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Abstract

In our response Field’s “Properties, Propositions and Conditionals”, we
explore the methodology of Field’s program. We begin by contrasting it
with a proof-theoretic approach and then commenting on some of the par-
ticular choices made in the development of Field’s theory. Then, we look at
issues of property identity in connection with different notions of equiv-
alence. We close with some comments relating our discussion to Field’s
response to Restall (2010).

Hartry Field’s article, “Properties, Propositions and Conditionals”1 presents
an overview of a program of exploring naive theories of truth and properties in
non-classical logics. Field presents many different options for developing a the-
ory of truth and properties. This gives the reader a good sense of the current
state of Field’s program as well as directions for future work. The paper is rich,
and while there are many themes we could address in this paper, our focus is on
the methodology of Field’s program. We aim to situate Field’s approach to the se-
mantic paradoxes alongside some other approaches, to thereby shed some light
on some of the features of Field’s particular account.

We will begin by sketching out one path not taken by Field, namely that of
proof-theoretic semantics. We will argue that proof-theoretic semantics offers
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1Hereafter, we will abbreviate ‘Properties, Propositions and Conditionals’ by ‘PPC’.
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some natural options for the sort of logic that Field is after. This leads to our dis-
cussion of certain choices Field makes with respect to his own approach, look-
ing at motivations for other routes that were not adopted. With the significance
of Field’s approach thereby clarified, we then turn to Field’s model construction,
and discuss their connection to property identity. Finally, we will close with some
issues connected to logical consequence, extensionality, and the response by Field
(2010) to an objection of Restall (2010).

To start, suppose we have, in our language, some device for specifying prop-
erties. We supplement the formal language of first order logic with the device of
“lambda abstraction.” For each open sentence ϕ(x) with the variable x free, we
have a singular term λx.ϕ(x), which we intend to interpret as denoting the prop-
erty of being ϕ. Given such a language, the question arises: when does a given
object s bear the property λx.ϕ(x). A plausible immediate response is when and
only when ϕ(s), when s satisfies the condition we used to specify the property.
This motivates two inference rules governing the instantiation relation ξ:

ϕ(s)
ξI

s ξ λx.ϕ(x)

s ξ λx.ϕ(x)
ξE

ϕ(s)

If ϕ(s) holds, we can infer that s has the property of being a ϕ, and conversely,
when s has that property, we can infer ϕ(s). So much seems straightforward.
However, things cannot be quite this simple: once have inference rules like ξI
and ξE, then paradox threatens. Consider the property h of being heterological,
that is, being non-self-instantiating: λx.(x ̸ξ x). Using our two rules ξI and ξE, it
seems that we can prove h ξ h, and at the same time, prove h ̸ξ h, a contradic-
tion. The core steps of this derivation are ξI and ξE when applied to h ξ h, that
is, to λx.(x ̸ξ x) ξ λx.(x ̸ξ x).

λx.(x ̸ξ x) ̸ξ λx.(x ̸ξ x)
ξI

λx.(x ̸ξ x) ξ λx.(x ̸ξ x)

λx.(x ̸ξ x) ξ λx.(x ̸ξ x)
ξE

λx.(x ̸ξ x) ̸ξ λx.(x ̸ξ x)

Combining these steps with standard inference principles for negation (and ab-
breviating ‘λx.(x ̸ξ x) ξ λx.(x ̸ξ x)’ as ‘h ξ h’ to save space), we can derive an
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arbitrary conclusion, like so:

[h ξ h]1
ξE

h ̸ξ h [h ξ h]1
¬E

⊥
¬I1

h ̸ξ h

[h ξ h]2
ξE

h ̸ξ h [h ξ h]2
¬E

⊥
¬I2

h ̸ξ h
ξI

h ξ h
¬E

⊥ ⊥E
P

Any response to the paradoxes must find fault with this derivation somewhere,
with the steps ξI, ξE, ¬I, ¬E, or ⊥E. Or at least, you must do so if you wish to
avoid being able to prove everything. Of course, finding fault with one derivation
is easy: simply pick a principle used in the derivation and blame it.2 However, the
heterological paradox is by no means alone in causing trouble for naive theories
of properties. Curry’s paradox arises when we consider the propertyλx.(x ξ x →
P), which we will abbreviate as ‘c’ to save space:

[c ξ c]1
ξE

c ξ c → P [c ξ c]1 →E
P →I1

c ξ c → P

[c ξ c]2
ξE

c ξ c → P [c ξ c]2 →E
P →I2

c ξ c → P
ξI

c ξ c →E
P

In this proof of the arbitrary conclusion P, the negation rules ¬I, ¬E and ⊥E, are
not used, but the rules →I and →E for the conditional are. To block this deriva-
tion, blame must be placed elsewhere. The only inference rules shared between
the two derivations are ξI and ξE, so the natural place to start is with these rules,
and to reject the naive theory of properties. That is not Field’s approach, and his
project, described in PPC, and in greater length elsewhere (Field, 2008) is to con-
struct models that allow us to vindicate not only ξI and ξE in their full generality,

2Friends of truth-value gaps blame¬I, while friends of truth-value gluts either blame¬E (if⊥
is taken to be an automatically trivialising proposition, entailing everything) or ⊥E (if ⊥ is taken
to be a contradiction, not necessarily entailing everything). Another possible point of blame is not
any individual inference step but the way that they are put together—the transitivity of proofs,
or the Cut rule. For more on non-transitive responses to the paradoxes, see Cobreros et al. (2013)
and Ripley (2012b,a, 2013). One can also reject the starting points of proofs—the reflexivity of
proofs, for which see French (2016).
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but also as many of the standard logical principles concerning the standard con-
nectives as possible.3

In the next section, we will introduce one systematic way to locate a fault in
these paradoxical derivations and to reassure us that ξI and ξE can be safe, and
compatible with a wide range of logical principles, without having to swallow the
conclusions of paradoxical derivations like the two we have seen. This approach,
which will directly use the tools of proof-theoretic semantics, will provide a help-
ful contrast to Field’s account.

1 Proof-theoretic semantics
One way to assess the inference rules used in our paradoxical derivations is use
criteria indigenous to the theory of proofs. One criterion is the condition of har-
mony. The fundamental inference rules for a concept (like those for negation, or
the conditional, or property instantiation, which we have seen) split into introduc-
tion and elimination rules. If the introduction and elimination rules for a concept
are in an appropriate kind of balance – so-called harmony4 – we can draw signif-
icant conclusions about proofs constructed from those rules. In the case of the
rules for the conditional, or negation, this means that a proof in which the con-
cept is introduced, and then eliminated, can be simplified into one in which that
detour does not take place.

[A]i
.... π1

⊥
¬Ii

¬A

.... π2

A
¬E

⊥

⇝

.... π2

A.... π1

⊥

[A]j
.... π3

B →Ij
A → B

.... π4

A →E
B

⇝

.... π4

A.... π3

B

Here, the reductions simplify a proof by eliminating a local maximum in com-
plexity. Instead of going through the complex formula ¬A, in the reduced proof,
π1 and π2 are joined by at simpler formula, A. For the conditional reduction, in-
stead of going through the complex formula A → B, in the reduced proof, π3

and π4 are joined at the simpler formula, A. If every inference rule is in harmony
3Throughout we will restrict our attention to the logical vocabulary {∧,∨,¬,→, λ, ξ, ∀}.
4The literature on proof-theoretic harmony is extensive. Prawitz’s (1965) and Dummett’s

(1991) are the classic texts. Steinberger (2011) is a good contemporary account of different ways
to make the notion of harmony precise.
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like this, the process of normalisation eliminates such I/E detours, and produces
a proof in which there are no detours through local maxima, and every formula in
the proof is a subformula of a premise or conclusion of the proof (Prawitz, 1965).
Proofs which satisfy this subformula property are analytic in a strong sense: the
connections between the premises and the conclusion are given purely by infer-
ence rules governing the constituents of those formulas. There is no need to go
outside those formulas into other vocabulary.

If you look at the ξI and ξE rules, they seem to be just as harmonious as the
rules for the connectives. After all, any detour through a pair of ξI and ξE steps
can be reduced as follows:

.... π5

ϕ(s)
ξI

s ξ λx.ϕ(x)
ξE

ϕ(s)

⇝
.... π5

ϕ(s)

This reduction simplifies a proof in a way similar to the reductions for the con-
nectives, but it differs in one very important respect. The intermediate formula
cut out of the derivation (here, s ξ λx.ϕ(x)) need not be more complex than the
formulas surrounding it. In the case where s ξ λx.ϕ(x) is h ξ h (the heterologi-
cal property is self-instantiated) or c ξ c (the Curry property is self-instantiated),
the formula is inferred from h ̸ξ h, or from c ξ c → P, both of which are more
complex than the introduced formula. Reducing the proof by snipping out the
I/E pair does not involve cutting out a local maximum in formula complexity. In
this case, the reduction simplifies the proof, not by making the formulas involved
less complex, but by making the proof strictly smaller.

The property rules, then, are well behaved from a proof-theoretic perspective
on one measure: normalising property rule detours invariably shrinks a proof.5

It might seem that all normalisation steps shorten proofs, since normalising al-
ways involves eliminating detour steps. However, the reductions for the nega-
tion rules or for the conditional rules do not always result in smaller proofs.6 If

5That is, the number of formulas in the proof is reduced by two. It may also reduce in height
(the length of the longest branch) if the reduction occurs in that branch. Whenever we talk about
the size of a proof, we mean the number of formula occurrences in the proof tree.

6You can see this in action by applying the reductions to the paradoxical proofs we have seen.
The proof of P from the heterological paradox is not normal in that a ¬I step is followed by a ¬E
step. Reducing this gives you another proof, this time, not normal because a ξI step is followed
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the formula discharged in a¬I or→I step is discharged more than once, then the
proof of that formula is substituted into the reduced proof a number of times, like
this:

[A]i [A]i [A]i [A]i

π1

⊥
¬Ii

¬A

.... π2

A
¬E

⊥

⇝

.... π2

A

.... π2

A

.... π2

A

.... π2

A

π1

⊥

If the substituted proofπ2 is comparatively large, the result of this reduction may
be significantly larger than the original, non-reduced proof. Reduction, here, is
reduction in complexity, not reduction in size.

So, we have a mismatch between the transformations that reduction steps for
connectives (on the one hand), and property rules (on the other) work on proofs.
Reductions for connectives reduce complexity while allowing proofs to grow in
size. Reductions for the property rules do not reduce complexity, but they do
always shrink proofs.7

This suggests a way to restore balance to our reductions. If we aim to keep ξI
andξE, we can retain the fruits of harmonious rules by demanding that all reduc-
tions shrink proofs. If we restrict ¬I and →I by allowing at most one formula to
be discharged at a time, then the reduction steps for the connectives reduce size
as well as complexity. Once all reductions shrink proofs, and any non-normal
proof can be systematically converted into a normal proof by applying the reduc-
tion steps, one by one. Normal proofs satisfy the subformula property, and this
has immediate and powerful consequences. There can be no paradoxical deriva-
tions of arbitrary conclusions using these rules. (Here is why: there is no normal

by a ξE step. Reducing this returns you to the original proof. This shows that the two reductions
are ‘reducing’ along different measures. One reduces size but not complexity. The other reduces
complexity but not size. Hence, the two kinds of reduction do not result in a simplification of the
original proof, but in a tussle, between two kinds of simplicity.

7This observation is not original with us. For example, in the context of proof rules in a se-
quent calculus for a logic for Kripke’s fixed point construction, Michael Kremer writes “the T -
introduction … rules may often decrease logical complexity: no matter how complex A is,T ‘A’ is
atomic. Nor will it help to introduce a new notion of complexity, counting sentences with more
occurrences of T as more complex, say. For then the quantifier rules may decrease complexity.
For example, T ‘∃xTx’ is an instance of∃xTx, yet the former would be more complex than the latter
on the proposed revised definition of complexity. In short, for the purposes of a proof-theoretic
argument for the cut- elimination theorem, we would want to count T ‘∃xTx’ as both more and
less complex than ∃xTx — but we can’t have it both ways” (Kremer, 1988, p. 260).
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proof of an atomic formula p from no premises. Since p has no subformulas at
all, no introduction or elimination rules could feature in any such proof satis-
fying the subformula property.) So, the addition of our powerful property rules
cannot interact with our logical vocabulary in this devastating way, if our logical
rules are restricted in the way we have sketched.

Natural considerations arising out of proof-theoretic semantics motivate a
principled way to retain strong property rules, consistent with restrictions on
logical vocabulary. Noticing this is not original to us. That the rule of Contrac-
tion (allowing multiple discharge in rules like →I and ¬I) is implicated in the
paradoxes has been known for many years. Early work by Fitch (1936; 1942) makes
that connection clear.8 Work by Grišin (1974; 1982) gives a consistency proof for
a logic with rules like our ξI/E in the sequent calculus, showing that without the
rule of Contraction, normalisation (cut-elimination) leads to a direct consistency
proof. This work has been taken up in recent years by a number of different
authors (Cantini, 2003; Girard, 1998; Petersen, 2000, 2003; Zardini, 2011, 2013).9

That work is most often presented in the sequent calculus, rather than in a nat-
ural deduction format, but this is (for our purposes) an inessential difference.10

While we have here focussed only on negation and the conditional, the language
can be enriched with conjunction, disjunction, and quantifiers, with no difficulty
at all. Provided that the rules are presented as introduction and elimination rules,
and the reduction steps shrink proofs, we are assured that the paradoxes do not
threaten, and the property rules are a conservative addition to the rules for the
logical vocabulary.11

So, if the aim of the exercise is to provide a principled restriction of logi-
cal vocabulary so as to keep the logical world safe for rules like ξI and ξE, then

8See Rogerson (2007) for discussion of Fitch and Prawitz on Contraction and paradox.
9For more on approaches to paradox that reject the structural rule of contraction, see Shapiro

(2011, 2013, 2014), Beall and Murzi (2013), Weber (2013), Caret and Weber (2014), Mares and Paoli
(2014) and Shapiro and Murzi (2015), among others.

10This Gentzen-style natural deduction format works well, up to a point. If you wish to hew
as close as possible to classical logic, and to allow ¬¬A to be equivalent to A, it is better to use
a sequent system that allows for multiple formulas in conclusion position as well as multiple
premises. With that small change, negation can be involutive, while keeping the restriction on
discharging rules like those for negation and the conditional.

11To be specific, we can have both multiplicative and additive conjunction and disjunction (mul-
tiplicative disjunction in a multiple conclusion setting, at least) as well as an additive conditional,
in addition to a multiplicative conditional. The standard first-order quantifiers have rules that
normalise while reducing proof length. Details of the proof are straightforward (Cantini, 2003;
Girard, 1998; Petersen, 2000).
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proof-theoretic considerations concerning intrinsic features of inference rules
point to Contraction as a prime suspect. Doing away with Contraction makes our
world safe for ξI/E, and we can assure ourselves of this on purely proof-theoretic
grounds.

2 Permutation and the rules of the game
The proof-theoretic approach just sketched provides one response to the para-
doxes that preserves the naive property instantiation rules. It is not the approach
Field adopts, which leads us to our main question for this part of the paper. Why
not adopt the proof-theoretic approach outlined in the previous section? We are
interested, in particular, in the reasons for the choice of logic for the naive the-
ory. Given the stated commitments of PPC, some principles, such as Contrac-
tion, are out, some principles are in, such as one form of Weakening, and some
appear to be up for grabs. The proof-theoretic approach can reject Contraction,
accept Weakening, and provide a plausible story about the principles that are up
for grabs. To sharpen the issue, we will take some of Field’s comments about the
rule of Permutation as our jumping off point.

Field says, “The Permutation rule lacks obviousness in a naive theory.”12 This
is a comment on his “Łukasiewicz done better” semantics, which permits Permu-
tation for a wide range of paradoxical sentences, but not all. The rule of Permu-
tation is this inference:

A → (B → C)

B → (A → C)

which is valid in classical propositional logic, in intuitionistic logic, and in many
other non-classical logical systems. Field’s reason for resisting Permutation is
that any justification for it which involves the inferences:

A → (B → C)

(A∧ B) → C

(B∧A) → C

B → (A → C)

will be found wanting, because on Field’s preferred approach to the paradoxes,
we must clearly distinguish a doubly nested conditionals like A → (A → C)
from A → C, because of the paradoxes. But if A → (B → C) is equivalent to
(A ∧ B) → C, and if A ∧ A is equivalent to A, paradox threatens. This raises

12PPC 18
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two issues, one concerning the target logic and one concerning the problem with
Permutation.

While Field notes that there are different ways to define validity, he exhibits
some preference for a definition that yields a paracomplete logic, that is, a logic in
which the law of excluded middle is invalid. In PPC, the target logic approximates
Łukasiewicz’s continuum valued logic, Łℵ. The choice of Łℵ for the logical vocab-
ulary {→,∧,∨,¬,∀}, is in some respects unsurprising. It is a well-behaved logic
with fairly simple models over the [0, 1] interval. Moreover, it reduces to classical
logic in certain models. In some respects, however, it is a surprising choice. It is
not possible to extend the interpretation of ξ from the quantifier-free language
to the language with quantifiers.13 Since it is not possible to use Łℵ with quanti-
fiers and the naive property instantiation rules, there remains a question about
what which axioms and rules from Łℵ to keep, and which to reject. As noted in
§1, there are other options for logics that share many of the good features that
Field is after without the problems Łℵ has combining quantifiers and ξ.

There is a feature of the choice of connectives in the language that deserves
comment as well. One of the usual connectives of Łℵ is omitted, namely fusion,
◦, for which the following is valid.14

((A ◦ B) → C) ↔ (A → (B → C))

While this equivalence may appear similar to the inferences displayed above, it
is importantly different, as A ◦A is not equivalent to A; and ◦ is not ∧, though it
is a kind of conjunction. There are non-triviality proofs for naive property theory
over many logics with fusion, although not all logics that non-trivially support
naive property theory do so with the addition of fusion.15 The proof-theoretic
approach of the previous section can be augmented with fusion, for which the
above equivalence is derivable. For logics for which the displayed biconditional
does not hold, a weaker, bidirectional rule form often does. The omission of fu-
sion from Field’s logic may be from particular philosophical concerns. Or, it may
be that Field’s target logic includes some axioms that lead to trouble with naive
property theory when fusion is available.

To return to the question of whether the rule of Permutation lacks obvious-
ness in the context of a logic for naive theories of properties, it depends very much

13See Restall (1992) and Hájek et al. (2000).
14See Restall (1992)
15See Øgaard (2015, §6).
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on the angle from which one is examining the rule. Given the proof-theoretic per-
spective taken in §1, Permutation is independently compelling, and requires no
route through conjunction to justify it at all. The proof is straightforward.

A → (B → C) [A]1 →E
B → C [B]2 →E

C →I1
A → C →I2

B → (A → C)

Permutation is plausible and, as Field notes, it is useful, so it would be good to
have more or a story about why one should give it up. There are proponents of
naive property theory, such as Ross Brady, who reject Permutation for systematic
reasons. It will be useful to look at Brady’s reasons for rejecting Permutation.

The naive property theory developed by Brady rejects Permutation for explicit
philosophical reasons.16 Brady’s preferred logic and naive theories of properties
and sets are presented axiomatically. The logic is motivated, not by appeal to
the proof-theoretic concerns of §1, but by a view about the meaning of the con-
ditional. He appeals to some of the standard objections to the material condi-
tional to motivate the adoption of a relevant logic.17 The particular relevant logic
he opts for is motivated by appeal to meaning containment: The conditional of
the logic expresses the containment of the consequent’s content in that of the
antecedent. We will not delve into the details of Brady’s theory of meaning con-
tainment here, but it provides Brady with the resources to argue against several
axioms, including Permutation and Contraction.18 Brady also uses the theory to
argue in favor of the axioms he does adopt, in particular Conjunctive Syllogism,
((A → B) ∧ (B → C)) → (A → C). Conjunctive Syllogism is a mild form
of Contraction, so its inclusion in a theory of naive properties is surprising. Its
inclusion is, however, motivated by Brady’s theory of meaning containment.

Brady is after a non-trivial theory of naive properties and sets that respects his
views concerning the conditional and meaning containment. Permutation, and
other principles, are rejected on grounds stemming from those views. Field re-
jects Brady’s views on the conditional and meaning containment, so they cannot

16We will focus on Brady’s (2006) presentation. We will note that more recently, Brady and
Meinander (2012) reject the axiom form of distribution, (A∧ (B∨C)) → ((A∧B)∨ (A∧C)).

17Brady (2006, 2–5). The interested reader should consult Dunn and Restall (2002) and Bimbó
(2006) for overviews of relevant logics.

18Brady (2006, 29–30)
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provide a route to rejecting Permutation for Field. Permutation is not validated
by the models, so there is a formal reason for rejecting Permutation. That formal
reason is philosophically satisfying to the extent that the models are philosoph-
ically compelling. The models seem to play only the role of demonstrating that
certain naive theories are non-trivial.19 This leaves certain choices, such as the
rejection of Permutation, feeling philosophically ill-motivated, though formally
justified. We have seen why Field is not a proponent of a relevant logical response
to the paradoxes, but we are not sure why he doesn’t adopt a proof-theoretic ap-
proach, along the lines sketched in the previous section. We leave this question
hanging, and we turn to issues of property identity, starting with some points
connected to Field’s model construction and then looking at his response to Re-
stall (2010) on extensionality and triviality.

3 Models and property identity
In this section, we will look at Field’s model construction using revision sequences.
We will focus on the question of what the models tell us about property identity.

First some definitions to make the paper more self-contained. Hypotheses are
functions from conditional formulas to the real interval [0, 1]. Formulas are eval-
uated relative to a model M and a hypothesis h, written M + h.20 We will write
|A|M+h for the semantic value ofA in the least Kripke fixed point for instantiation
over the model M and hypothesis h. The revision operator R∗ maps hypotheses to
hypotheses according to the following pointwise definition.

(R∗(h))(A→ B)


1
2

(
h(A→ B) + 1

)
if |A|M+h ≤ |B|M+h

1
2

(
h(A→ B) + 1

−(|A|M+h − |B|M+h)
)

otherwise

To construct the sequences, we need an initial hypothesis,h. As Field notes, there
are options here, but we will focus on the hypotheses that assign 1

2
to all condi-

tionals. Let On be the class of all ordinals. A revision sequence is an On-length
sequence of hypotheses such that hα+1 = R∗(hα), for all ordinals α, and at limit
stages, certain coherence constraints are obeyed. For purposes of this paper, we

19Cf. the more substantive philosophical role attributed to revision sequences by Gupta and
Belnap (1993).

20We follow Field in using parameterized formulas, suppressing the variable assignments. We
also suppress the detail about the hypotheses being transparent.
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can focus on the limit rule that hλ(A→ B) = r, if the sequence ⟨|A→ B|M+hβ
:

β < λ⟩ converges to r and is 1
2

otherwise.21

Formulas will exhibit different patterns of stability over the revision sequence,
either stabilizing to some value or oscillating. There is a nice regularity to the
sequences, as there is bound to be a stage after which hypotheses show up in
cycles.22 As Field notes, for defining validity, one can ignore the portion of the
sequence before the loop starts and focus on the semi-open interval consisting
of a cycle of the loop.

Let us look at the revision sequences for some simple formulas, the earlier
example of c ξ c → ⊥, as well as ⊤ → ⊥, and (⊤ → ⊥) → ⊥, which will
feature in the discussion to come. In addition let c2 abbreviate λx.(x ξ x →
(x ξ x → ⊥)), so c2 ξ c2 is equivalent to c2 ξ c2 → (c2 ξ c2 → ⊥). The
values for these formulas in the minimal fixed point over the hypotheses are given
in Table 1. These examples are fairly simple and they all stabilize from stage ω

0 1 2 3 4 5 · · · ω

⊤ → ⊥ 1/2 1/4 1/16 1/32 1/64 1/128 · · · 0

(⊤ → ⊥) → ⊥ 1/2 1/2 5/8 3/4 27/32 29/32 · · · 1

c ξ c 1/2 1/2 1/2 1/2 1/2 1/2 · · · 1/2

c ξ c → ⊥ 1/2 1/2 1/2 1/2 1/2 1/2 · · · 1/2

c2 ξ c2 1/2 3/4 3/4 11/16 21/32 85/128 · · · 2/3

c2 ξ c2 → ⊥ 1/2 1/2 3/8 5/16 5/16 21/64 · · · 1/3

c2 ξ c2 → (c2 ξ c2 → ⊥) 1/2 3/4 3/4 11/16 21/32 85/128 · · · 2/3

Table 1: Revision sequences

onwards. The revision patterns for these examples do not change with variation
of the ground model. The only thing that will affect the revision sequences is
choice of initial hypothesis, and even that does not change much. For example,
both ⊤ → ⊥ and (⊤ → ⊥) → ⊥ are bound to stabilize to 0 and 1, respectively,
from stage ω onwards.

Field raises the question of when distinct formulas can be taken to express the
same property or proposition, focussing on properties for simplicity. It would be

21See Campbell-Moore (2019) for a general discussion of limit rules for revision sequences.
22This is a general feature of revision sequences, as guaranteed by the Reflection Theorem of

Gupta and Belnap (1993, 172). See also Field (2016, §4).
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natural for, say, λx.(p∧ q) and λx.(q∧ p) to be the same properties, collapsing
distinct properties via some equivalence relation. Of particular interest here are
the falsehoods λx.⊥ and λx.(⊤ → ⊥). As evident from Table 1, for any revision
sequence on any ground model, ⊥ and ⊤ → ⊥ both get value 0 from stage ω

onwards and the biconditional between them gets the value 1 from stage ω on-
wards. One might think that one could stipulate λx.⊥ = λx.(⊤ → ⊥), but Field
provides an argument, due to Øgaard, that λx.⊥ and λx.(⊤ → ⊥) must be kept
distinct, provided identity obeys some plausible conditions.23 Field says,

[L]aws like (⊤ → ⊥) → ⊥, though in some sense valid, don’t have
the kind of ‘uniform validity’ that is required for predicates coexten-
sive by virtue of them to be sensibly regarded as expressing the same
property.24

We will try to unpack this idea of uniform validity in order to better understand
why we cannot take ⊤ → ⊥ and ⊥ to express the same property. To do this,
it will be useful to distinguish two forms of equivalence. Two formulas A and
B are weakly equivalent if and only if A |= B and B |= A, that is, if every model
satisfying A also satisfies B, and vice versa. The formulas are strongly equivalent
if and only if A ↔ B is valid, i.e. |= A ↔ B.25 In terms of models, these say very
different things. In Field’s setting, the weak equivalence of A and B requires
that for any revision sequence, A eventually receives only the value 1 iff B does.
Strong equivalence requires that the biconditionalA ↔ B eventually receive only
the value 1 in the revision construction, which is to say that A and B eventually
receive the same values in each stage of the revision construction. To illustrate
the difference, take h ξ h and c2 ξ c2. The former will stabilize at the value 1

2
in

all models and the latter eventually stabilizes at the value 2
3

. Neither of these two
formulas can take the value 1, so they are weakly but not strongly equivalent.

Field suggests that the strong equivalence between ⊤ → ⊥ and ⊥ is not suf-
ficiently uniform to identify the properties λx.(⊤ → ⊥) and λx.⊥. So, to attempt
to interpret this suggestion, let us introduce two further senses of equivalence.
Let JAKM+h be the sequence ⟨|A|M+hα

: α ∈ On⟩, where the hα’s form a revision
sequence and h0 = h. Suppose that we have a class of models M and a class
of sets of hypotheses H such that for each M ∈ M there is an associated non-
empty set of initial hypotheses HM. For given classes M and H, two formulas

23PPC 30
24PPC 35
25If we were considering the modal operators, there would be at least one more sense of equiv-

alence, the validity of a necessary biconditional.
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A(x) and B(x), or two properties λx.A and λx.B, are weakly uniformly equivalent
in M and H iff for every M ∈ M, h ∈ HM, and object o in the domain of M,JA(o)KM+h = JB(o)KM+h. Two formulas A and B are strongly uniformly equiva-
lent in M and H iff JA(o)↔ B(o)KM+h is 1, the constant sequence of 1s, for each
M ∈ M, h ∈ HM, and object o in the domain of M. Unlike weak and strong
equivalence, which ignore an initial portion of revision sequences, the uniform
notions defined here consider the entirety of the revision sequences.

A pair,M andH, provides a counterexample to the weak uniform equivalence
of two properties, λx.A(x) and λx.B(x), if there is a modelM ∈ M and hypothe-
sis h ∈ HM such that JA(o)KM+h ̸= JB(o)KM+h, for some object o in the domain
of M. Similarly, such a pair provides a counterexample to the strong uniform
equivalence of λx.A and λx.B if for some model M ∈ M, hypothesis h ∈ HM,
and object o, JA(o) ↔ B(o)KM+h ̸= 1. Any class of hypotheses that contains the
hypothesis h assigning 1

2
to all conditionals will provide a counterexample to the

weakly uniform equivalence of⊤ → ⊥ and⊥, and examples to strongly uniform
equivalence are easy to obtain. It seems plausible that it is a necessary condi-
tion for the identification of two properties that there not be a counterexample
to their identity over a relevant class of models and initial hypotheses. However,
we will see that this condition is not sufficient: a lack of counterexamples does
not suffice for property identity.

In PPC footnote 16, Field suggests generating the set of reflection hypotheses
in a general way and then using those to select distinguished initial hypotheses
h∗ for revision sequences. In our notation, HM is the set of all such distinguished
initial hypotheses h∗ for a model M. On this proposal, for any model M and
for any hypothesis h in a revision sequence starting from any h∗ ∈ HM, |⊤ →
⊥|M+h = 0, and |⊥|M+h is always 0. The distinguished hypotheses in H then do
not provide counterexamples to the identity of certain properties that must be
kept distinct. Neither uniform equivalence notion is sufficient for identifying
properties.

At the very least, identity between properties needs to obey certain logical
principles, such as a principle of substitution of identicals. To see how Field se-
cures this, it will be useful to recapitulate some of his discussion here. To se-
cure the desired logical behavior one can use a binary relationR comprising three
parts: an equivalence relation over properties, an equivalence relation over propo-
sitions, and identity over the other objects. Say that a hypothesis h is R-good
iff for all closed property abstracts b and c such that Rbc, for all objects o, |o ξ

b|M+h = |o ξ c|M+h. It is further required that all hypotheses in the revision
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construction be R-good.
There are models and hypotheses where such an R is a congruence relation

over properties, permitting one to form a quotient model that identifies all prop-
erties R-equivalent in the original model. Say that a hypothesis is R-congruent iff
for all closed property abstracts b and c such that Rbc, for any formulas P(x)
and Q(x), |P(b) → Q(b)|M+h = |P(c) → Q(c)|M+h. Finally, a hypothesis h

is strongly R-congruent iff for any formula A(x), |A(b)|M+h = |A(c)|M+h. Field
shows thatR-good andR-congruent hypotheses are stronglyR-congruent. Given
that h is strongly R-congruent, R∗(h) will be R-congruent, and so strongly R-
congruent.

While strong uniform equivalence is insufficient for property identity, Field’s
proof shows us a feature of revision sequences that is sufficient. Let b and c

be closed property abstracts, and let R be an appropriate binary relation on a
model M and an R-congruent, R-good hypothesis h. If Rbc, then JA(b)KM+h =JA(c)KM+h, for all formula contexts A(x) with only ‘x’ free. This is strong uni-
form equivalence extended to all formulas differing on at most occurrences of b
and c, which is to say indiscernibility of b and c as far as the revision sequence is
concerned.

Indiscernibility across the revision sequence is enough for identifying prop-
erties. Eventual indiscernibility would also be sufficient.26 Why not simply aim
for eventual indiscernibility then? There is, unfortunately, no apparent reason
to think that, for an appropriate R, either R-congruence or strong R-congruence
will be inevitable outcomes of the revision process.

It appears that it is not the extensional features of ⊤ → ⊥ and ⊥ that create
trouble for identifying the properties λx.(⊤ → ⊥) and λx.⊥. There are classes
of models and hypotheses in which those formulas are strongly uniformly equiv-
alent and those properties are instantiated to the same degree by the same ob-
jects. The problem, rather, comes from the “intensional” features of ⊤ → ⊥ and
⊥, namely that the properties λx.(⊤ → ⊥) and λx.⊥ may not instantiate all the
same properties to the same degree.

Taking two formulas to express the same property requires them to be R-
equivalent and indiscernible in some revision sequence. Field notes that for-
mulas that are provably equivalent in S3, symmetric Kleene logic, with the ad-

26Suppose S is a revision sequence in which b and c are eventually indiscernible. Let h be a
reflection ordinal occurring at some stage after which b and c are indiscernible. The hypotheses
following h will repeat, and eventually h will recur. A new sequence taking h as the initial hy-
pothesis will be one in which only the hypotheses following h in S occur. In this new sequence,
b and c will be indiscernible at all stages.
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dition of rules for ξ, can be taken to express the same property. What is it about
provability in S3 that ensures that? Formulas provably equivalent in S3 can be
shown to be so using rules for the logical vocabulary apart from the conditional,
i.e. {∧,∨,¬,∀, λ, ξ}. The conditional is the only primitive connective that is eval-
uated across stages of the revision construction.27 The other logical vocabulary is
evaluated at a single stage, so formulas provably equivalent in S3 will be weakly
uniformly equivalent in all revision sequences. Any R-good, R-congruent initial
hypothesis can be used to obtain a revision sequence in which such formulas ex-
press indiscernible properties.

Field says that it is somewhat arbitrary how coarsely to identify properties
and propositions. While this seems right for arbitrary properties and arbitrary
purposes, there are some specific kinds of properties that suggest natural levels
of coarse-graining. We will consider one here.

Since Field’s consequence relations obey the rule of Weakening for →, they
are monothetic in the sense that all valid formulas are strongly equivalent, or to
put it another way, up to strong equivalence, there is only one validity.28 A logic
with more than one validity, up to logical equivalence, is polythetic. A logic being
monothetic suggests that it should express a unique logical property, the prop-
erty of being such that logic holds. Under some plausible assumptions, one can-
not have such a property in Field’s naive property theory. The assumptions are
that if λx.A = λx.B, then λx.¬A = λx.¬B and that λx.A = λx.¬¬A.29 Sup-
pose that λx.¬(⊤ → ⊥) = λx.¬⊥. From the first assumption it follows that
λx.¬¬(⊤ → ⊥) = λx.¬¬⊥, whence λx.(⊤ → ⊥) = λx.⊥, by the second as-
sumption. As we cannot have the last identity, we cannot have the initially sup-
posed identity.

No matter how the properties are coarse-grained, the resulting property logic,
the set of coarse-grained properties of being such that some validity holds, is
polythetic, in the extended sense that it has more than one member. There is,
then, a mismatch between the formula logic, the valid formulas up to strong
equivalence, and the property logic, the set of coarse-grained properties of be-
ing such that a certain validity holds, in the sense that the formula logic recog-
nizes only one validity and the property logic recognizes at least two. These tell

27NB: We are setting aside▷.
28The term ‘monothetic’ is from Humberstone (2011, 220–221). The argument that the conse-

quence relations are monothetic is immediate. Suppose |= A and |= B. By Weakening, |= B → A

and |= A → B.
29Both assumptions reflect weak equivalences in S3.
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two different stories about logical truth, which we think leads to a philosophical
tension.

The stated purpose of talking about properties and propositions is “to provide
a natural framework for talking about language and the mind.”30 One particular
application for Field’s theory that is of interest to us is as a framework for talk-
ing and thinking about Field’s logic, and one of the features of interest is logical
truth. Using Field’s theory for this appears to require that we draw a distinction
between some logical truths, represented as properties, that does not fit neatly
with certain facts about the logic itself, namely that there is essentially only one
logical truth. This tension gives us pause.

One potential way to avoid this tension, although it is one Field rejects, is
to adopt a polythetic logic for the formula logic, and there are many polythetic
logics from which to choose. Many relevant logics will do, including, for exam-
ple, Brady’s depth relevant systems, which have already been shown to allow for
strong property abstraction principles. Unlike with Field’s logic, in any of these
relevant logics, there are many validities, up to strong equivalence. For example,
even in the stronger relevant logics, p → p is not equivalent to q → q. In many,
but not all, ⊤ → ⊥ is not strongly equivalent to ⊥. For a range of relevant logics,
then, there is no motivation for identifying the property λx.(⊤ → ⊥)with λx.⊥.
As the formulas are not strongly equivalent, they are distinct from the point of
view of logic.31

4 Extensionality and triviality

One last point can be made concerning the range of equivalence notions available
in any of the logics we have discussed here, and considering it will bring us full
circle, back to the initial considerations of proof-theoretic semantics and rules
of inference, where we began. Recall the point we made on page 13 concerning
weak and strong equivalence. It is one thing, in the model theory, to think of A
andB as equivalent if they are satisfied in the same models. It is another to think
of them as equivalent if the biconditional A ↔ B is logically valid. The same
distinction can be made, of course, for the unidirectional notion of consequence.
We can think of A as weakly entailing B if all models satisfying A also satisfy B.

30PPC 1
31This is not to say there are not further issues one may have with property identity in rele-

vant logics, some of which are raised by Field, but they do not run into the same issue that we
highlighted above.
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Or we can think of A as strongly entailing B if A → B is logically valid. These are
different notions, because the logic in question does not satisfy the traditional
deduction theorem to the effect that A |= B if and only if |= A → B.

To bring our considerations full circle, we should note that the application of
the distinction between weak and strong entailment to matters of proof and infer-
ence is not straightforward or immediate. If we think of inference rules like →E
or →I, in which consequences are drawn out or assumptions are discharged, we
may not have specified these rules in terms of their behavior of models.32 Should
we think of these steps as corresponding to weak validity, or strong validity? This
point becomes pressing when it comes to Field’s response to Restall’s (2010) triv-
iality argument. That argument is presented in a sequent calculus with sequents
of the form X ⇒ A (or X ⇒ with an empty right hand side), whose intended in-
terpretation is consonant with the rules of proof discussed earlier in this paper:
X ⇒ A is a derivable sequent when there is a proof of A from the assumptions
X (and X ⇒ is derivable when there is a proof of ⊥ from the assumptions X, i.e.,
a reduction of X to absurdity).33

When Field discusses Restall’s argument, he takes it that a derivation of a se-
quentA ⇒ B is to be understood as corresponding to a claim of weak entailment,
of the form A |= B. That is a permissible reading of the argument, but it is in no
way obligatory. If I have proved B under the assumption that A (appealing to no
other assumptions), what can I learn about the relationship between A and B? It
is plausible that I do learn that A |= B (that in each model in which A is satisfied,
so isB), if satisfaction in models is indeed closed under all of the rules of proof. If
models allow for formulas to be evaluated in degrees (as Field’s do), then perhaps
proof tells us more than that satisfaction is preserved. Exactly what, we cannot
tell, because Field has not given us his own account of proof or inference to go
along with his models.

What more could proof tell us? There are at least four senses of entailment
available, weak, strong, and their uniform counterparts. To better understand
the logic and potential property identities, we need to move beyond weak en-
tailment. We need to know when a proof from A to B suffices to establish a
strong entailment, for example. And here, we suspect that the proof-theoretic
approaches discussed in §1, and related work on substructural logics, may have

32We especially need not have specified them with regard to complex models such as the revi-
sion sequences Field uses.

33Actually, the rules discussed in that review have a more general form X ⇒ Y allowing for
multiple conclusions, but this generalisation is not important for the triviality proof, which uses
at most one conclusion in each sequent.
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something to offer.34 For example, there cannot be a strong entailment from
A ∧ (A → B) to B, nor can there be one from A → (A → B) to A → B on
pain of triviality. Strong entailment is a non-contractive logic, which suggests
that proofs will be sensitive to how many copies of each assumption are avail-
able. Given the earlier remarks on the rule of Permutation, proofs, in particular→I, will also be sensitive the order of assumptions, in a sense of ‘order’ appropri-
ate to the proof theory.

Restall’s (2010) triviality argument is a challenge for all notions of entailment
for a theory of properties, not just for weak entailment. This is a challenge that
Field’s view can meet, in the sense that it is provably consistent (the trivialising
conclusion is not derivable). The challenge that remains is showing how to live
without the inference principles used in the paradoxical derivation, and in show-
ing what inference principles we can find safe. The principles in question for
Field’s theory are the identity or non-identity conditions for properties, without
which it is not clear that we have a firm grasp on what the properties are. Field’s
suggestion for using weak equivalence in S3 goes some way to addressing the
problem, but there is much yet to say about properties that involve the condi-
tional in a substantive way, which are the properties that are really distinctive of
the approach in PPC.

5 Conclusion
To conclude, let us take stock. In PPC, Field offers a compelling picture of naive
property theory. His work has gone a long way towards showing us how to sat-
isfy the stringent demands of a naive theory. Our response has tried to shed some
light on the methodology of Field’s approach and some of its philosophical fea-
tures. Our response came in two parts, one concerning the development of Field’s
theory and the other concerning property identity. In the first part, we present
an alternative, proof-theoretic approach to naive property theory, which shares
some of the formal virtues of Field’s approach. This approach is presented as a
foil to Field’s and to throw into relief some of the choices made by Field, in partic-
ular the reason for rejecting Permutation. The second part turns to the models to
discuss property identity, equivalence, and the response to Restall’s (2010) trivial-
ity argument. Here our purpose was to unpack Field’s comment about uniform
validity and its connection to property identity. In doing so, we distinguished

34For more on substructural logics, see Restall (2000).
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different kinds of equivalence, which were then used in commenting on Field’s
response to Restall’s triviality argument.
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