GREG RESTALL How to be Rea//y
Contraction Free

Abstract. A logic is said to be contraction free if the rule from 4 — (A — B) to
A — B is not truth preserving. It is well known that a logic has to be contraction free
for it to support a non-trivial naive theory of sets or of truth. What is not so well known
is that if there is another contracting implication expressible in the language, the logic
still cannot support such a naive theory. A logic is said to be robustly contraction free
if there is no such operator expressible in its language. We show that a large class of
finitely valued logics are each not robustly contraction free, and demonstrate that some
other contraction free logics fail to be robustly contraction free. Finally, the sublogics of

L. (with the standard connectives) are shown to be robustly contraction free.

1. Comprehension and Implications

A naive comprehension scheme is a collection of all formulz of the form
(3z)(Vy)(y € = < ¢(y)) (where ¢(y) does not have z free) in some appro-
priate language. Let C be such a set of formule. We are interested in the
consequences of C, that is the formule A such that C + A, for some ap-
propriate notion of deduction. One example of a theory containing a naive
comprehension scheme is naive set theory. There are others too. For exam-
ple, naive property theory, where for every predicate there is a corresponding
property of just those things of which the predicate truly predicates. We will
consider an arbitrary theory containing a naive comprehension scheme, and
to make life easier, we will follow the standard set theoretic notation, and
take ‘{z : ¢}’ to be a name in our langunage satisfying

(Vy)(y € {z : ¢} = &(y))

It has long been known that naive comprehension and the rule of contraction

A— (A— B)
A—- B
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do not go together at all well. The reason for this is well worn. Let a = {z:
z € £ — A} for any sentence A. Then we have

Ctac€ae (a€a— A) by comprehension.
Cta€a—(a€a— A) simplifying 1.
Ctaca— A contracting 2.
Ch{(a€a— A)>a€ca simplifying 1.

Chaca modus ponens on 3 and 4.
CHA modus ponens on 3 and 5.

e N

A is arbitrary, so if we can soundly reason like that, we can prove anything.
Granting the comprehension scheme, and granting that C is closed under
modus ponens for — (which you ought to grant, if you take it that your
theory is anything like being true, and that — is a genuine conditional) the
only objectionable move is contraction. To keep the hope of a non-trivial
naive comprehension scheme alive, contraction must be abandoned.

A moment’s thought reveals that there is nothing particularly special
about the operator — used in the definition of a. To trivialise our theory

all we need is some operator > in expressible in the language that has these
_ three properties:

A>B
A>(A>B
(2) >B

A,A>B
(@) =

Table 1

Because if we have a conditional like this, setting b= {z :z c 2 > B} gives
the following proof

Chtbebe (beb> B) by comprehension.
Crbeb—(beb>B) simplifying 1.
CHbeb>(beb>B) condition (1) on 2.

SR A 3 e

CHbeb>B condition (2) on 3.
CH(beb>B)—>becb simplifying 1.

CHbeb modus ponens on 4 and 5.
CHB condition (3) on 4 and 6.

Given that we call a logic without the contraction rule contraction free,
the following definition lends itself for use:
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DEFINITION 1  An operator satisfying the three conditions given in Table
1 is said to be a contracting implication. If a logic contains no contracting
implication it is said to be robustly contraction free.

We have shown the following:

THEOREM 1 A logic must be robustly contraction free if it is to support
a nontrivial naive comprehension scheme.

Moh Shaw-Kwei showed in 1954 [7] that none of the n-valued Lukasiewicz
systems are robustly contraction free, but to date, this result has not been
extended to a larger class of propositional logics. In this chapter we show
that no finitely valued logic satsifying certain general conditions is robustly
contraction free, and that some other contraction-free logics also fail in this
regard. Finally, we will deliniate a class of robustly contraction free logics.
To start, we will consider the logic BN4.

2. BN4...

As far as finitely valued logics go, BN4 has had a great deal of good press
in the recent past [1, 4, 8] and deservedly so. It is probably the most natural
four-valued logic there is. It is the logic you would be naturally led to, given
that you want to extend the boolean semantics for classical logic by admitting
values that are both true and false (b) and neither (n). Its b-free fragment is
L3, the famous three-valued logic of Lukasiewicz, and its n-free fragment is
RM3, the memorable almost-relevant logic. The first interpretation of the
(—-free part of the) logic in terms of the ‘both’ and ‘neither’ values seems
to have been given by Mike Dunn in a 1968 APA-ASL symposium “Natural
vs. Formal Languages”, and in his ‘coupled trees’ paper [2] which uses it
to characterise first degree entailment. However, the structure is so natural
that it seems to be reinvented with monotonous regularity. A simple way to
define BN4 is by way of its four element algebra, given below:

t —>|tbnf ~
it fnf | f

b *b |t bnf *b| b
ni{tntn nin

fltttt flt

As usual, A is the greates lower bound, and V the least upper bound,
sof Az = ffor any £ and nV b = t. Negation and implication are defined
by the matrices given above, and the asterisks in the diagram show which
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leements are designated. So, for a sentence to count as a theorem of BN4
it must be sent to t or b under any evaluation of the variables.

It is a pleasing exercise to show that BN4 properly contains C (also
ca.llet.i R-—W or RW in the literature), and its close cousin, additive and
multlpﬁcative linear logic. That it contains these logics is simply a matter
of axiom chopping — which we unashamedly leave to the reader. All that
must bg done is to show that the axioms are true under any assignment, and
that the rules are truth preserving. Here is an axiomatisation: ,

1. ANB—- A ANB—> B 7. ~~A—> A
2.(A->B)AN(A-C)>(A—>BAC) 8. (A— B) - (~B — ~A)
3. A-AVB, B> AVEB 9. AAB-ANAB

4 (A-C)AN(B—C)>(AVB—-C) 10.A,A— BF B
5. 4A— ((A—- B)— B) 11. AN(BVC)— (AA B)v
.(A—»B)«—)((C——»A)—)(C—)B)) (AnC)
1()3 ii gligen by 1-11, and the additive/multiplicative fragment of linear logic
y 1-10.
To show that BN4 properly contains C it is sufficitent to note that

(A— B)V(B— C)V(B & ~B)

(=]

.It is not a theorem of C (as none of its disjuncts are, and C is prime) but
it comes out designated in BN4 every time. It is also easy to show that
contraction fails in BN4 —n— (n —-b)=tbutn — b =n.

Despite the fact that BN4 is contraction free, it fails to be robustly con-
traction free. To see this, define a connective > evaluated by the condition
that z >yiszAb — y. It is easy to see that this connective satisfies
conditions (1) and (3). We are left with verifying (2). But this is simple
given the table: ’

Forz > y to.be undesignated, we must have z as either t or b, and y as either

nor f. And in this case z > y = . Itfollowstha.tz>(:c>y)::c>y S0
. . !

¢ > (z > y) is undesignated also. Contraposing this we see that > contracts.

3. ... Finitely Valued Logics ...

:As'indjcated. before, the trouble with BN4 is not restricted, but rather
1t 1s suggestive of a problem that plagues all finitely valued logics. The:

h
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problem can be explained like this. Given an implication functor >, we can
define another implication functor in terms of it, but weaker — either as
z AT > y, for some true constant 7, or as = > (z > y), or by some other
means. However we do it, the new operator will satisfy modus ponens, and
it will be weaker that >, in some sense to be explained. We continue this
weakening process ad infinitum, and eventually — finitely valued logics being
the cramped places that they are — we shouldn’t get anything new. Once
this happens, we get contraction. This is the guiding idea in what follows.

DEFINITION 2 A set V will define a semilattice logic if and only if it
satisfies the following conditions:

e There is an operator A on V that defines a semilattice ordering < on
V. In other words, A is idempotent, symmetric, and associative, and
s<yifzAy==.

o There is a set D of designated elements in V. D forms a filter. In
other words, if # € D and z < y then y € D, and if 2,y € D then
Ay € D.

e The conjunction of all elements of D (itself an element of D) can be
named in the language. We will call it ¢. ¢ is the smallest element of
D. (In linear logic, this constant is the multiplicative identity 1.)

o There is an operator — that satisfies z <y iff t <z — y.

Some weak logics are outside the scope of this definition, but they are rare,
and typically, not finitely valued.

We will consider an arbitrary finite semilattice logic, and show that it
can express a contracting implication. The first result is a lemma concerning

the behaviour of —.

LemMMA 2 (PREFIXING) Ift<z —ythent<zAz—y.
Proor. Ift <z — ythen 2 < y and so z A z < y by the properties of
semilattices. This givest <z Az — y. |

We define an infinite family of operators:

DerFINITION 3 For each n = 0,1,2,... define >, on V by fixing

z>oyY=y e >pp1y=zAt— (2>, 9)

It is easy to show that for each m,n, 2 >m (2 >n ¥) =  >min ¥
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LEMMA 3 Ift<ythent<z > y.
Proor. Ift<ythent<t—y andhencet<zAt— y by lemma 2. m
LEMMA 4 Ift<z>,ythent<z >pt1 Y, foreachn =0,1,2,...
PrOOF. This follows from lemma 3, as Snt1y=2>1 (2>, %) [ |
n¥)
LEMMA 5 Ift<z —ythent<z >,y foreachn > 0.
PI.{OO.F. Iftg::—»;qthentg:n/\t—»y::c>1y. Then n — 1
applications of the previous lemma gives us the result. |

In other words, each > i iti
n satisfies condition (3). Furth
that >, satisfies condition (1). ™ Frmore, we can show

LEMMA 6 Ift<z>,yandt<z we also have t < y.

Proor. Clearly this result holds for n = 0. If it holds for n. note that

< —_
t'__ Z >nt1y =2 At — (>, y), so modus ponens for — (using t < z A t)
gives t < z >, y, and our hypothesis gives us the result.! - [ |

Each of these results work in an ilatti i
: . y semilattice logic. Th i iti
is used in the following: : " fnfteneas condition

LEMMA q F‘OI' some n, t < T l't a,l[d ()nly it i x .tO ea
n/ > n. ’ = >n Yy S >n’ Yy 14 C.h
I ROOF. :E Or conv EIH.EIICE, name th'e m e].eIIleIltS Of [ as 3, T IOI
crcy¥me

'each_ implication >, consider the m X m matrix Apr, where the (4, ) ele t
11 1if and o.nly if z; >, z; is designated, and is 0 otherwise. In o,t{ler WI;ZI;
‘[1 m}]lm = 1lifand only if t < 2; >, z;, and [Am]i; = 0 otherwise. By lemma;
, the sequ?nce Ag, Ay, A4, ... is a monotonic sequence of matrices, in that
for each 1, J, once the (4,7) element gets the value 1, it keeps that ’value ;
e\/fery matrix in the sequence. It follows that for some n, 4., = A for eali
n ‘> n. T(? see this, take n;; to be the least n where [A,:]i-n: 1 07; let it lc)
0if ther.e is no such n. Take n = max(n;;), this is the desi]red n’u.mber :
But if A, = A,, for each n’ > n, it follows that t < z >, v if and 'nl if
t <z >, yfor each n’ > n, as desired. - mynamee ylI

Given this, we can prove our major theorem.

THEOREM 8

Any finitely val Ty 5
tion froe. y y valued semilattice logic is not robustly contrac-

1:1’1R0/OF. Let n be such that t < z >, y if and only ift < & >, y for
eachn’' > n. Thent <z >, yifand only if t < z >,, y. But this is simply

1
For those interested in thes
e matters, the proof of this lemmma used ion i
t a cont
the metalanguage, as the premise to the effect that ¢ < z was discharged twicz raction b
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t <z >p (2 >n y), and so, >n satisfies condition (2). But by previous
lemmas >, also satisfies conditions (1) and (3). [

It follows that any finitely valued semilattice logic is useless for the project
of formalising a nontrivial naive comprehension scheme.

4. ... and Others

It is interesting to note that other contraction free logics also fail to be
robustly contraction free, despite the fact that they are not finitely valued.
The logic BN, introduced in Slaney, Surendonk and Girle’s “Time, Truth
and Logic” [9], is given by adding two axioms to C. We need >; and >3
defined as before, and then BN is given by adding:
AoB>; B (A>2B)/\(~B>2~A)—>(A——>B)

It is simple to show that >3 is a contracting implication in BN, and that
so, it fails to be robustly contraction free.

More interestingly, Abelian Logic (called A) studied by Meyer and Slaney
[5] also fails to be robustly contraction free.? A can be defined by way of
a particular propositional structure — on the set Z of integers. The lattice
ordering is the obvious one on Z, and so, conjunction and disjunction are
min and max respectively. The implication z — y is simply y—z, and so, the
designated values are the non-negative integers. Any number of negations
can be defined, but the canonical example is given by taking ~ z to bez — 0,
which is simply —z. A simple check verifies that A properly contains C. In
fact, it is given by adding to C the axiom:

((A_>B)—>B)—>A

which can be seen as a generalised double negation axiom. One interesting
fact about A is that it has no nontrivial finite propositional structures as
models. (To show this, note that the presence of an object F such that FF < z
for each z in a structure will lead to triviality. This is because (¢ — F ) F
is equal to ' — F, which is T (the top element, ~ F)but (z - F) = F < z,
soT <z.)

2This result is due to Graham Priest, Paul Pritchard and myself, with some assistance
to the Automated Reasoning Project at the Australian National University, who brought
us together for the weekend, and Ansett Australia, who ensured that we would have a two
hour wait at Sydney Airport, with nothing much better to do than a bit of number theory.
I’'m grateful to Graham, Paul and the people of the ARP for their interest and help.
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It is also a simple exercise to show that >n will not contract for each

n = 1,2,... So, to show that A is not robustly contraction free, we must

take another approach. We must find a function f: 22 - 7z satisfying:

(1a) Ifz <y then f(z,y) >0
(2a) If f(z, f(z,y)) > 0 then f(z,y)>0
(3a) Iff(:c,y)ZOand:cZOthenyZO

Table 2

where f has been defined in terms of addition, subtraction, min, max and
. . ’
zero. The associated logical operator with then satisfy the conditions re-
quired for a contracting implication.
The first 'thing.to note is that a function f satisfying f(z,y) < 0iffz > 0
and y < 0 will satisfy these conditions. (This is a simple verification, and is
’

left to the reader.) The challenge is to define such a function in terms that
are allowed. One such function is given as follows:

f(z,y) = max(y,0) + max(—=z,0) + min(max(—z,y),0)

That it works is left to the reader. The corres

. onding implicati
is the horrible looking: poncing implication operator

A>B:(BVO)o(NAVO)o((NAVB)/\O)
This ‘simplifies’ to

A>B:~((~AVB)/\0—>((BVO)—>(A/\O)))

It follows that while A is contraction free in that no simple minded nestin
of‘ arrows will yield a contracting implication, a more devious approach wiﬁ
give one. This failure of A to be robustly contraction free is somewhat
surprising, for it explicity contains an infinite number of truth-values, which
ought to be enough to distinguish any number of repetitions of pr;mises
What s.trikes this observer is that some form of disjunctive syllogism mi ht;
be lur'kmg in A, allowing the operation > to detatch. (After all j > B dcg)e
contain ~ AV B as a subformula.) However, this is all speculaéion. S

5. A Generalisation

pm}rly paradoxes are: 1.10t Jjust given by operators > that satisfy contraction
In the sense of condition (2).3 If we have an operator > that satisfies (1)
?

The idea for thi i
1s section came from the referee, whose comments were most helpful
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(3) and the rule from A > (A > (A > B)) to A > (A > B), then a
naive comprehension scheme is also trivialised. This could be called 3-2
contraction, instead of the 2-1 contraction of condition (2). In general, an
operator satisfying (1), (3) and (N +1)-N contraction is enough to trivialise
a naive comprehension scheme. It might be thought that this gives us a new
way of trivialising the scheme, but this is not the case. We will show that this
doesn’t add anything new, as any 2-1 contraction free logic is also (N +1)-N
contraction free. To do this, we expand our definition a little.

DEFINITION 4 Let A >° B be B and let A > B be A > (4 >"
B). (Note that this definition differs from the previous kind of iterated
implication, in that ¢ is absent.) Clearly A SN+M g — A >N (A >M B).
The implication > is an M—N contracting operator (where M > N if the
rule from A > B to A >V B is truth preserving.

This is enough for our preliminary result.

LEMMA 9 If > is an (N + 1)-N contracting operator then it is also an
M-N contracting operator for each M > N.

PROOF. Prove the result by induction on M. The base case, M = N +1
holds by definition. Suppose that we have A >™ B - A >N B, for M > N.
Then A >M+1 B = A >N+l (A SM-N B) | 4 >V (A >M-V B) =
A >M B, by the fact that > is (N +1)-N contracting, and by the induction
hypothesis, this gives A > B, as desired. [ |

LEMMA 10 If> is an (N 4+ 1)-N contracting operator in a logic, then >V
is a 2-1 contracting operator in that logic.

ProoF. By the lemma, > is 2N-N contracting, so we have A >N B
A>Y B,so A>N (A>VN B)F A >V B as desired. m

So, if we have an (N + 1)-N contracting operator that also satisfies (1) and
(3), we have an associated operator that satisfies (2), and also (3) (as can
easily be checked). What is not so obvious is that it will satisfy (1). If p
does not satisfy (1) it is easy to define an operator that does. Take = to
be given by setting A = B = AAt >2N B By lemmas 2 to 6, this operator
will satisfy (1) and (3), and (2) follows from the validity of contraction for
>2N 8o, we have the following result:

THEOREM 11  If a semilattice logic is 2-1 contraction free, it is also (N +1)—
N contraction free.
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6. The Trouble Avoided

Thankfully it is clear that many logics are robustly contraction free. One
such is Lukasiewicz’s infinitely valued logic. In it there are no contracting
implication operators, as can be seen by the fact that the naive comprehen-
sion scheme is consistent in that logic [10]. It follows that any of its sublogics
are robnstly contraction free.

We will end this paper with a conjecture. It does not look particularly
easy to prove, but any headway made on it would be most welcome.

CONJECTURE A logic is robustly contraction free if and only if it nontriv-
ially supports a naive comprehension scheme.

Obviously this will only work given that the logic satisfies a few small con-
ditions — namely that it can express the comprehension scheme. We have
shown that robust contraction freedom is necessary for nontriviality. The
hard part is proving sufficiency. This is where you, gentle reader, have your
turn.*
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