under M ′
, and so, M ′

(and α ′) provide a counterexample to the premise sequent. ¶

The reasoning for ∃♢
Df follows in the same way, and so, we can declare the soundness theorem

proved.

Now we turn to the completeness theorem. We aim to show that only the derivable sequents are

vdqs5 valid. As usual, the proof construction establishes the contrapositive, that for any under-

ivable hypersequent, there is some vdsq5 model that serves as a counterexample. Here, most of

our work has already been done, in Lemma 2. We know that for any underivable hypersequent

in a given language L, we have a fully refined hyperposition, covering the hypersequent, in a

language extending L with a countable stock of extra names. We use such a hyperposition to
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construct a model, and we then show that this model provides a counterexample to our original

hypersequent.

definition 11 [the model MP∗ for a refined hyperpositionP∗]: For any fully refined hy-

perposition P∗, we define the model MP∗ as follows: the worlds are the positions in P∗. ¶ The

domain at the world [X : Y] is the set of terms in X. So, the global domain is the set of terms

occurring in the left at some position inside P∗. ¶ We interpret the n-ary function symbol f by

setting [[f]](t1, . . . , tn) = ft1 · · · tn, if the term ft1 · · · tn is in the global domain, and allowing

the value of the partial function [[f]] at (t1, . . . , tn) to be undefined, otherwise. ¶ We interpret

the n-ary predicate F by setting [[F]](t1, . . . , tn)([X : Y]) = 1 if Ft1 · · · tn ∈ X, and 0 otherwise.

lemma 5 [correctness of MP∗ ]: The structure MP∗ defined in terms of the fully refined hyperposi-

tionP∗ is indeed a model, and it verifies the hyperpositionP∗.

Proof: To confirm that MP∗ is a model, we must check that the conditions for function sym-

bols and predicates hold. For function symbols, we require that if [[f]](t1, . . . , tn) ∈ Dw then

t1, . . . , tn ∈ Dw. That is, we need that for each position [X : Y] in P∗, if ft1 · · · tn ∈ X then

t1, . . . , tn ∈ X too. This is a condition of full refinement, so it holds ofP∗. ¶ Similarly for predi-

cate symbols, we require that if [[F]](w)(t1, . . . , tn) = 1 then t1, . . . , tn ∈ Dw. That is, we need

that for each [X : Y] inP∗, if Ft1 · · · tn ∈ X then t1, . . . , tn ∈ X too. This is a condition of full

refinement, so it also holds ofP∗. So, our structure MP∗ is indeed a model.

To confirm that MP∗ verifies the hyperpositionP∗ we show that for each position [X : Y] in

P∗, the members of X hold at the world [X : Y] while the members of Y all fail, under the identity

assignment of values to the variables. We proceed by induction on the structure, starting with

terms, and then moving to formulas. ¶ For terms: by the definition of MP∗ , the term t holds

at [X : Y] iff t ∈ X. If t ∈ Y then t cannot be in X (since P∗ is available) so t fails at [X : Y],

as desired. ¶ Again, by the definition of MP∗ , the atomic formula Ft1 · · · tn holds at [X : Y] iff

it is a member of X. If Ft1 · · · tn ∈ Y, then it cannot be in X (since P∗ is available), so it fails

at [X : Y]. ¶ For negations, if ¬A is in the left component X then by full refinement, A is in Y,

and by the induction hypothesis, A fails at [X : Y], so by the modelling condition, ¬A holds at

[X : Y]. On the other hand, if ¬A is in Y, then by full refinement, A ∈ X, and so, A holds at

[X : Y], ensuring that ¬A fails at [X : Y] as desired. ¶ For disjunctions: if A ∨ B ∈ X, then

by full refinement, A ∈ X or B ∈ X, which means either A or B holds at [X : Y], and hence

A ∨ B holds at [X : Y]. On the other hand, if A ∨ B ∈ Y, then by full refinement, A, B ∈ Y,

which means that both A and B fail at [X : Y], ensuring that A ∨ B fails at [X : Y] as desired.

¶ If ♢A ∈ X, then by full refinement, there is some position [X ′ : Y ′] ∈ P∗ where A ∈ X ′,

and so, by hypothesis, some world in MP∗ at which A holds. So, ♢A holds at [X : Y]. On the

other hand, if ♢A ∈ Y, then by full refinement, A ∈ Y ′ for each position [X ′ : Y ′], and so, by

hypothesis, A fails at each world in MP∗ . So, ♢A fails at [X : Y] as desired. ¶ If ∃xA(x) ∈ X,

then by full refinement, there is some term t where t ∈ X, and A(t) ∈ X. So, by hypothesis, t

holds at [X : Y] and is in the domain at [X : Y]. Since A(t) holds at [X : Y], by Lemma 3, A(x)

holds there under the x-variant assignment that sends x to t. So, ∃xA(x) holds at [X : Y] under

the original (identity) assignment. On the other hand, if ∃xA(x) ∈ Y, then for any term t, by

full refinement, either A(t) ∈ Y or t ∈ Y. So, under any possible x-variant assignment where x

takes a value in the domain of [X : Y] (again, by Lemma 3) A(x) ∈ Y, meaning that ∃xA(x) fails

at [X : Y] as desired. ¶ If ∃♢xA(x) ∈ X, then by full refinement, there is some term t and some

position [X ′ : Y ′] in P∗ where t ∈ X ′, and A(t) ∈ X. Since t ∈ X ′, t is in the global domain,

and since A(t) holds at [X : Y], by Lemma 3, A(x) holds there under the x-variant assignment

that sends x to t. So, ∃♢xA(x) holds at [X : Y] under the original (identity) assignment. On

the other hand, if ∃♢xA(x) ∈ Y, then for any term t, by full refinement, either A(t) ∈ Y or t

is not in the global domain. So, under any possible x-variant assignment (again, by Lemma 3)

A(x) ∈ Y, meaning that ∃x♢A(x) fails at [X : Y] as desired.

This proof was the bulk of the work for showing completeness. Now for the payoff:
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theorem 6 [completeness for vdqs5 models]: IfH is valid in every vdqs5model, it is derivable.

Proof: IfH is not derivable, then consider the corresponding position fully refined positionP∗
extendingH (which exists, by Lemma 2). The model MP∗ verifiesP∗, and so, serves as a coun-

terexample to the original hypersequentH. So, any underivable hypersequent has a counterex-

ample, as desired.

In this appendix, we provided an independently motivated hypersequent proof system to rep-

resent natural reasoning for the connectives, quantifiers and modal operators, combined in a

way to respect the contingentist’s use of those concepts. The proof system incorporates rules

for inner quantifiers (which, for the contingentist, have existential import) and outer quanti-

fiers (which, for the contingentist, allow for possibilist quantification). The defining rules for the

logical connectives, operators and quantifiers are modular, in that each can be independently

adopted or avoided, independently of the others. The models corresponding to this proof system

are standard, so the fact that we have soundness and completeness theorems connecting the

proof system and the models, means that the inference rules governing modal and quantifica-

tional concepts can be used to give us an independent account of why the concepts that we use

in our own thought and talk might correspond to the models that have proved to be so useful.
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