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Abstract: In this paper, I show how to incorporate insights from the model-theoretic semantics
for negation (insights due the late J. Michael Dunn [7], among others [4, 21]), into a proof-first

understanding of the semantics of negation. I then discuss the different ways a logical pluralist
may understand the underlying accounts of proofs and their significance.

J. Michael Dunn’s pioneering work in non-classical logic is profoundly important, cov-
ering many different topics. He has given us new tools and techniques, inspired new
questions, and opened up us fresh perspectives on what we thought was familiar. In
this paper I will transplant some of his important insights about the semantics of nega-
tion [7]—insights grown in model-theoretic soil—to a new field, that of proof-theoretic
semantics.

The key idea to be applied can be simply described. The behaviour of negation in a
range of logical systems (classical logic, intuitionistic logic, orthologic, relevant logics,
linear logic, etc.) can be understood in terms of an underlying relation of incompatibil-

ity on a model. Given some collectionP of points, and a relation⊩ evaluating formulas
at those points, then whatever we think about the details of the particular behaviour of
negation, we can agree that if we have two points a and b where a ⊩ ¬A (according
to a, ¬A holds) and b ⊩ A (according to b, A holds), then in some sense, a and b are
incompatible. If ⊥ is the incompatibility relation, we have a ⊥ b. An incompatibility
model (or a ‘perp’-model, for short) takes this ‘only if’ to be an ‘if and only if’, and for
it to be the defining feature of negation.

• a ⊩ ¬A if and only if for each b, if b ⊩ A then a ⊥ b.

*Thanks to Franz Berto, Aaron Cotnoir and colleagues in the Metaphysics and Logic research semi-
nar in Arché at the University of St Andrews, for discussion on material that lead to these results. Thanks
also to the European Network for the Philosophy of Logic for an opportunity to present on these results,
for useful questions and feedback, and to an anonymous referee for suggestions that helped improve the
paper.
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This semantics for negation certainly sounds plausible enough, but it might look un-
familiar.1 Despite its unfamiliarity, it is ubiquitous. If we impose different conditions
on the incompatibility relation ⊥, familiar logics arise. The truth-functional classical
semantics of negation is recovered if⊥ is simply defined to be the nonidentity relation
̸=. A point is incompatible with everything else, it is compatible with itself only. On
a Kripke model for intuitionistic logic, we have a ⊥ b iff a and b have no common
descendants: that is, there is no c where a ⊑ c and b ⊑ c.

However, if we allow incompatibility to range more widely, we can model paracon-
sistent logics. If a point a supports both A and its negation ¬A, then we have a ⊥ a.
Contradictory points clash with themselves. Such points may clearly be defective in
some sense or other, but that does not mean that a semantics should rule them out
tout court. Ringing the changes with different kinds of incompatibility relations gives
a wide range of logics. So wide, in fact, that if we allow incompatibility to fail to be
symmetric, then we have models that provide counterexamples to the inference from A

to¬¬A,2 and we can independently add double negation introduction (in the presence
of an order relation ⊑ on points, at least) given another more complex condition on
incompatibility [22].

One of Dunn’s many insights is that the Routley star semantics [30] for a de Morgan
negation, with the familiar clause

• a ⊩ ¬A if and only if a∗ ̸⊩ A

can be naturally understood as a kind of incompatibility semantics. If we understand
a
∗ as the maximal point compatible with a (so a ̸⊥ b if and only if b ⊑ a

∗) then in-
deed the Routley semantics is a species of the broader genus of incompatibility models.
Incompatibility models with a Routley star are particularly well-suited to modelling a
non-classical de Morgan negation. In these models, the constructively invalid de Mor-
gan law (from ¬(A ∧ B) to ¬A ∨ ¬B) is valid, and if our model satisfies the condition
that a∗∗ = a, then if a ⊩ ¬¬A, we have a ⊩ A too. So, in the rest of this paper we
will consider ‘perp’ models, of the form ⟨P,⊥,⊩⟩ and ‘star’ models, the form ⟨P,∗ ,⊩⟩
as two kinds of incompatibility models for negation. As is usual with models of this

1In the incompatibility models we will discuss, conjunction and disjunction have the standard ‘local’
truth conditions: a ⊩ A ∧ B iff a ⊩ A and a ⊩ B; a ⊩ A ∨ B iff a ⊩ A or a ⊩ B, and so, the
resulting logics extend distributive lattice logic with an order inverting ‘negation’ operator. To model
logics without distribution we must vary the semantics for either conjunction or disjunction. This is not
difficult to do, and in fact, the initial treatment of negation by means of an incompatibility relation, due
to Rob Goldblatt [9] in 1974, was used to model orthologic, in which distribution fails. In these models,
Goldblatt uses the local truth conditions for conjunction, and A ∨ B is a definitional abbreviation for
¬(¬A ∨ ¬B).

2Here is a simple model that does the job. Take two points a, b where b ⊥ a, but no other incom-
patibilities hold. Let a ⊩ p and b ̸⊩ p. Then we have b ⊩ ¬p, since a is the only p-point, and b ⊥ a.
However, in this model we do not have a ⊩ ¬¬p, since b ⊩ ¬p, but we do not have a ⊥ b.
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general type, the underlying structure, sans evaluation relation ⊩, is called a frame, so
⟨P,⊥⟩ is a perp frame, while ⟨P,∗ ⟩ is a star frame.

Incompatibility models provide a unifying framework for understanding the se-
mantics of negation. We now have a map of the terrain, that takes in a great deal of the
logical scenery indeed, including the placid and well-understood downtowns of classi-
cal and intuitionistic negation, and the rather less familiar wilds of paraconsistency.

One question that lurks in the background when we use this semantics for different
logical systems is—what do such models model? What are these points that stand in a
relation of incompatibility with each other? Do they have any independent status, apart
from their use in our semantic theorising? If so, where do we find them? And how do
we come in contact with them? If they have no independent status, other than in our
models, how do they do such a good job of modelling the behaviour of negation? How
is it that negation could have the properties that are appropriately modelled by models
like these?3

I will not answer these questions in this essay, but I will provide for the friend of the
incompatibility semantics a new perspective on the meaning of negation and how we
might grasp it, in such a way as to help explain how the incompatibility model semantics
turns out to be an appropriate class of models for the concept as we use it. For that, we
don’t start with models. We start with proofs.

1 proofs and contexts
However we grasp concepts like conjunction, disjunction and negation, that grasp is in-
timately bound up with the way we use these concepts in our everyday reasoning prac-
tice. There are many things we could mean by terms like ‘reasoning’ and ‘inference.’4

Here, though, let us focus on a very simple connection between our practices of proof,
and our grasp of logical concepts such as conjunction and negation.

If someone were to grant A and grant B and still take it (after this had been pointed
out) that it remained an open question, in need of further justification, as to whether
A ∧ B were the case, this would seem to be good reason to doubt that this person un-
derstood that ‘∧’ means and, in the usual logicians’ sense of conjunction. Similarly, if

3The literature in models of non-classical logic describes points in such models as ‘pieces of infor-
mation’ [34, p. 159], ‘set-ups’ [29, p. 135], ‘worlds’ [19, §5.2], ‘states’ [21, p. 60], and different analyses are
offered concerning what these entities might be.

4See Harman’s influential Change in View [10] for a convincing defence of the idea that inference
as understood as reasoned change in view is not to be identified with deductive validity, and see Bob
Brandom’s Articulating Reasons [5] for an introduction to inferentialism, according to which a primitive
notion of material inference (not to be confused with formal deductive logical validity) lies at the root of
our conceptual capacities. Then, for good measure, read Catarina Dutilh Novaes’ superb The Dialogical

Roots of Deduction [8] for an account of how the roots of our reasoning practice take nourishment in
fertile soil of our dialogical norms for dispute resolution.
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you had just granted a conjunction, such as A ∧ B, a competent user of ‘∧’ could see
that if the issue of whether or not A is the case were to arise, the answer would again
be ‘yes,’ and no further justification would be needed than to point back to A ∧ B, or
whatever it was that justified A∧ B. We can understand the inference rules of a natural
deduction system (such as the rules in Figure 1) as encoding basic competencies with
the logical concepts, at least under a specific idealisation.

A (Assumption) A B ∧I

A ∧ B

A ∧ B ∧E

A

A ∧ B ∧E

B

A ∨I

A ∨ B

B ∨I

A ∨ B A ∨ B

[A]j
Π
C

[B]k
Π′

C ∨E
j,k

C

[A]i
Π
⊥ ¬I

i

¬A

¬A A ¬E

⊥
⊥ ⊥E

A

Figure 1: natural deduction proof rules

One key feature of natural deduction rules like these is that they do not merely tell
us how to grind out indubitable consequences of things that have been granted as true.
The rules allowing for discharging of assumptions (here,∨E and¬I), and the negation
elimination rule ¬E rely on our ability to engage in the question-and-answer practice
of proving from assumptions that we don’t necessarily take to be true. The rule, ¬E

tells us that if we have ever proved¬A and also proved A, then we have landed in an in-
consistency (marked here by writing⊥) in the conclusion point of the proof tree. The
negation introduction rule gives us something to do when we land in such an inconsis-
tency. We can take one of the assumptions we used to lead to the inconsistency, ‘blame’
it, and conclude on the basis of the other assumptions, that it is not true—that is, its
negation is true. One further feature of the rules as presented here is that the smallest
proof is a single formula,A, which serves as both the premise and the conclusion of this
atomic proof. Each other proof rule serves as a means to generate new proofs from old,
by extending a pre-existing proof with the addition of a new conclusion.5

Here is a simple example of these rules in use in a proof from the assumption¬p∨¬q
5A consequence of this definition is that, if we declare that the contradiction marker⊥ is not a for-

mula, but a structural constant, then ⊥ can enter into a proof only through a ¬E inference. It never
appears as a leaf in a proof tree.
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to the conclusion¬(p ∧ q).

¬p ∨ ¬q
[¬p]1

[p ∧ q]3

∧E

p

¬E

⊥
[¬q]2

[p ∧ q]3

∧E

q

¬E

⊥
∨E

1,2

⊥ ¬I
3

¬(p ∧ q)

This proof can be understood as not only reassuring us that the argument from¬p∨¬q
to¬(p∧q) is valid, but that it gives us a way to justify the claim of¬(p∧q), appealing only
to the assumption ¬p ∨ ¬q and using only the primitive inference rules. These rules,
as we have indicated, are to be understood as giving us basic constraints on competent
use of the logical concepts in a context where we are asking yes/no questions against a
background in which certain assumptions may be taken for granted. The resulting jus-
tification is straightforward. Working backwards, we can conclude¬(p∧q) because the
assumption of p ∧ q together with ¬p ∨ ¬q is inconsistent. Why is that inconsistent?
Because that assumption is inconsistent with either disjunct of our disjunctive assump-
tion. Why is that the case? Because p ∧ q leads to p, which is immediately inconsistent
with the first disjunct¬p, and p∧ q also leads to q and this is immediately inconsistent
with the second disjunct. Each of the transitions in this piece of reasoning corresponds
to one of the primitive inference rules, and these are the kinds of things we can follow.

This seems a very long way away from incompatibility models for non-classical log-
ics of negation. At most, this gives us intuitionistic logic.6 However, the gap is not
as wide we might worry, once we note that the norms governing assertion and proof
constrain not only assertions made under the scope of additive suppositions (where we
add extra assumptions to draw out their consequences, at least locally), but also alter-

native suppositions. To illustrate what I have in mind, consider the following stretch
of reasoning.

Let’s grant that either p is necessary or q is necessary. Let’s show that the
disjunction p∨q is necessary. To do that, let’s suppose things go some way
or other, totally arbitrarily. On the option that it was p that was necessary,
that means that in this case, we’ve still got p, and so, p ∨ q, too. Alterna-
tively, in the option that it was q was necessary, similarly, in that case we’ve
got q, and so, p∨ q, too. So, on either option, we have p∨ q. So, it follows
from all this that p ∨ q is necessary.

The wording here is clumsy, but one way to articulate the logical structure of this stretch
6Or minimal logic, if we are prepared to do without⊥E which does look rather out of place, it must

be said [13]. But for more on⊥E, see the discussion in Section 3.
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of reasoning is following proof, in which the formulas are annotated with context mark-
ers.

□p ∨□q ·a

[□p ·a]1

□E

p ·b
∨I

p ∨ q ·b

[□q ·a]2

□E

q ·b
∨I

p ∨ q ·b
∨E

1,2

p ∨ q ·b
□I

□(p ∨ q) ·a

Here, the formulas tagged with ‘a’ are those asserted (or supposed) in our home context,
not under the scope of the “suppose things go some way or other” shift in the dialogue.
That shift opens up another context in which assertions or inferences can go. We tag
these formulas with ‘b.’ The□E inference is a context-shifting inference. Granting□A
(in some context of the discussion) can be used to justifyA in other contexts. That is the
force of a claim of necessity: to grant□A is to agree that even had things gone otherwise,
we still would have had A.7 How, then, do we show that something is necessary? The
natural way to do so is to prove it in an arbitrary context. There is nothing special about
a context that makes it arbitrary, other than the fact that at the step of the reasoning at
which the inference us made (here, it is a□I step), none of the active commitments are
invoked in that context. In our proof, we proved p∨q (in context b) from an assumption
featuring contexta. So, at least if we understand deductive practice with necessity in this
way, our inference is legitimate.

It is worth reflecting on the two different ways that supposition functions in this rea-
soning. As with unlabelled natural deduction, there is the supposition involved in the
making of assumptions to later be discharged (in ∨E or ¬I inferences). This kind of
supposition does not involve the addition of a new context. Rather, to prove something
from the disjunction A ∨ B in context a, the supposition involved when we grant the
antecedentA, without any context shift, involves temporarily addingA to our commit-
ments and treating it as if it were asserted (in this very context), without any of the usual
requirements of evidence or warrant, using it on the way to prove some desired conclu-
sion. If we can also reach that conclusion when we suppose the other disjunct, B (in the
very same context), then we can discharge both suppositions, retaining the conclusion.
The supposition involved in making this assumption and then discharging it does not
involve a change of context, but is a temporary reprieve from the norms of warrant and
evidence involved in assertion. It is appropriate for you to query the grounds for my as-
sertion of p, and for me to withdraw my assertion if the answer I give is found wanting.
If I ask you to suppose p, it is no problem at all if there is no evidence at all for p.

The ‘indicative’ supposition involved in ∨E and ¬I inferences are to be distin-
7This is not to say that all forms of “going otherwise” are the same. There is more than one notion

of necessity, and more than one way that we can suppose that things go otherwise [6, 14, 26]. The details
of these distinctions, as interesting and fruitful as they are, are not important for the present discussion.
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guished from the counterfactual or subjunctive supposition involved in our modal rea-
soning. In this reasoning, when we “suppose things go some way or other”, this marks
the introduction of a new context, which in our labelled natural deduction proof is
represented by way of a new context label, b. In both cases, supposition involves the in-
troduction of new material without any need for justification. Indicative supposition
introduces a claim, treated like an assertion, but without the usual quality control mea-
sure of calling out for a justification. Subjunctive supposition introduces a new context.
In a□E inference, we use the claim□A granted in some given context a to justify the
claim A, given in another context b, which may have been introduced to the discourse
by subjunctive supposition.

Notice that in the signed modal proof given above it was natural to allow the dis-
junction rules to operate on formulas tagged with contexts, even when the contexts
shift in the course of our reasoning. If the aim was to extend our propositional logic
with modal operators, the natural choice for rules for the propositional connectives is
relatively straightforward. Since we ordinarily do not think of context shifts as chang-
ing the meaning of the connectives, the rules remain almost unchanged, except for the
addition of context labels. The results are compiled in Figure 2.

A · x (Assumption) A · x B · x ∧I

A ∧ B · x
A ∧ B · x ∧E

A · x
A ∧ B · x ∧E

B · x

A · x ∨I

A ∨ B · x
B · x ∨I

A ∨ B · x A ∨ B · x

[A · x]j
Λ
C

[B · x]k
Λ′
C ∨E

j,k

C

[A · x]i
Λ
⊥ ¬I

i

¬A · x

¬A · x A · x ¬E

⊥
⊥ ⊥E

A · x

Figure 2: natural deduction proof rules with contexts

With the addition of context labels, the grammar of our proofs has changed. To be
precise, given some setAtom of atomic formulas, the set Form of formulas is defined by
the following grammar:

Form
..= Atom | ¬Form | (Form ∧ Form) | (Form ∨ Form)

and the constituents of proofs are now judgements, consisting of a formula together
with a context label (selected from some set Ctx), or the contradiction marker,⊥.

Judg
..= ⊥ | Form ·Ctx
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In the statement of the rules given in Figure 2, the A and B are arbitrary formulas, x is a
context label, andC is a judgement (either a signed formula or a contradiction marker).

In most of these rules, the contexts are fixed from premise to conclusion. From A

in a given context, I can conclude A ∨ B in that context. If I have A and B in the same
context, I can conclude A ∧ B in that context. And in particular, given our particular
interest in negation, we reach a contradiction from A and ¬A in the same context.

Some details deserve comment. The first is that the contradiction marker serves
only as a sign that our assumptions, taken together, clash. As we have seen, the assump-
tions leading up to those contradictory conclusions may well have been granted in some
other contexts, so there is no sense that we need locate the blame for that clash in any
particular context.

The second detail is the special role of the conclusion C in the ∨E rule. Here, C is
anything that can be the conclusion of a proof: either a tagged formula or the contra-
diction marker. In the case of a tagged formula, there is no requirement that this tagged
formula be tagged with the same context marker as the disjunctive assumption leading
to that conclusion. We saw this in our proof from□p ∨□q to□(p ∨ q). The premise
was granted in context a, and so, we split into two cases in that context. In both of those
two cases, we conclude p ∨ q in the fresh context b, and so we hold onto that conclu-
sion on the basis of the disjunctive assumption. What drives the case-based reasoning
of a disjunction elimination is that the same conclusion is derived in each case, and each
case in question is opened up in the same context as the disjunctive conclusion being
eliminated. The conclusion of each inference must be the same, but it need not be an-
other claim in that original context. It could also be a contradiction marker, as seen in
the first (untagged) natural deduction proof on page 5.

The final thing to note about natural deduction proofs with context labels is that
they at least open the way to understand how a possible world semantics might truly
model the logic of necessity, without having to take some antecedently given notion
of possible worlds as the starting point of our semantic theorising. While it is under-
standably tempting to take the context label in a proof as naming a world, there is no
need to do so. There is no need to take the world labels to be referring expressions of any
kind, any more than the superscript in the second variable in the ordered pair expression
⟨x, x′⟩ should be taken as referring to anything. The role of the context labels in proof
exhausted by their identity and difference. A ·a and¬A ·a clash, while A ·a and¬A ·b
need not, since there is some context shift between the two judgements. It is that shift
in context that is represented by the different labels. Of course we can—if we like—
treat labels as referring expressions, and evaluate tagged formulas in a possible worlds
model. We can think of assertions in some fixed context as evaluated with respect to
some possible world. Perhaps this interpretation can do some explanatory work. How-
ever, it is a further question as to which direction the explanation goes. Do we justify
the proofs on the terms that they fit with possible worlds models, or do we justify the
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models on the basis that they provide models that fit with the antecedently grasped rules
for reasoning with modal expressions and the context shifts they involve.8 The question
of the direction of explanation (whether the model theory or the proof theory comes
first when doing semantics) is related to the issue of ‘semantic pollution’ in proof the-
ory. Labelled proof systems are rightly called into question as importing notions from
model theory into proof calculi [17, 20]. There is no space to enter into a full discus-
sion of the extent to which labelled proof systems like those under consideration here
are semantically polluted. However, insofar as there are context shifts at work in natu-
ral reasoning, and that in the one dialogue we might grant a context in which A holds,
and another in which ¬A holds, then a natural deduction representation of such rea-
soning which keeps track of different contexts by tagging assertions, suppositions and
the like with different labels need not immediately fall prey to the criticism that it is
semantically polluted in the sense of importing notions from some antecedently given
model-theoretic semantics. If the labels are used to represent contexts in a discourse,
then they have some claim to be as semantically innocent as other devices used to ren-
der the inferential structure of reasoning.

Since any questions concerning the nature of contexts and worlds and the pollution
or purity of proof rules with context labels remain live when we talk of inconsistent or
incomplete contexts (or ‘worlds’), and since new questions are added to them, it seems
worthwhile to see if a story like this one can be told for incompatibility models for nega-
tions, so let’s turn our attention there.

2 proofs with perp
If we start with the idea that proofs can combine claims made in different contexts, the
issue immediately arises: what, if anything, follows if we conclude¬A one context and
A in another? The rules discussed in the previous section (see Figure 2) give us no advice
on this issue. However, having learned the lessons Dunn taught us, we see that there is

a way to describe what follows from a negation ¬A in one context a and its negand A,
in another context b, and that is that the contexts a and b are incompatible, since what
is claimed of b is ruled out by what is claimed of the other. So, let’s mark that in our
reasoning writing ‘a ⊥ b’ for this incompatibility claim.

With our candidate for a negation elimination rule, what would a be matching in-

troduction rule? Harmony considerations dictate that we are in position to derive ¬A
(in a given context a) whenever we can vouchsafe the transition from A in some con-
text to the conclusion that a is incompatible with that context—whichever context
that turns out to be. So, the natural negation introduction rule is no real surprise. The

8It is possible to develop the explanatory connection between proofs and models in this second di-
rection, justifying models in terms of an antecedently motivated system of proof rules [25]. Although
the proof system discussed in that paper is a hypersequent calculus and not a labelled natural deduction
system, the broad lesson is the same.
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incompatibility rules for negation are given in Figure 3. If we have some labelled proof
from A ·b to the conclusion a ⊥ b, then provided we have made no other assumption
in context y, we can conclude ¬A in context a. That context, indeed, has what it takes
to rule A out.

With candidate introduction and elimination rules using the notion of incompat-
ibility between contexts, our rules no longer feature the context neutral contradiction
marker, and so we revise the grammar of judgements used in our proofs as follows:

Judg
..= Ctx ⊥ Ctx | Form ·Ctx

When we replace the negation rules from Figure 2 those in Figure 3, we have a simple,

¬A ·a A ·b ¬E

a ⊥ b

[A ·b]i
Λ

a ⊥ b ¬I
i†

¬A ·a
†(In¬I, b appears nowhere else in the undischarged assumptions of the proof Λ.)

Figure 3: negation rules with perp

well-behaved natural deduction system for the logic of incompatibility models, and it
is one can motivate the logic by general considerations of reasoning with negation in

contexts. To illustrate, here is a proof, from¬p∨¬q to¬(p∧ q), in the same context, a.

¬p ∨ ¬q ·a
[¬p ·a]1

[p ∧ q ·b]3

∧E

p ·b
¬E

a ⊥ b

[¬q ·a]2

[p ∧ q ·b]3

∧E

q ·b
¬E

a ⊥ b

∨E
1,2

a ⊥ b ¬I
3

¬(p ∧ q) ·a

Notice that this proof has the same general shape as the unlabelled proof of ¬(p ∧ q)
from the premise¬p∨¬q. The difference is the presence of the labels. We need to check
that the negation introduction step at the conclusion of this proof satisfies the side-
condition of that rule, that the context label b, occurring in the conclusion and in the
assumptions discharged at that step (the two occurrences of p∧q ·b) occur nowhere else
among the undischarged assumptions, and so, the b in this part of the proof is perfectly
general. This is indeed the case, so the proof is well-formed.

There are a few notable features of labelled proofs: first, incompatibility claims
a ⊥ b arise only inside proofs, and never as assumptions occurring in the leaves. (The
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smallest proof is a labelled formula A ·a on its own, in which the formula appears as
both premise and conclusion.) Second, notice that the proof rules each have the same
shape as the unlabelled proof rules in Figure 1. If we take any labelled proof and simply
erase all the labels, the result is a proof in intuitionistic natural deduction. Third, as we
had hoped as we introduced these proofs, they precisely match Dunn’s incompatibility
models for negation. We start with soundness: and to state this fact we need to be precise
with how the premises and conclusions of a proof are to be evaluated on a model. We
will use the following, natural, definition:

definition 1 [holding, validity] The judgement A ·a holds in ⟨P,⊥,⊩⟩, rela-
tive to the assignment p of points to labels when p(a) ⊩ A. The the judgement b ⊥ c

holds in the model when p(b) ⊥ p(c). An argument from the premises X to some
judgement C is said to be valid on the model if and only if for any assignment p, if
the premises hold in the model, so does the conclusion.

This definition makes explicit in the models what is already explicit in the labelled proof
theory. There are two notions of consequence at play in our logical systems. First, there
is internal notion of consequence, relative to a fixed choice of context (A entailsBwhere
we have a proof from A ·a to B ·a, or correspondingly, in any model, and any point x
in the model, if x ⊩ A, then x ⊩ B). For internal consequence, the premises and con-
clusions are formulas, and each is evaluated at the same context. Our definition here
utilises a more general external notion of consequence, which allows contexts to vary
among premises and conclusions. The premises and conclusions are taken from the
class of judgements, which carry along their contexts with them. Since labelled natu-
ral deduction proofs operate on judgements, our soundness and completeness proofs
show that the more general external notion of consequence definable by proofs and by
models agree. Since internal consequence is definable in terms of external consequence
(by restricting our attention to judgements with a single given context), soundness and
completeness for internal consequence follows immediately.

With this definition in place, we have the following fact:

fact 1 [soundness (for perp proofs)] If Λ is a labelled proof with premises X and

conclusion B · c [or b ⊥ c], then the argument from X to B · c [or b ⊥ c] is valid on every

incompatibility model.

Proof: This is shown by a straightforward induction on the construction of the proof
Λ, appealing to the match between the proof rules and the evaluation conditions for
the connectives in incompatibility models. The base case consists of a proof with the
single premise A ·a, with the very same conclusion, so the induction hypothesis holds
trivially. The cases for the distributive lattice connectives are straightforward and need
no extensive discussion, but let’s consider ∨E since it allows for context shifting. Let’s
fix on some incompatibility model ⟨P,⊥,⊩⟩ and some assignment p sending labels to

Greg Restall, gr69@st-andrews.ac.uk january 31, 2024

https://consequently.org/writing/proofs-with-star-and-perp
mailto:gr69@st-andrews.ac.uk


https://consequently.org/writing/proofs-with-star-and-perp 12

points, and we suppose the hypothesis applies to the labelled proofs Λ,Λ′,Λ′′ leading
up to this application of∨E:

X

Λ
A ∨ B ·a

Y, [A ·a]j
Λ′
C

Z, [B ·a]k
Λ′′
C ∨E

j,k

C

So, the arguments from X to A∨B ·a, and from Y, A ·a to C and Z, B ·a to C are valid
on our incompatibility model ⟨P,⊥,⊩⟩. Consider now our assignment p. We know
that if each of the members of X holds in the model, so does A ∨ B ·a, and that if the
members of Y, A ·a hold in the model, so does C , and if the members of Z, B ·a hold in
the model, C does as well. To show that the entire proof is valid in the model, suppose
that each of the members of X, Y, Z hold in the model. Since the members of X hold,
so does A ∨ B ·a, and by the disjunction clause (a ⊩ A ∨ B iff a ⊩ A or a ⊩ B), we
know that either A ·a holds in the model or B ·a holds in the model. In the first case,
the validity of the argument from Y, A ·a to C assures us that C holds in the model,
and in the second case, it is the validity of the second argument that does the job, and
so, in either case, the desired conclusion indeed holds in the model. (Notice that this
reasoning applies whether the conclusion C is a labelled formula, or an incompatibility
claim. The only condition requirement is that it be derived in either case.)

For the negation rules, consider¬E:

X

Λ
¬A ·a

Y

Λ′
A ·b ¬E

a ⊥ b

By hypothesis, the arguments from X to ¬A ·a and from Y to A ·b are valid on our
model. So, to show that the whole argument is valid, suppose that both X and Y hold
in our model under assignment p. It follows that p(a) ⊩ ¬A, and p(b) ⊩ A. Given the
evaluation clause for negation, this means that p(a) ⊥ p(b), and hence, a ⊥ b holds in
our model, as desired.

Finally, consider¬I :
X, [A ·b]i

Λ
a ⊥ b ¬I

¬A ·a

The induction hypothesis is that the argument from X, A ·b to a ⊥ b is valid on our
model. We wish to show that the argument fromX to¬A ·a is also valid on our model.
The one extra piece of information is that the label b is absent fromX . So, let’s suppose
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that p is some assignment for whichX holds in our model. We wish to show that¬A ·a
holds in our model, too. For that, we need to show that whenever c ⊩ A, then p(a) ⊥ c.
So, suppose b is a point in the frame where c ⊩ A. Select a new assignment p′ of points
to labels such that p′(b) = c while p′(d) = p(d) for every other label d. (This includes the
label a.) This includes the labels occurring in the premises X , since b is absent from X .
The induction hypothesis applied to this assignment p′ tells us that since every member
of X, A · y hold under this assignment, so does the conclusion a ⊥ b. Since p′(a) = p(a)
and p

′(b) = c, we have p(a) ⊥ c as desired, and so, since c was arbitrary, we have shown
that¬A ·a holds in our model.

Now, since nothing in this reasoning assumed any features of the incompatibility re-
lation ⊥, this soundness fact tells us that the logic arising out of these proof rules is
very weak. The non-symmetric model given above9 provides a counterexample to the
argument from p ·a to ¬¬p ·a. In other words, there is no way to assign labels to the
unlabelled proof

[¬p]1
p

¬E

⊥ ¬I
1

¬¬p

—or to any other unlabelled proof from p to ¬¬p—satisfying the conditions of our
labelled calculus. Models where compatibility fails to be reflexive (and so, we allow x ⊥
x for some points x) give us means to satisfy contradictory conjunctions p∧¬p at point,
and so, to provide ways to fail to validate ¬(p ∧ ¬p). This means that we also have no
way to convert this

[p ∧ ¬p]1

∧E¬p
[p ∧ ¬p]1

∧E

p

¬E

⊥ ¬I
1

¬(p ∧ ¬p)

—or any other proof to this conclusion from no premises—into a properly labelled
proof. Of course, there are simple ways to extend the calculus with symmetry or ir-
reflexivity rules to allow for labellings of these proofs:

[¬p ·b]1
p ·a

¬E

b ⊥ a
Sym

a ⊥ b ¬I
1

¬¬p ·a

[p ∧ ¬p ·b]1

∧E

¬p ·b
[p ∧ ¬p ·b]1

∧E

p ·b
¬E

b ⊥ b
Irrefl

⊥ ⊥E

a ⊥ b ¬I
1

¬(p ∧ ¬p) ·a
9See footnote 2.
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Rather than exploring the details of different rules such as Sym and Irrefl and the cor-
responding frame conditions (for space reasons only—the proving soundness for the
extended proof systems with respect to the corresponding class of models is straightfor-
ward) let us end this section discussing the Completeness Theorem.

fact 2 [completeness (for perp proofs)] If an argument with premises X and

conclusion B · c [or b ⊥ c] is valid on every incompatibility model, then there is some la-

belled proof with from X to B · c [or b ⊥ c].

There are a number of different ways to show that our labelled proof rules are complete
for validity on incompatibility models. We will sketch a direct proof of completeness of
an extended proof system in Section 4. Here I will take a different approach, favouring
theft over toil.

Proof [Sketch]: We borrow the completeness result for the sequent natural deduction
system of for distributive lattice logic with split negation, given in An Introduction to

Substructural Logic (isl), Chapter 11 [23]. There, it is shown that incompatibility frames
provide a semantics with respect to which a simple unlabelled sequent calculus for dis-
tributive lattice logic extended with two rules for two negations, is sound and complete:

A ⊢ ¬B X ⊢ B ¬E/∼I

X ⊢ ∼A
A ⊢ ∼B X ⊢ B ∼E/¬I

X ⊢ ¬A

Incompatibility models are extended to interpret the converse negation∼ in the obvi-
ous way, using the converse of incompatibility.10 The two negations are modelled to-
gether, like this:

• a ⊩ ¬A if and only if for each b, if b ⊩ A then a ⊥ b,

• a ⊩ ∼A if and only if for each b, if b ⊩ A then b ⊥ a.

We then can show that unlabelled sequent proofs (which are complete for compatibil-
ity frames) can be translated into labelled proofs. A sequent consists of a multiset X of
formulas on the left-hand side and a single formula on the right. For any label a, and
any natural deduction proof π ending in a sequentX ⊢ A, the a-translation of π will be
some labelled proof πa with undischarged assumptions selected from X , each labelled
with a, and with conclusionA ·a. The axiomatic sequentA ⊢ A is a-translated into the
atomic proof A ·a. The rules for conjunction and disjunction act exactly as one would
expect with a homophonic translation from one system to the other. For sequent natu-
ral deduction proofs using the negation rules we translate as follows, using the expected

10To be precise, in isl, the models are described in terms of compatibility rather than an incompatibil-

ity relation, but the easy translation (defining⊥ as the negation of compatibility) works as expected.
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converse I and E rules for the negation∼.

π

A ⊢ ¬B
π
′

X ⊢ B ¬E/∼I

X ⊢ ∼A
⇒

[A ·b]1

πb

¬B ·b

X ·a
π
′
a

B ·a ¬E

b ⊥ a ∼I
1

∼A ·a

π

A ⊢ ∼B
π
′

X ⊢ B ∼E/¬I

X ⊢ ¬A
⇒

[A ·b]1

πb

∼B ·b

X ·a
π
′
a

B ·a ∼E

a ⊥ b ¬I
1

¬A ·a
The end of the translation process is some labelled proof from the premises to the con-
clusion, littered, alas, with the converse negation∼which may be foreign matter to the
premises and conclusion under discussion. This is no problem. We have been deliv-
ered a labelled natural deduction proof. It can be normalised, as usual (remember, if
we delete the labels, this is simply an intuitionist propositional proof, satisfying extra
conditions). The normalisation process (as we will see in the final section) preserves the
special properties of the negation rules, and so, we can transfer our proof into a thor-
oughly normal one, which will satisfy the subformula property. This will delete the
extraneous converse negations from our proof and the result is a proof in the original
calculus.

With soundness and completeness proved, we see that the external consequence rela-
tion definable by proofs agrees with that definable by way of models, and so the in-

ternal consequence relations given by proofs and given by models also agrees. Since
the internal logic of general incompatibility frames (in the language of conjunction,
disjunction and negation) is a proper sublogic of first-degree entailment, it is clearly a
relevant logic, and so, the internal entailment relation given by way of proofs is also rele-
vant. This raises the interesting question of whether the external consequence relation,
defined over arbitrary judgements, is also, in any sense a relevant consequence relation.
The entailment from p ·a and¬p ·b to a ⊥ bmay give some pause, since when we erase
context labels we get the inference from p,¬p to⊥which is problematic on at least some

relevance grounds [33]. However, it is clear that there is some shared subject matter in
the inference from p ·a and¬p ·b to a ⊥ b: the context labels are playing an important
role. It is in virtue of the claim of p at a and¬p at b that a and b are taken to be incom-
patible. There seems to be no irrelevance here, but what relevance there is seems to be at
the level of context rather than an identifiable content asserted in one context or other.
Space forbids an extended account of relevance for external consequence, so we must
leave this matter for another occasion.
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What, then, of the de Morgan negation represented by Routley star models? On
these models, the argument from¬¬A toA comes out as valid, but no straightforward
rules governing ⊥ will give us a means to bridge that gap—at least, none will do so if
the added rules remain intuitionistically acceptable when we erase labels. We’ll have to
do something else to bridge the gap. For that, we turn to natural deduction for classical

logic.

3 assertion and denial
There are many ways to modify the rules for Prawitz-style natural deduction to allow
for properly classical proofs. The simplest thing to do is to add extra principles to some
or other connective, beyond the harmonious introduction and elimination rules. This
will not be our strategy here, since it is possible keep the connective rules fixed, and vary
what Belnap calls the ‘antecedently given context of deducibility’ [3], the underlying
framework in which proofs are constructed. To do this, we will pay attention to the
kinds of speech acts we use in dialogue. Not only do we assert and suppose in differ-
ent contexts. We also deny. Taking assertion and denial to be on equal footing has be-
come an important theoretical perspective on proof-theoretical semantics for classical
logic [11, 12, 18, 24, 28, 31, 32].

However, instead of complicating our natural deduction system to incorporate pos-
itively and negatively signed judgements at every step (which results in a fully bilateral

natural deduction system), it suffices for our purposes to be only very mildly bilateral,
by allowing for negative premises in our proofs, and leaving the of the rest of the proof
system unchanged.11 So, for our original unlabelled natural deduction system, we allow
not only formulas to occur in the leaves of a proof, we also allow slashed formulas, A ,
indicating the (primitive) denial of the claim A. If to assert A is to answer yes to the
polar question A?, then to deny A is to answer the question A? with a no.

A A ↑ (Store)
⊥

[A ]i
Π
⊥ ↓i (Retrieve)
A

A ·a A ·a ↑
⊥

[A ·a ]j
Λ
⊥ ↓j
A ·a

Figure 4: denial rules, unlabelled and labelled

The rules governing this primitive denial are straightforward, and are presented in
11For a more extensive treatment of this mildly bilateralist natural deduction, its connection to Michel

Parigot’s λµ-calculus for classical logic [15, 16], and some of its many pleasant properties, see “Structural
Rules in Natural Deduction with Alternatives” [27].
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Figure 4 (focus on the first pair, of unlabelled rules, for the moment). Asserting and
denying the same thing is, of course, inconsistent. On the other hand, if we reach an in-
consistency, one way out of that dead end is to say ‘yes’ to something we had previously
ruled out. (These rules are named ‘Store’ and ‘Retrieve’ because we can think of the neg-
atively tagged formulas as temporarily stored conclusions, which can be retrieved from
storage when needed.)12

With the addition of these purely structural rules, the existing logical rules for our
unlabelled system now suffice for all of classical logic. Here is a proof from ¬¬p to p:

¬¬p

[p ]2 [p]1

↑
⊥ ¬I

1
¬p

¬E

⊥ ↓2

p

At the first step we have assumed p and denied it at the same time, to reach a contra-
diction. We immediately blame that contradiction on the assumption of p, discharging
that to deduce¬p. So, at this stage of the proof we have inferred¬p in a context where p
is denied. This, of course, clashes with the assumption ¬¬p, and so, in the presence of
this contradiction we retrieve the denied p, to conclude p, as desired. We recover classical
reasoning by paying the coin of two structural rules involving denials.

Adding these two rules to the unlabelled natural deduction system has an added
benefit. The awkwardly justified⊥E rule is now redundant, and can be replaced by the
Retrieve rule, in the special (explicitly irrelevant) case where we retrieve zero instances of
a stored A.

p

→I

q→ p

¬p p

¬E

⊥ ↓
q

In this case, in just the same way that the classically valid inference from p toq→ p arises
from assuming p, and discharging zero occurrences of the assumption of q to conclude
q→ p, the classically valid inference from p,¬p toq arises in the same way. The p and¬p
lead to a contradiction, and we retrieve zero instances of the denied q to conclude q. The
two kinds of irrelevance present in classical logic come down to the same underlying
phenomenon, vacuous discharge of positive or negative assumptions, and if we wish to

12In the labelled calculus, our family of judgements is expanded to allow for denial judgements in
addition to assertions, and to return the unadorned contradiction marker to the fold:

Judg
..= ⊥ | Ctx ⊥ Ctx | Form ·Ctx | Form ·Ctx

Notice that in our proofs, denial judgements occur only ever as leaves in proof trees, and never as con-
clusions.
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be properly relevant, one way to do this is to ban vacuous discharge, whether positive
or negative.

Instead of exploring the finer details of this classical natural deduction system, let’s
immediately see how we can use ideas from it in the setting of a labelled natural deduc-
tion system. The generalisation we use, as seen in the second pair of rules in Figure 4, is
the simplest possible. Just as in the unlabelled system we allowed for leaves of the tree
to be slashed to represent denial, we do the same thing here, so the denial of A in the
context x is represented by slashing the entire judgement, like so: A · x . The sense of
such a judgement is straightforward: just as the assertion, or supposition, of some con-
tent can have a different significance in different contexts (recall the modal proof from
□p∨□q to□(p∨ q), in which p∨ q was proved in an ‘arbitrary’ context), so, too, can
a denial. As with other kinds of bilateral proof systems, we take it that the denial of a
claim A might in some sense be conceptually prior to the assertion (or supposition) of
its negation, and that denials, like assertions, are sensitive to shifts in context. This is
marked in this proof system with the denial judgement A · x , in which A is denied in
context x.

However we are to understand the significance of such speech acts, this one addition
to the formal system will allow us to construct natural deduction proofs for the Routley
star semantics, as we will see in the next section.

4 proofs with star
Recall the truth conditions for negation in Routley star models:

• x ⊩ ¬A if and only if x∗ ̸⊩ A.

If we use this modelling condition in a frame with a map ∗ : P → P of period two (so
x
∗∗ = x), then the appropriate proof rules for negation to match these models will be

as given in Figure 5.13

Despite the presence of the Routley star with period two, the¬I/¬E rules, together
with the label-manipulating rules ∗∗I and ∗∗E do not suffice to derive the constructively
invalid inference from ¬¬p to p, or the constructively invalid de Morgan’s law. These
rules, as usual, remain constructively valid if we erase the labels, so on their own, they
would not be enough to generate the non-constructive de Morgan validities. In the
presence of the denial rules, however, they suffice. For example, we have this proof for

13The class of judgements used in Routley star proofs is again, different. Now, we generate new general
contexts by closing our original context labels under the star operator.

GCtx
..= Ctx | GCtx∗ Judg

..= ⊥ | Form ·GCtx | Form ·GCtx
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¬A ·a A ·a∗ ¬E

⊥

[A ·a∗]i
Λ
⊥ ¬I

i

¬A ·a
A ·a ∗∗

I

A ·a∗∗
A ·a∗∗ ∗∗

E

A ·a

Figure 5: negation rules with star

double negation elimination:

¬¬p ·a

[p ·a∗∗ ]2 [p ·a∗∗]1

↑
⊥ ¬I

1

¬p ·a∗
¬E

⊥ ↓2

p ·a∗∗
∗∗

E

p ·a

This longer proof suffices for the constructively invalid de Morgan’s Law:

[¬p ∨ ¬q ·a ]4

[¬p ∨ ¬q ·a ]4

[¬p ·a ]3

¬(p ∧ q) ·a
[p ·a∗]1 [q ·a∗]2

∧I

p ∧ q ·a∗
¬E

⊥ ¬I
1

¬p ·a
↑

⊥ ¬I
2

¬q ·a
∨I¬p ∨ ¬q ·a
↑

⊥ ↓3

¬p ·a
∨I¬p ∨ ¬q ·a
↑

⊥ ↓4

¬p ∨ ¬q ·a

We can combine the denial rules with the incompatibility rules for negation, too. With
either the star rules or the incompatibility rules in place for negation, the resulting
proofs are still sound for the logic modelled by our star or perp models. To show this,
we need to expand our definition of validity and holding, to allow for slashed premises
in our arguments.
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definition 2 [holding and validity, again] For any model with an evaluation
⊩, the slashed labelled formula A ·a holds in the model when p(a) ̸⊩ A. The incon-
sistency sign⊥ never holds in a model.

In any star model, a map p from labels to points must respect stars on labels: that
is, p(a∗) = p(a)∗ for each label a. Then, as before, an argument from X to C is valid
on a model, if and only if, under any assignment p, if the members of X hold in the
model, so does C .

With this definition, soundness is straightforward to state and prove.

fact 3 [soundness for labelled proofs with denial] If Λ is a labelled incom-

patibility [star] proof with premises X and conclusion B · c [or b ⊥ c, or ⊥], then corre-

sponding argument is valid on every incompatibility [star] model.

Proof: The proof takes the same shape as our previous soundness proof, an induction
on the construction of the labelled proof. The new cases to consider are the Store and
Retrieve rules, as well as the star rules. Consider the Store and Retrieve rules first. Sup-
pose the argument from X to A ·a is valid on our model, and we extend some proof
from X to A ·a with the Store rule, adding the premise A ·a , leading to the conclusion
⊥. Since on any choice of values for the labels in which the members of X hold, A ·a
holds, there is no assignment of values in which the members of X and A ·a holds, so
the argument from X, A ·a to⊥ is indeed valid on our model.

Conversely, if we have a proof Λ fromX, A ·a to⊥ and this argument is valid on our
model, this means there is no assignment of points to labels that such that every member
of X, A ·a holds. So, for any assignment of points to labels where every member of X
holds, A ·a must hold, too, and the argument from X to A ·a is valid on our model,
too.

Soundness is straightforward for the ∗∗I and ∗∗
E rules, since any assignment of

points to labels respects star, and in any Routley star model, a∗∗ = a for every point a.
Soundness for ¬I and ¬E is also straightforward, given the truth conditions for nega-
tions on Routley star models. There is no model in which ¬A · x and A · x∗ can both
hold, on the same assignment of values to points. On the other hand, if the argument
from X and A · x∗ to ⊥ is valid on a model, that means that there is no assignment of
points to labels where X and A · x∗ holds. That means on any assignment where which
each member of X holds is one whre A · x∗ doesn’t, but that means ¬A · x holds, and
so, the argument from X to ¬A · x is valid, as desired.

The completeness fact for proofs with denial is straightforward to state and prove.

fact 4 [completeness for labelled proofs with denial] An argument from

X and C valid in every incompatibility [star] model, also has some labelled incompati-

bility [star] proof.
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Proof [Sketch]: This proof is a standard canonical model construction, and as usual, we
prove the contrapositive. If there is no proof fromX to the conclusionC , we construct a
model and assignment of points to labels in which each member ofX holds, under that
assignment and C fails to hold, again, under that assignment. Instead of constructing
the model out of maximal sets of formulas (or maximal prime/ideal pairs, as is appro-
priate for distributive lattice logics [23]), the construction is rather straightforward. We
start with our the pair ⟨X, {C}⟩, which is available, in the sense that there is no proof
from any subset of elements on the left side to any member of the right side. Our aim is
to fill this out, constructing a partition ⟨Yes,No⟩ of the whole language, where the state-
ments on the left side are ruled in while those on the right are ruled out. The constraint,
as we fill out our pair of sets is that the pair remains available as we fill it out. We must be
careful, since the constraint of availability is stricter than the condition that is no proof
from members of Yes to any members of No, since the pair ⟨{p ∨ q ·a}, {p ·a, q ·a}⟩ is
indeed available in that weak sense (there is no proof from p ∨ q ·a to p ·a, and nor is
there a proof to q ·a) but there will be no model in which p ∨ q ·a holds and both p ·a
and q ·a doesn’t. No, this pair shouldn’t be available, and the appropriate definition of
availability of a pair ⟨Y,N ⟩ is that there is no proof from members of Y together with
denied (slashed) members of N to a member of N . There is a proof from p∨ q ·a, p ·a
to q ·a, and so the pair ⟨{p ∨ q ·a}, {p ·a, q ·a}⟩ is not available, as desired.

So, the construction of our partition ⟨Yes, No⟩ can proceed in the way familiar from
Henkin completeness proofs. We take for ourselves a countable supply of labels, and
enumerate our collection of labelled formulas and compatibility claims. Then, given
any finite available pair ⟨Y,N ⟩, we select the next object in our enumeration C (either
a labelled formula or an incompatibility statement). We consider whether we have a
proof from Y, N to C , where we allow ourselves to appeal not only to formulas in Y ,
slashes of formulas occuring in N .14 If we do, then there is no proof from Y, N , C to
⊥. If we did have such a proof, we could compose this with the proof from Y, N to
C , to give us a proof which leads us from Y, N to⊥, in which case ⟨Y,N ⟩ would not
be available. So, either ⟨Y ∪ {C}, N ⟩ is available or ⟨Y, {C} ∪ N ⟩ is. Choose one to
be ⟨Y ′, N ′⟩, and continue the process until the limit, where every labelled formula and
compatibility statement has been chosen. The result is a partition of the language, and
it is available.

There is one complication to the process. If the labelled formula C is a negation

¬A ·a, we add it to the right of the partition, we must add a witness, too. In this case,
we know that ⟨Y, {¬A ·a}∪N ⟩ is available. So, there is no proof from Y, N to¬A ·a.
So, choose a fresh label b. We know that there is no proof Y, N , ¬A ·a , A ·b to a ⊥ b,
since if there were such a proof, we could extend it by¬E (and some store/retrieve steps)
to give a proof of¬A ·a from Y, N , and we know there is no such proof. So, it follows

14Recall the grammar of proofs: incompatibility statements a ⊥ b do not occur slashed in proofs, so
any incompatibility facts in N do not occur in N .
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that ⟨Y ∪{A ·b}, {¬A ·a, a ⊥ b}∪N ⟩ is also available, so whenever our construction
asks us to make a negation not true, we add a fresh witness label and witnessing facts in
this way.

Then, the limit ⟨Yes, No⟩ of this process will be a description of a compatibility
model. The class of points is the set of all labels used in the process, the incompatibility
relation is read off the set of a ⊥ b claims added to the No side (these are the incompat-
ibility claims that don’t hold in the canonical model), in the sense that we set a ⊥ b to
hold in our model when the corresponding statement a ⊥ b ̸∈ No. Then we set a ⊩ A

when A ·a ∈ Yes and a ̸⊩ A when A ·a ∈ No. The standard truth conditions can
be seen to hold by an easy inspection. For example, if a ⊩ A and a ⊩ B then since
A ·a, B ·a ∈ Yes, we must have A ∧ B ·a ∈ Yes since ⟨Yes, No⟩ is a partition, and we
cannot have A∧B ·a ∈ No, since there is a one-step proof from A ·a, B ·a to A∧B ·a,
so a ⊩ A ∧ B as desired. For the converse, if a ⊩ A ∧ B, then A ∧ B ·a ∈ Yes, and
since there are one-step proofs from the conjunction to each conjunct, we must have
A ·a and B ·a ∈ Yes too.

The most difficult cases to check are negation. If a ⊩ ¬A, then we wish to show
that for any b where b ⊩ A, we have a ⊥ b in the model. That is, we want a ⊥ b ̸∈ No.
This is immediate, since if ¬A ·a ∈ Yes and A ·b ∈ Yes, we cannot have a ⊥ b ̸∈ No,
since we can infer a ⊥ b by¬E. For the converse, we show that if a ̸⊩ ¬A then there is
some b where b ⊩ A and a ⊥ b fails in our model. But this is exactly the condition on
partitions that is ensured by the special condition on adding negations to the No side
of the partition, covered above.

That sketches the completeness construction for incompatibility frames. The case
for star frames is much simpler, since we do not need to throw in fresh labels for wit-
nesses for negations in the construction. The details are simpler, and are left to the
reader as an exercise.

Let’s leave the formal reflections on this proof system here. There are many more ques-
tions to be answered, of course, and there is much more to explore, but I hope that I
have at least sketched a way forward for developing proof-first understanding of how we
might acquire the concept of negation, and why such a concept might appropriately be
modelled with an incompatibility semantics. If we use the concepts of conjunction, dis-
junction, negation like this, by making suppositions, assertions, denials, and inferences
in context; if context shifts allow for us to at least potentially take some suppositional
contexts as self-undermining (in the sense of being incompatible with themselves), then
we have given some sense to a paraconsistent negation. And we have done so without
having to start with a worlds semantics and its ontology. But the result is not moving
away from the logic of incompatibility frames. On the contrary, we have shown how
just such a logic can arise.
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5 classical and non-classical proof
We could stop there, but this raises one further question which I will begin to address.
We have a plurality of logics of negation. There is the logic of the unlabelled proof
system, and the logic with the labelled proof system.15 Must we be forced to choose, or
can we find a way for those to live alongside one another, as two parts of a larger picture,
as two kinds of logical consequence, as two different kinds of proof, each corresponding
to a different criterion for deductive validity?

In this last section of the paper, I will sketch an approach to harmonising a classical
and a non-classical account of proof, which can be seen as extending the approach to
harmonising classical and relevant consequence in “Negation in Relevant Logics” [21].
That paper uses the incompatibility semantics to defend both a relevant paraconsis-
tent consequence relation, and a classical consequence relation. In any incompatibility
model ⟨P,⊥,⊩⟩we can isolate a subset of the points, consisting of all those points that
act like worlds. These ‘worlds’ are points that are consistent and complete with respect
to negation. If w is such a world, then we do not have w ⊥ w (it is consistent), and
furthermore, if w ̸⊩ A and we have y ⊩ A, then we must have w ⊥ y, since y verifies
A and w, per force must somehow rule A out, since it is complete. If the model is a star

model, the condition for w being a world is simpler to state: it is simply the condition
that w∗ = w.

Once we have worlds at hand, we can recover classical logic by attending to whether
the model furnishes a world that renders the premises true and the conclusion false. Our
model has both a coarse-grained consequence relation (quantifying only over worlds
in the specification of validity) and a finer-grained one (casting its eyes over all points,
whether worlds or not). We have two validity notions for the price of one, the kind of
pluralism about validity defended elsewhere by Beall and Restall [1, 2, 21].

How can we take such a perspective we start with proofs, rather than with models?
If we start with star proofs, we can split the consistency and completeness conditions
on points in two. A point is x consistent if whenever x ⊩ A, we also have x∗ ⊩ A. It
is complete if the converse holds. We can capture this notion in a pair of proof rules, in
Figure 6.

Cons x A · x
ConsE

A · x∗
Comp x A · x∗

CompE

A · x

Figure 6: consistency and completeness rules with star
15There is also the question of whether to use denial or not, but I will set that aside and help myself

to denial in what follows.
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These rules use a flag, entered into the proof tree as an assumption, which records that
we are treating the context x as consistent, in the first case, and complete, in the second.
(These need not be taken to be formulas, and I will not do so here.) Once we add the
consistency and completeness rules to the proof system, we can recover classical princi-
ples. Here is a proof of the law of the excluded middle, showing why p ∨ ¬p holds in a
complete context.

[p ∨ ¬p · x ]2

[p ∨ ¬p · x ]2

Comp x [p · x]1

CompE¬p · x
∨I

p ∨ ¬p · x
↑

⊥ ¬I
1

¬p · x
∨I

p ∨ ¬p · x
↑

⊥ ↓2

p ∨ ¬p · x

Proving a small number of results like of this form (showing how to prove the prin-
ciples that suffice to lift us from the weak paraconsistent logic to classical logic) would
be enough to ensure that what is provable classically can be proved in the paraconsistent
proof system, whether with star or with perp. This is enough if all we are concerned
with is validity. However, we could ask for more. We could wonder whether any clas-
sical (unlabelled) proof can be rewritten as a paraconsistent (labelled) proof, enhanced
only with judicious applications of the assumption that the context is consistent and
complete. In this section I will explain why this is indeed the case, there is a simple em-
bedding of classical proof into labelled proofs, an embedding that is so intimate that the
steps we use for normalising classical proofs correspond to steps used for normalising
labelled proofs. This is strong evidence for the view that classical unlabelled proofs can
be further analysed into labelled incompatibility proofs, which make explicit where the
assumptions of consistency and completeness play a role in the reasoning, assumptions
that are left completely implicit in classical proof.

To start presenting this translation from classical proofs into labelled proofs, let’s
see the consistency and completeness rules appropriate for incompatibility proofs. The
rules are presented in Figure 7. The completeness rule is a little more complex than the
completeness rule for star proofs, but it encodes the idea that if a context x fails to in-
clude A whereas a context y includes A, then, provided that x is complete, then x is
indeed incompatible with y. In the presence of the denial rules, this condition is not
too strong, though it might be thought that the second premise of the rule, which re-
quires a reduction of A (at x) to absurdity, which seems stronger than the idea that A
simply fails to hold at x. This worry is unfounded, because the labelled proof Λ may
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Cons x x ⊥ x
ConsE

⊥
Comp x

[A · x]i
Λ
⊥ A · y

CompE
i

x ⊥ y

Figure 7: consistency and completeness rules with perp

have other premises, including simply the premise that A fails at x.

Comp x

A · x [A · x]i
↑

⊥ A · y
CompE

i

x ⊥ y

With the consistency and completeness rules at hand, we can encode the classical un-
labelled proof rules in to the incompatibility proofs with labels. The translation will
systematically send an unlabelled proof Π from X to C [or to ⊥] to a labelled proof
Πw from the premises in X , all labelled with the single context label w, (we abbreviate
this set X ·w, for obvious reasons), to the conclusion C ·w [or to⊥], with the addition
of some additional premises Compw and Cons w when necessary.

Most of the rules in the labelled and unlabelled proof system differ merely in the
presence or absence of labels, and the conjunction, disjunction, and store and retrieve
rules may be homophonically translated by addingw labels everywhere. The work must
be done with the negation rules, which differ substantially from one system to the other.
In particular, the ¬I rule in the labelled system has the side condition involving the
freshness of the context label used in the discharged assumption. There is no such con-
dition in the classical system, and the translation of classical proofs to labelled proofs
annotates all the premises in the proof with the same context label, so we must find a
way to insert a fresh label somewhere. But first, let’s see the translation for ¬E.

Π
¬A

Π′

A ¬E

⊥
⇒

Πw

¬A ·w
Π′

w

A ·w ¬E

w ⊥ w Cons w
ConsE

⊥

Given a proof that ends in a ¬E step, we translate it by translating the subproofs first,
and then the work of the unlabelled ¬E step is achieved first by a labelled ¬E step,
which gives us the conclusion that the world context w is inconsistent. We then appeal
to consistency to reduce that conclusion to absurdity.
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The translation of ¬I has the same form, except in reverse. The subproof of our
¬I proof is a proof of absurdity. To transform this into a proof of incompatibility, we
appeal to the completeness of our context w, and this assumption provides just what we
need. We take y to be a fresh label, which can be immediately discharged in a ¬I step,
which gives us the negation at w as desired.

[A]i
Π
⊥ ¬I

i

¬A

⇒ Compw

[A ·w]i
Πw

⊥ [A · y]j
CompE

i

w ⊥ y

¬I
j

¬A ·w

With these translations, and homophonic translations of all the other inference rules,
we have a systematic translation of classical unlabelled proofs into labelled incompati-
bility proofs. We can see the distinctions that classical proofs draw, faithfully represented
inside the wilder and more varied world of labelled incompatibility proofs. We have two
logics of proofs, for the price of one.16

Let me end this section (and this paper) by showing how this representation is so
faithful that normalisation steps operating on classical proofs correspond to normalisa-
tion steps operating on the underlying labelled proofs. The key normalisation steps for
our purposes, again, are the negation rules, since these differ most, so I will explain these
and leave the rest to the reader. Recall, the principle case of normalisation in a proof is
the elimination of a detour where a formula is introduced and then eliminated. In the
unlabelled proof system, a negation introduction followed by an elimination goes like

16It is worth noting (and thanks to an anonymous referee for prompting me on this point) that the
symmetry of the compatibility relation is not used in this result: it applies generally to any incompatibility
frame. For example, even though double negation introduction (the inference from p · x to ¬¬p · x) is
not, in general valid, in the absence of symmetry, it is valid for worldly consequence. The standard natural
deduction proof from p to ¬¬p is transformed into a proof using ¬I, ¬E, and the completeness and
consistency conditions, without any appeal to symmetry of incompatibility.

Compw

[¬p ·w]1
p ·w

¬E

w ⊥ w Cons w

ConsE

⊥ [¬p · y]2

CompE
1

w ⊥ y

¬I
2

¬¬p ·w
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the proof on the left, and the detour formula¬A is boxed.

[A]i
Π
⊥ ¬I

i

¬A
Π′

A

¬E

⊥

⇝
Π′

A

Π
⊥

We can eliminate this detour by replacing this proof section by the proof on the right,
which stacks the subproof Π′ some number of times into the proof Π. (How many
times? Exactly as many times as the discharged assumptionAwas used in Π. In general,
this is any finite number, including zero.)

In the case of a labelled proof, we can normalise in exactly the same way, though
with the wrinkle of incorporating labels:

[A · y]i
Λ

x ⊥ y

¬I
i

¬A · x
Λ′
A · z

¬E

x ⊥ z

⇝

Λ′
A · z

Λ[y/ z]
x ⊥ z

Here, we take the subproof Λ′ of A · z and use this in the place of the discharged as-
sumptions A · y. To do this, we replace each y in Λ by z, reassured that this does not
change any other premise in Λ, and the result replaces the conclusion of the proof by
x ⊥ z, the required conclusion.

Another normalising pair to consider in our labelled proof system involves the con-
sistency and completeness rules. These could be iterated. If I stack a CompE before a
ConsE step in some proof, we have a subproof which ends in this pair of steps:

Cons x

Comp x

[A · x]i
Λ
⊥

Λ′
A · x

CompE
i

x ⊥ x

ConsE

⊥

It seems quite natural to see the x ⊥ x as a detour formula, since the detour through this
formula (and the concomitant appeals to completeness and consistency) is thoroughly
redundant. We could replace this subproof by this subproof

Λ′
A · x

Λ
⊥
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which makes no such appeal to consistency and completeness, and arrives at the same
conclusion from the same remaining premises. With this pair of normalisation steps at
hand, consider the labelled translation of an unlabelled proof which involves a ¬I/¬E

detour. The translation of such a classical detour has this shape:

Compw

[A ·w]i
Πw

⊥ [A · y]j
CompE

i

w ⊥ y

¬I
j

¬A ·w
Π′

w

A ·w
¬E

w ⊥ w Cons w
ConsE

⊥

In this labelled proof, the¬A ·w is indeed a detour formula, and in this translated proof,
it is introduced by a ¬I and immediately eliminated by a ¬E. So, we can normalise it
away. Once we do, we get exactly the Completeness/Consistency pair we saw

Compw

[A ·w]i
Πw

⊥
Π′

w

A ·w
CompE

i

w ⊥ w Cons w

ConsE

⊥

⇝

Π′
w

A ·w
Πw

⊥

and so, it normalises away to exactly what we would expect, no more and no less than
the translation of the classical proof that eliminated the unlabelled detour. I take it that
this is some evidence that we have a faithful representation of classical proof inside the
more flexible, more general and more detailed world of labelled incompatibility proofs,
and we understand both these worlds better by seeing one reflected inside the other.
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