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Abstract: Paraconsistent logics are, by definition, inconsistency tolerant: In a paraconsistent
logic, inconsistencies need not entail everything. However, there is more than one way a
body of information can be inconsistent. In this paper I distinguish contradictions from
other inconsistencies, and I show that many different logics are in an important sense,
“paraconsistent” in virtue of being inconsistency tolerant without thereby being contradiction
tolerant. For example, even though no inconsistencies are tolerated by intuitionistic proposi-
tional logic, some inconsistencies are tolerated by intuitionistic predicate logic. In this way,
intuitionistic predicate logic is, in a mild sense, paraconsistent. So too are orthologic and
quantum propositional logic, and other formal systems. Given this fact, a widespread view—
that traditional paraconsistent logics are especially repugnant because they countenance
inconsistencies—is undercut. Many well-understood non-classical logics countenance in-
consistencies as well.

* * *

“Paraconsistent” means “beyond the consistent” [3, 15]. Paraconsistent logics
tolerate inconsistencies in a way that traditional logics do not. In a paraconsistent
logic, the inference of explosion

A, ∼A ` B

is rejected. This may be for any of a number of reasons [16]. For proponents of
relevance [1, 2] the argument has gone awry when we infer an irrelevant B from the
inconsistent premises. Those who argue that inconsistent theories may have some
logical content but do not commit us to everything, have reason to think that these
theories are closed under a relation of paraconsistent logical consequence [12, 18].
Another reason to adopt a paraconsistent logic is more extreme. You may take the
world to be inconsistent [14], and a true theory incorporating this inconsistency
must be governed by a paraconsistent logic.
However, not all inconsistencies are straightforward contradictions. As a sim-

ple example, consider the set {A ∨ B, ∼A, ∼B}. It is as inconsistent as can be, yet it
contains no contradictory pair of formulas. This set is inconsistent, and it is classi-
cally unsatisfiable without containing an explicit contradiction. Of course, we can
note that to members of the set, ∼A and ∼B together entail ∼(A ∨ B) and this is
the negation of a formula in this set. Therefore, we might say that the set con-
tains an implicit contradiction, without containing an explicit one. The fact that
some inconsistent sets are not themselves explicit contradictions motivates a closer
look at the definition of paraconsistency. Let’s specify what it is for a consequence
relation to be paraconsistent in the following two ways:
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• A consequence relation ` is contradiction tolerant if and only if for some for-
mulas A and B, the contradictory set {A, ∼A} does not entail B; that is,
A, ∼A 6` B.

• A consequence relation ` is inconsistency tolerant if and only if for some incon-
sistent set X and some formula B we have X 6` B.

A contradiction tolerant consequence relation is also inconsistency tolerant—-as
the set {A, ∼A} is inconsistent. However, it is not at all obvious that the converse
holds. Perhaps there are inconsistency tolerant consequence relations which are
not contradiction tolerant. Such consequence relations are the focus of the rest of
this paper.

* * *

To judge whether or not a relation is inconsistency tolerant we must know
when a set is inconsistent. This makes a judgement about inconsistency tolerance
depend on a judgement about what could count as an inconsistency. This might
appear to make the notion of inconsistency tolerance more problematic than con-
tradiction tolerance, which has the virtue of being much more straightforward to
check for. However, this appearance is misleading. While it seems straightforward
to check for the presence of an an explicit contradiction in a given set, this requires
at least some judgement. In particular, you must know what counts as a negation in
the logic in question. For example, the classical modal logic S5 is contradiction
tolerant, if we take ♦¬ (combining possibility with the Boolean negation of classi-
cal logic) to be the negation in question. We might argue over whether or not ♦¬

deserves to be called “negation,” and this argument is similar to an argument over
whether or not a set deserves to be thought of as inconsistent. Determinations of
inconsistency tolerance require an account of consistency, and determinations of
contradiction tolerance require an account of negation.

There are a number of different possibilities for characterising inconsistency.
Let me consider some here.

• Inconsistency as unsatisfiability: A set X is inconsistent if and only if X ` A for
each A.1

• Inconsistency as contradiction entailing: A set X is inconsistent if and only if there
is some A such that X ` A and X ` ∼A.

F 1 These two characterisations of inconsistency agree if the consequence relation ` sat-
isfies explosion, transitivity and the structural rule of contraction, and if negation is present.
P Suppose we have X ` A and X ` ∼A. Then transitivity applied to X ` A

and A, ∼A ` B gives X, ∼A ` B, and transitivity again, with X ` ∼A gives X,X ` B.
Contraction, then, supplies X ` B. B was arbitrary, so X is unsatisfiable: it entails
every formula whatsoever. Conversely, if X ` B for every B, then for any A, X ` A

and X ` ∼A (at least if negation is in the language in question). �

1I call this feature unsatisfiability because it is suggestive of its reading in model theory. If X ` A
if and only if every model satisfying X also satisfies A, then X ` A for everyA when X is satisfiable in
no model at all. Of course, X might also be satisfied in a model provided that this model satisfies every
statement whatsoever, but any model such as this is of no use in determining the difference between
valid and invalid argument forms, and so it can safely be ignored for these purposes.



In the context of a logic rejecting explosion, inconsistency as unsatisfiability is a
much stronger requirement than contradiction entailment. In fact, in many para-
consistent logics (such as first degree entailment [1], or Priest’s propositional logic
LP [13]) no finite set of formulas is unsatisfiable, but many entail contradictions.
So, these notions can come apart.

* * *

With these distinctions at hand, we can now begin to consider what some have
taken to be a decisive failing of paraconsistent logics. For some opponents of para-
consistency, paraconsistent logics are especially bad because they are inconsistency
tolerant: they take as “possible” things which are genuinely impossible [19]. In the
semantics for paraconsistent logics, valuations (or worlds, or set-ups or situations
or what-have-you) allow inconsistencies to be true, and no sense can be supplied
to this notion. The paraconsistentist countenances A and ∼A being true (while at
the very same time some other B is not true) but the critic cannot see what it is
for A and ∼A to both be true together.
Now, it is not my place to endorse this reasoning [17]. It begs the question

against the paraconsistentist, if it is an argument at all and notmerely an expression
of an inability to understand. My point here is that this objection, if it is any
good at all, applies equally to logics which are not paraconsistent in the traditional
sense. That is, inconsistency tolerance is just as bad as contradiction tolerance. For
the objection that there is no sense to be made of the joint truth of A and ∼A

applies just as well to any other inconsistent set. So, for the rest of this paper I will
look at how this objection applies in two cases: intuitionistic predicate logic and
orthologic, as these are both inconsistency tolerant logics. To fruitfully continue
this discussion we ought to settle on a notion of inconsistency, and for simplicity,
I will choose this notion:

• Inconsistency as classical unsatisfiability: A set X is inconsistent if and only if X `K

A for each A, where `K is classical logical consequence.

This is not problematic, because the opponents of paraconsistency most often en-
dorse classical consequence. We will see that their objections, if sustainable against
paraconsistent logics, ought to apply much more generally to other non-classical
logics too. But before discussing our two main examples, let us show that the
notion of paraconsistency as tolerating classical inconsistency is not a completely
trivial notion. It does not include every non-classical logic.

N-E 1 Intuitionistic propositional logic is not tolerant of classical inconsistency.
That is, if X `K A for each A, then X `J A for each A too, where `K and `J are classical
and intuitionistic propositional consequence respectively.
P Suppse X `K A for each A. Then it follows that X `K ⊥ where ⊥ is some
contradiction. By compactness, X ′ `K ⊥ where X ′ is a finite subset of X. Take B to
be the conjunction ofX ′, and thenB `K ⊥. It follows that `K ∼B. Now if a formula
is provable in classical propositional logic, its double negation is intuitionistically
provable. Therefore `J ∼∼∼B. But ∼∼∼B is intuitionistically equivalent to ∼B,
so `J ∼B. As a result, B `J ⊥ and hence X ′ `J ⊥ and X `J ⊥. That is, X is
intuitionistically unsatisfiable. �



So, even though intuitionistic propositional logic is strictly weaker than classical
propositional logic, this weakness does not apply when it comes to proving incon-
sistency. If X `K ⊥ then X `J ⊥ too. However, this does not apply in the case of
predicate logic, as we will see.

E 1 Intuitionistic predicate logic is tolerant of some classical inconsistencies. That
is, there are sets Xwhere X `K A for eachA, but X 6`J A for eachA too, where `K and `J

are now classical and intuitionistic predicate consequence respectively.
P In order to give a concrete example, I will present the Kripke semantics
for intuitionistic propositional logic. I will attempt to do with as little technical-
ity as possible. Introductions for intuitionistic predicate logic are available else-
where [6, 7, 8, 9]. For us, an interpretation for the language of intuitionistic predi-
cate logic will consist of a domain C of constructions, partially ordered by a relation
v of inclusion, such that for each c ∈ C,Dc is the domain of objects constructed by
C. If c v c ′ (c ′ is a stronger construction than c) then we must haveDc ⊆ D ′

c: any-
thing constructed by c is also constructed by c ′. A infinite sequence α assigning an
element of Dc for each variable in the language is said to be an assignment fit for c.
As is customary, we are interested in varying assignments one variable at a time. In
our case, α(x:=d) is the assignment which agrees with α about the value of variable
except for x, to which this new assignment gives the value d. The final element in
an interpretation is the relation  of forcing (or constructing, or proving) between a
construction together with an assignment fit for that construction, and a formula
(possibly containing free variables). So, an interpretation relation is a quadruple
〈C,v, D,〉. The assignment relation must satisfy these inductive clauses.

• c, α  A ∧ B if and only if c  A and c  B.

• c, α  A ∨ B if and only if c  A or c  B

• c, α  A ⊃ B if and only if for any c ′, α w c, if c ′, α  A then c ′, α  B.

• c, α  ∼A if and only if for any c ′ w c, c ′, α 6 A.

• c, α  ∃xA if and only if for some d ∈ Dc, c, α(x:=d)  A.

• c, α  ∀xA if and only if for any c ′ w c and any d ∈ D ′
c, c ′, α(x:=d)  A.

An entailment X ` A holds according to a particular interpretation 〈C,v, D,〉 if
for every c ∈ C and every α appropriate for c, if c, α  B for every B ∈ X then
c, α  A. An entailment X ` A holds in intuitionistic predicate logic if and only if
it holds in every interpretation.

I will not tarry to discuss the significance of these clauses here: suffice to say
that they are well motivated by the Brouwer, Heyting, Kolmogorov () inter-
pretation of constructions, and the resulting logic is weaker than classical logic.
However, to my knowledge, no-one has claimed that the logic is so weak as to in-
terpret impossibilitieswhich cannot be understood. The constructive account of the
connectives makes sense, given constructive motivations. However, it is not dif-
ficult find classical inconsistencies tolerated in models for intuitionistic predicate
logic.

Here a simple example of an inconsistency tolerance. We will examine an in-
terpretation verifying that

∼∀x(Fx ∨ ∼Fx) 6` B



The interpretation is straightforward. The setC of constructions is the infinite set
{c0, c1, c2, . . .}, ordered with ci v cj if and only if i ≤ j. Each construction has the
same domain Dcj

= {0, 1, 2, . . .} at each construction. Finally, let’s set F(i) true at
cj if and only if i ≤ j. (More precisely, cj, α  Fx if and only if α(x) = i and i ≤ j.)
This means that at each stage cj, F is true of the objects 0 up to j but not true of
j + 1, j + 2, and the rest. So, for every point ci, there is an object i + 1 such that
ci 6 F(i + 1) but ci 6 ∼F(i + 1). So, for each construction, ci 6 ∀x(Fx ∨ ∼Fx). So,
nowhere in the model is ∀x(Fx∨∼Fx) true, and it follows that ∼∀x(Fx∨∼Fx) is true
everywhere. But ∀x(Fx∨∼Fx) is a classical tautology, and its negation ∼∀x(Fx∨∼Fx)
is a classical inconsistency. Yet, we have found an interpretation in which it is true.
Intuitionistic predicate logic tolerates this inconsistency. �

Models like this are of independent interest. The smooth worlds of constructive
infinitesimal analysis rely essentially on these strong counterexamples of the law
of the excluded middle [5]. It is essential to this program of analysis that classical
inconsistencies like these be tolerated. (In fact, they are not only tolerated: they
are true in the intended models.)
For someone committed to classical consequence, thinking that any possibility

is closed under classical predicate consequence, the smooth worlds of intuitionis-
tic analysis are genuinely impossible. They are just as impossible as the impossible
worlds of the paraconsistent logician. They do not include outright contradictions,
but they do include propositions which cannot be true, and are no more palatable
than the inconsistencies of more traditional paraconsistent logics. If paraconsis-
tent logics are to be rejected, then so intuitionistic predicate logic ought to be
rejected alongside them.

E 2 Both lattice logicwith orthonegation (or simply, orthologic) and quantum logic,
which extends lattice logic with the orthomodular law (A ∧ (∼A ∨ (A ∧ B)) ` B) tolerate
classical inconsistencies.
P Lattice logic is a straightforward account of conjunction and disjunction
which avoids the inference of distribution: A ∧ (B ∨ C) ` (A ∧ B) ∨ (A ∧ C). In
other respects, conjunction and disjunction behave normally. Conjunction is the
greatest lower bound (with respect to the ordering of entailment) and disjunction is
the least upper bound (on that same ordering). The most orthodox way to extend
lattice logic with negation is to add an orthonegation. The resulting logic we will call
orthologic. An operator ∼ is an orthonegation in a lattice logic when it satisfies the
double negation rules

A ` ∼∼A ∼∼A ` A

and the bound rules
A ∧ ∼A ` B A ` B ∨ ∼B

These are the most orthodox negation rules imaginable. Were we to add them to
the logic of distributive lattices, the result would be classical propositional logic.
The context of general lattices, however, provides more leeway. Let’s consider a
simple non-distributive lattice model for orthologic. The following diagram is a
Hasse diagram for a six-element lattice. The lines in the digram represent the or-
dering of entailment: ⊥ is the lowest element in the order. Next come a, b, c, d

which are pairwise incomparable. The greatest element in the order is >. Con-
junction is defined as greatest lower bound, and disjunction as least upper bound.
So, the conjunction of any two different elements from a, b, c, d will be ⊥ and



⊥

a b c d

>

Figure 1: a non-distributive lattice

their disjunction will be >. This lattice is not distributive, because a ∧ (b ∨ c) is
the element a ∧> which is a, while (a ∧ b) ∨ (a ∧ c) is ⊥∨⊥, which is ⊥, and a

does not entail ⊥ because a comes strictly higher than ⊥ in the ordering.
We can make this a model for an orthonegation by choosing the interpretation

for ∼ carefully. We must take ∼⊥ = > and ∼> = ⊥. The negations of a, b, c, d

must also be values from a, b, c, d. The negation of a may be any from b, c, d (but
it cannot be a, for the bound laws must be satisfied). Once wemake the choice, the
negation of this element must be a. So without loss of generality, take ∼a to be c.
Then the other negations are fixed: ∼b must be d, for we must have ∼∼b = b, and
this rules out a or c for ∼∼b. So, ∼d must be b. (It follows that there are exactly
three orthonegations on this lattice, corresponding to the three choices possible
for ∼a.)

The orthomodular law A ∧ (∼A ∨ (A ∧ B)) ` B (which holds in all lattices of
subspaces of Hilbert spaces—which arise in the interpretations of quantum logic)
holds on this lattice. So this lattice is a model of quantum logic too.

This lattice gives us the following counterexample, showing orthologic and
quantum logic are both tolerant of classical inconsistency.

A ∧ (B ∨ C) ∧ ∼ ((A ∧ B) ∨ (A ∧ C)) 6` ⊥

As discussed before, a∧ (b∨ c) takes the value a, while (a∧b)∨ (a∧ c) takes ⊥,
which means that ∼ ((a ∧ b) ∨ (a ∧ c)) is>. So, a∧(b∨c)∧∼ ((a ∧ b) ∨ (a ∧ c))
is a, and a does not entail ⊥ in this lattice.

I will end this discussion by recasting the counterexample in a frame model for
quantum logic. These models (due to Goldblatt [10]) stand to orthologic and quan-
tum logic as Kripke frames stand to intuitionstic logic.2 A compatibility frame, for
our purposes here, will be a nonempty set P of points, together with a symmetric
and reflexive binary relation C to model negation. Conjunction and negation are
modelled on a compatibility frame as you would expect.

• x  A ∧ B iff x  A and x  B

• x  ∼A iff for each y where xCy, y 6 A

A conjunction is true at a point just when the conjuncts are true there. A negation
is true at a point just when its negand is not true at any compatible points. Now,

2Bell gives a philosophical analysis of Goldblatt’s semantics for orthologic, in which the two-place
compatibility relation is interpreted as proximity [4].



this is not enough to model orthologic. For one thing, we have no guarantee that
the double negation laws hold. For another, we have not said how we are to model
disjunction. The naive interpretation, setting x  A ∨ B iff x  A or x  B will do
us no good, as it will validate distribution. Thankfully we can solve both problems
in one go, as Goldblatt noticed. I will explain how by way of an example compat-
ibility frame, with four points, {0, 1, 2, 3}, such that each point is compatible with
all points other than its opposite (found by adding 2, modulo 4). In a diagram we
can present C by addows, to get this: Now, consider a proposition true at 0 only—

0

1 2

3

Figure 2: a compatibility frame

modelling propositions as sets of points the proposition is {0}. Consider where its
negation ∼{0} might be true. It is not true at 0, as 0 is compatible with itself. It is
not true at 1 as 1 is compatible with 0. Neither is it true at 3, since 3 is compatible
with 0. However, it is true at 2, since 2 is not compatible with 0. So, ∼{0} is {2}—it
is true at 2 only. The same reasoning shows that ∼{1} is {3}, ∼{2} is {0} and ∼{3} is
{1}. Now consider ∼{0, 1}, the negation of a proposition true at both 0 and 1. This
cannot be true at either 0 or 1 (as 0C0 and 1C1) but neither is it true at 2 or 3, for
2C1 and 3C0. So, ∼{0, 1} is {}, the empty set. But this is the case for any proposition
true at two or more points. For any point in our model is compatible with every
point except one. It will always manage to be compatible with some member of
a set with two or more elements. So the negation of every set with two or more
elements is {}. As a result, the double negation laws fail with these propositions: as
an example, note that ∼∼{0, 1} = ∼{} = {0, 1, 2, 3}.
It is not difficult to show that for every proposition X on a compatibility frame,

X ⊆ ∼∼X (symmetry of C does the work here). Propositions X for which ∼∼X = X

are called closed. The closed propositions on our example frame are the empty
proposition {}, each one element proposition—{0}, {1}, {2} and {3}—and the full
proposition {0, 1, 2, 3}. If we demand that sentences be interpreted on a compati-
bility frame only at closed propositions, then ∼ is an orthonegation.
It remains to define disjunction. It could be done indirectly, takingA∨B to be

defined as ∼(∼A ∧ ∼B). Or we could define it directly in the following way:

• x  A ∨ B iff x ∈ ∼∼([[A]] ∪ [[B]])

That means thatA∨B is true at x if x is a member of the closure of the set of points
where A or B are true. So, the disjunction of {0} and {1} in our frame the closure
of {0, 1} which is the entire set {0, 1, 2, 3}.
Now note that in our frame we have exactly six closed propositions. This lat-

tice of proposition is isomorphic to the six element lattice shown in Figure 1. An
isomorphism maps {} to ⊥, {0, 1, 2, 3} to >, {0} to a, {1} to b, {2} to c and {3} to



d. Each of the logical connectives (conjunction, disjunction and negation) are pre-
served by this isomorphism. The frame provides a concrete model of the lattice
we have already seen.

This frame also provides another way to view the classical inconstency toler-
ated in models of orthologic and quantum logic. In this frame no point allows a
contradiction—the reflexivity of the compatibility relation sees to that—but the
classical inconsistency A ∧ (B ∨ C) ∧ ∼ ((A ∧ B) ∨ (A ∧ C)) is tolerated. In the
case where A, B and C are true at 0, 1 and 2 respectively, A ∧ (B ∨ C) is true at 0,
because A is true at 0 and B ∨ C is true everywhere. However, (A ∧ B) ∨ (A ∧ C)
is true nowhere, so its negation ∼ ((A ∧ B) ∨ (A ∧ C)) is true everywhere. Why
is this classical inconsistency tolerated here? It is not purely because negation is
interpreted non-classically. Negation is as classical as one can hope for in a non-
distributive lattice. The classical inconsistency is tolerated because of the inter-
pretation of disjunction. B ∨ C is true at more than the places where either B is
true or C is true. It is true everwhere. This allows A ∧ (B ∨ C) to be true some-
where, despite the fact that A ∧ B and A ∧ C are true nowhere. This allows the
impossible to happen: not simply that A ∧ (B ∨ C) is true and (A ∧ B) ∨ (A ∧ C)
isn’t true: that would not be enough for inconsistency tolerance—recall the exam-
ple of intuitionistic propositional logic which is not inconsistency tolerant at all.
Some classical inferences fail, such as ∼∼A ` A. Kripke frames may have points
where ∼∼A is true and A is not. This is not enough for inconsistency tolerance,
for we do not yet have a classical inconsistency true at these points. Similarly, the
presence of A ∧ (B ∨ C) and the absence of (A ∧ B) ∨ (A ∧ C) is not enough to
show inconsistency tolerance. What we need, and what we have here, is the pres-
ence of A ∧ (B ∨ c) and the presence of the negation ∼ ((A ∧ B) ∨ (A ∧ C)). This
provides us with a classical inconsistency, an example of something which cannot
happen according to classical logic, but which is allowed in models of orthologic
and quantum logic. �

* * *

These examples have brought to light a general phenomenon of which the ex-
ample of paraconsistent logics is just a single species. Many different non-classical
logics (but not all of them) tolerate classical inconsistencies. If this toleration is
taken to be a failing of paraconsistent logics, then the same must apply to intu-
itionistic predicate logic, orthologic and quantum logic. If, on the other hand, we
can make sense of inconsistencies in these cases, the fact that inconsistencies are
tolerated in paraconsistent logics is not a failing. Rather, it shows that these logics
are in good company.
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