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Abstract: This paper is a series of reflections on Ross Brady’s favourite substructural logic,
the logic MC of meaning containment. In the first section, I describe some of the distinc-
tive features of MC, including depth relevance, and its principled rejection of some con-
cepts that have been found useful in many substructural logics, namely intensional or
multiplicative conjunction (sometimes known as ‘fusion’), the Church constants (⊤ and
⊥), and the Ackermann constants (t and f). A further distinctive feature of the axiomatic
formulation of MC is its meta-rule, which is a unique feature of MC Hilbert proofs. This
meta-rule gives rise to one further special property of MC, in that the logic is distributive
in one sense, and non-distributive in another. The distribution of additive conjunction over
disjunction (the step from p∧(q∨r) to (p∧q)∨(p∧r)) holds in MC as a rule, but not as
a provable conditional, and in this way, MC is distinctive among popular substructural
logics. (Anderson and Belnap’s favourite logics R and E are distributive in both senses,
while Girard’s linear logic is distributive in neither.)

In this paper, I aim to increase our understanding of each of these distinctive features
of MC, giving an account of what it might take for a propositional logic to meet these
constraints. I will start with a presentation of Hilbert proofs for MC, and then showing
how Brady Lattices (a natural class of algebraic models for MC) can help us understand
each of these special features of Brady’s logic of meaning containment.

1 introducing mc

Ross Brady’s MC is an important substructural logic, with a number of features
that set it apart from other logics in the wider substructural family. Alongside
R, it is a relevant logic. If a conditional A → B is provable, then the antecedent

*Thanks to an audience at Arché’s Logic Lunch—Sophie Nagler, Sabina Domı́nguez Parrado,
Thomas Randriamahazaka and Francisca Silva—and to Shawn Standefer, for feedback on these
ideas, and of course, heartfelt and special thanks to Ross Brady for his encouragement and exam-
ple over many years.
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A and the consequent B must share a propositional atom. But MC goes further
than R in that this shared content must occur at the same depth in the antecedent
and in the consequent. The so-called modus ponens axiom1 p & (p → q) → q

fails to be depth relevant since the content shared between antecedent p & (p →
q) and consequent q (in this case, the atom q) occurs at different depth in the
antecedent than the consequent. In the antecedent, it has depth 1 because it is
inside a further conditional, while in the consequent it has depth 0 [2].

Depth relevance provides a powerful filter on formulas. Consider these two
candidates for a formula expressing the transitivity of the conditional. This first
formula is the conjunctive syllogism axiom:

(A → B) & (B → C) →. A → C

The second formula, sometimes known as the suffixing axiom, also expresses the
transitivity of the conditional:

A → B →. B → C →. A → C

The conjunctive syllogism axiom is depth relevant, since A and C occur at the same
depth in the antecedent (A → B) & (B → C) and in the consequent A → C

(both occuring under just one conditional). However, suffixing fails to be depth
relevant, since A and B occur under one conditional in its antecedent A → B,
while they occur under two conditionals in the consequent B → C →. A → C.
This is why Brady’s logic of meaning containment includes conjunctive syllogism,
but rejects suffixing. From the perspective of other familiar substructural logics
(say, linear logic, or the contraction-free variant RW of Anderson and Belnap’s
logic R), the conjunctive syllogism axiom is a close cousin of the contraction axiom

A → (A → B) →. A → B

in that, from the point of view of RW or linear logic, adding one of conjunctive
syllogism and contraction as an axiom brings the other in its wake. For those fa-
miliar with natural deduction proofs of the Gentzen/Prawitz style [8,10], it seems
that conjunctive syllogism, contraction, and the modus ponens axiom each arise

1Here, and throughout the paper, I follow Brady’s notational conventions. The ampersand
(&) is used for extensional (additive) conjunction, and the wedge (∨) for extensional disjunction.
Parenthesis use is minimised: conjunction and disjunction bind more tightly than the conditional
(→), so p & q → r ∨ s is a conditional with antecedent p & q and consequent r ∨ s. The
conditional associates to the left by default, so p → q → r is the conditional with antecedent
p → q and consequent r. Finally, a period after a connective is treated as a left parenthesis whose
mate is as far to the right in the expression as grammatically possible. So, p →. p → p → p

would be written, with parentheses, as p → ((p → p) → p).
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from a common source: their natural deduction proofs require that more than
one occurrence of a single assumption formula be discharged. Consider this proof
of contraction:

[A →. A → B]2 [A]1 →E
A → B [A]1 →E

B →I1 !
A → B →I2

A → (A → B) →. A → B

Here, the two occurrences of A are discharged at the marked →I step. In the
following proof of conjunctive syllogism

[(A → B) & (B → C)]2
&E

B → C

[(A → B) & (B → C)]2
&E

A → B [A]1 →E
B →E

C →I1

A → C →I2 !
(A → B) & (B → C) →. A → C

the two instances of (A → B) & (B → C) are discharged at once, at the marked→I step. The same goes for the modus ponens axiom.

[A & (A → B)]1
&E

A → B

[A & (A → B)]1
&E

A →E
B →I1 !

A & (A → B) → B

So, for those of us who are steeped in natural deduction, it at least seems natu-
ral to classify conjunctive syllogism alongside contraction as a principle involv-
ing duplicate discharge, and to prefer logics that contain neither of these princi-
ples (say, linear logic, the Lambek calculus, RW and their many relatives) or those
which contain both (say, R or E and their relatives). MC stands apart in that it
includes one of these principles and not the other.

A strict adherence to depth relevance brings with it other commitments con-
cerning the vocabulary of MC. On some formulations of substructural logics, it
is natural to include in the vocabulary the so-called ‘Church’ constants ⊤ and ⊥
for a maximal truth and minimal falsity, respectively. These are rejected in MC

on depth relevance grounds. As logical constants, there are no atoms present in
⊤ or in⊥, so the candidate axioms⊥ → A and A → ⊤ violate depth relevance.
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Not only are the extremal propositional constants rejected, but so is the ‘Acker-
mann’ constant t, defined by way of the rules A ⇒ t → A and t → A ⇒ A. If
we treat t as a logical constant with no distinctive content of its own, it violates
depth relevance in just the same way as the Church constants, and so, is rejected.

MC also exchews fusion (◦), the intensional conjunction central to the formu-
lation of many substructural logics.2 Introduced by the rules A →. B → C ⇒
A ◦ B → C and A ◦ B → C ⇒ A →. B → C, it is not surprising that such a
connective raise suspicions on the grounds of depth relevance, since the nesting
of formulas under arrows shifts between A ◦ B → C and A →. B → C.

However, Brady does not reject fusion on the grounds of depth relevance alone.
The logic MC exchews the use of fusion because adding fusion to the vocabulary
(in the presence of conjunctive syllogism at least) allows for a derivation of in-
consistency from a the naı̈ve class comprehension axiom.3 Rather than listing all
of the different inclusions and exclusions from MC and discussing the grounds
for each judgement, let’s skip ahead and consider MC as a whole. Here are the
axioms and rules of MC:

a1. A → A

a2. A & B → A

a3. A & B → B

a4. (A → B) & (A → C) →. A → B & C

a5. A → A ∨ B

a6. B → A ∨ B

a7. (A → C) & (B → C) →. A ∨ B → C

a8. ∼∼A → A

a9. A → ∼B →. B → ∼A

a10. (A → B) & (B → C) →. A → C

r1. A, A → B ⇒ B

r2. A, B ⇒ A & B

r3. A → B, C → D ⇒ B → C →. A → D

However, the axioms and rules are not enough to define MC. It contains a meta-
rule of the following form:

2In the linear logic literature, ◦ is written ‘⊗’ and is called the multiplicative conjunction, in
contrast to the additive conjunction and disjunction.

3See Brady’s Universal Logic [4, p. 241] for the explanation of exactly how fusion brings triviality
in naı̈ve comprehension. From conjunctive syllogism we can prove A ◦ B → A ◦ (A ◦ B), and
when we take the set C to be {x : x ∈ x ◦ (p → p) → q} we can prove C ∈ C ↔ C ∈ C ◦ (p →
p) → q, which, by the definition of fusion, gives C ∈ C ◦ (C ∈ C ◦ (p → p) → q) which, by
A ◦B → A ◦ (A ◦B), gives C ∈ C ◦ (p → p) → q, which is enough to prove C ∈ C (applying the
biconditional in reverse), and then since we can prove p → p we have C ∈ C ◦ (p → p), which
implies q, which was arbitrary.
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mr1. If A, B ⇒ C then D ∨ A, D ∨ B ⇒ D ∨ C.

Ross Brady introduced meta-rules in a 1984 paper on proof systems for quantified
relevant logics [3]. If we think of the axioms and rules as merely providing a pre-
sentation of a Tarskian consequence relation in the natural way—as the smallest
such relation in which each axiom is a consequence of the empty set, and such
that the relation is closed under each of the rules, then we can think of the meta-
rule is a higher-level closure condition on this consequence relation. Our target is
the minimal consequence relation closed under the rules and satisfying the meta-
rule.

However, a Hilbert system is not only a recursive characterisation of a conse-
quence relation: it is also a way of defining proofs. Brady did give some brief re-
marks concerning how one might understand proofs using a meta-rule (in which
you enter the antecedent proof as a sub-proof of the main proof [3, p. 358]), but
as far as I am aware, the literature contains neither an explicit definition of what
counts as a proof in a Hilbert system with meta-rules, nor any concrete exam-
ple of such a thing. So, as a small contribution to the literature, I will expand
on Brady’s comments in the next section with a formal definition of an extended
Hilbert proof, followed by an example.

2 mc proofs

definition 1 [extended hilbert proof] Given some family of axioms, rules and
meta-rules, an extended Hilbert proof from the premises X to the conclusion C (a
proof for X ⇒ C, for short) is a structured list of formulas and proofs, ending in
the conclusion formula C, such that each item in the proof is either (a) an axiom,
or (b) a member of the set P of premises, or (c) the concluding formula formula
of some rule, where each of the premises of that rule have appeared earlier in the
proof, or (d) another proof (which we call a sub-proof of this proof), or (e) the con-
cluding formula D ′ of the meta-rule (if Y1 ⇒ D1, ..., Yn ⇒ Dn, then Y ′ ⇒ D ′),
where a sub-proof for each Yi ⇒ Di, and the members of Y ′ each appear earlier
in the proof.

In this definition, it is important to understand that any premises used in a sub-
proof of a proof are not themselves premises for the proof as a whole. Sub-proofs
are included in the main proof as a means to underwrite the application of meta-
rules. To illustrate, Figure 1 displays a proof from the premise p & (q ∨ r) to the
conclusion (p & q)∨r. The entries of the proof are given line numbers to the left,
and annotations to the right, indicating the provenance of each entry. The sub-
proof on line 14 is presented in a box of its own, and it underwrites the application
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1. p & (q ∨ r) premise
2. p & (q ∨ r) → p a2
3. p & (q ∨ r) → q ∨ r a3
4. p 1, 2 r1
5. p → r ∨ p a6
6. r ∨ p 4, 5 r1
7. q ∨ r 1, 3 r1
8. q → r ∨ q a6
9. r → r ∨ q a5

10. (q → r ∨ q) & (r → r ∨ q) 8, 9 r2
11. (q → r ∨ q) & (r → r ∨ q) →. q ∨ r → r ∨ q a7
12. q ∨ r → r ∨ q 10, 11 r1
13. r ∨ q 7, 12 r1
14. 1. p premise

2. q premise
3. p & q 1, 2 r2

sub-proof

15. r ∨ (p & q) 6, 13, 14 mr1
16. r → (p & q) ∨ r a6
17. p & q → (p & q) ∨ r a5
18. (r → (p & q) ∨ r) & (p & q → (p & q ∨ r)) 16, 17, r2
19. (r → (p & q) ∨ r) & (p & q → (p & q) ∨ r) →.

(r ∨ (p & q) → (p & q) ∨ r) a7
20. r ∨ (p & q) → (p & q) ∨ r 18, 19 r1
21. (p & q) ∨ r 15, 20 r1

Figure 1: An MC proof for p & (q ∨ r) ⇒ (p & q) ∨ r

of the meta-rule, allowing for the inference of r ∨ (p & q) from r ∨ p and r ∨ q,
on line 15.

The meta-rule mr1 allows for the derivation of the rule form of distribution
p & (q ∨ r) ⇒ (p & q) ∨ r, where the axiom form p & (q ∨ r) → (p & q) ∨ r

is absent from MC. It is not too hard to show that distribution in the form p &

(q ∨ r) ⇒ (p & q) ∨ (p & r) follows from distribution in this simpler form,4

while again, the axiom form of distribution, p & (q ∨ r) → (p & q) ∨ (p &

r) is absent from MC. So, MC is both distributive and non-distributive in ther
sense that distribution holds at the level of Hilbert validity, but not at the level of

4We have p & (q ∨ r) ⇒ (p & q) ∨ r, from which it is not hard to get p & (q ∨ r) ⇒
r ∨ (p & q), commuting a disjunction, and we also have p & (q ∨ r) ⇒ p. Together these give
p & (q ∨ r) ⇒ p & (r ∨ (p & q)), and p & (r ∨ (p & q)) ⇒ (p & r) ∨ (p & q) follows
from a second application of the form of distribution we already have. Chaining these together,
and commuting the final disjunction, we have p & (q ∨ r) ⇒ (p & q) ∨ (p & r) as desired.
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provable conditionals.5

With our short exploration of Hilbert proofs complete, we can return to MC

and its distinctives. In the remainder of this paper, I will focus on four distinctive
features of MC that make it stand out among substructural logics.

1. MC takes the distribution of lattice connectives to hold as a rule, but not as
a provable conditional.

2. MC has conjunctive syllogism, but no contraction.

3. MC excludes the Church and Ackermann constants.

4. MC excludes fusion.

These features are not unique to MC (we can formulate the paradigm relevant
logic R without the Ackermann or Church constants, and without fusion if we
wish), but these additions are very natural when we formulate the logic by way of
natural deduction [13], sequent calculus [1,7], algebraic semantics [6], or Routley–
Meyer ternary relational models [12]. In each different formulation of a logic in
this broad family, fusion and the Ackermann and Church constants are either eas-
ily and simply definable out of the material at hand, or they are essential for the
enterprise to get off the ground in the first place. In sequent systems and in nat-
ural deduction, the conditional is governed by rules looking rather like the tradi-
tional rules of modus ponens and conditional proof, which involve the addition of
premises and the discharging of premises previously added. The notion of addi-
tion at play in those rules is not the extensional conjunction &, but is naturally
made explicit in the language by way of the fusion connective. In the ternary rela-
tional semantics the conditional is modelled by a universal forward-facing clause
concerning the ternary relation R, and fusion is naturally modelled by the corre-
sponding existential backward-facing clause.6 In such formulations it is possible
to have conjunctive syllogism present in a logic without fusion, but this possi-
bility does not stand out as particularly natural. Contraction corresponds to the
collapse of multiple repetitions of assumuptions in one discharge. Conjunctive
syllogism is a special case of contraction, when viewed in this light, and viewed

5Here, and elsewhere, I will write A, B,C ⇒ D to state that there is an MC-proof from
premises A, B,C to conclusion D.

6This is a binary connective analogue to the duality in temporal logic between a necessity-like
‘at every time in the future’ operator □+ and a possibility-like ‘at some time in the past’ operator
♢−, for which we have the equivalence between the entailments A ⇒ □+B and ♢−A ⇒ B.
Perhaps the fact that some modal logics, such as temporal logics, provide interpretations of these
connectives in which both make sense, while other interpretations of a modality, plausibly, define
notions of necessity where there is no natural sense to a backward-looking modality, can help us
think about why it might be that the formal definability of a fusion operator in some model theory
may not be enough to underwrite the claim that it makes sense.
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from the point of view of fusion this contraction does not seem to have anything
in particular to recommend it. If I can indulge in a moment of autobiography,
my own introduction to substructural logics [11] took its lead from the traditions
I have enumerated above, and so, it was difficult for me to bring Brady’s work on
logics in the vicinity of MC into proper focus when viewed from that particular
orientation. In this note, I will attempt to remedy this shortcoming by adapting
one of the tools used in that book—algebraic semantics—to better model MC, so
I can better understand some of the distinctive features of this logic.

3 mc algebras

One way to conceive of an algebraic model of a logic is to think of the items in the
algebra as providing a range of semantic values for the formulas in the language
to be assigned. For each formula A, its semantic value [[A]] is a member of the
algebra. The cruical constraint in interpretations of this kind is that the value of
a complex formula (say, the value [[A → B]]) depends on the values of its subfor-
mulas (in this case, the values [[A]] and [[B]]). If this compositionality constraint is
satisfied by some connective (here, the conditional) then the syntactic connective
corresponds to an operator on the algebra in the familiar way.

An algebra provides a different perspective on the logic by way of its identifi-
cations: two different formulas A and B might have the same semantic values. In
the extreme case of the two-valued Boolean algebra on {0, 1}, there are only two
values to choose from, and there are very many identifications. In other algebras
with many more values, fewer formulas are identified in any valuation. However,
the upper limit for our algebras is fixed: if A and B are logically equivalent, then
[[A]] = [[B]].

In logics like MC, the salient notion of logical equivalence cannot be given by
the Tarskian consequence relation ⇒ alone. We have p → p ⇒ q → q and vice
versa, but p → p and q → q cannot be substituted one for the other in every
context, if we wish to keep track of validity. For example, (p → p) → (p → p)

is an MC-theorem (an instance of a1), while (p → p) → (q → q) is not an
MC-theorem. So, the salient notion of equivalence for MC is stricter: A and B

are logically equivalent if and only if MC proves ⇒ A → B and ⇒ B → A. This
notion of equivalence is well-suited for our task, since we can prove the following
theorem:

theorem 1 [substitutivity of equivalents] IfAandA ′ are logically equivalent in
MC then so are C(A) and C(A ′).

Proof: We prove this result by induction on the formula context C(−) in which A

and A ′ are placed. The result is immediate when C(−) is − alone. For the induc-
tion steps, we need to show that if A and A ′ are logically equivalent, so are ∼A
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and ∼A ′; so are A & B and A ′ & B (and B & A and B & A ′); so are A ∨ B and
A ′ ∨ B (and B ∨ A and B ∨ A ′); so are A → B and A ′ → B (and B → A and
B → A ′). These facts follow from stronger principles which may each be derived
in MC.

• A → A ′ ⇒ ∼A ′ → ∼A

• A → A ′ ⇒ A & B → A ′ & B

• A → A ′ ⇒ A ∨ B → A ′ ∨ B

• A → A ′ ⇒ B → A →. B → A ′

• A → A ′ ⇒ A ′ → B →. A → B

Finding a proof for the first requires a little creative fiddling with the negation
axioms of MC, while the other proofs are quite straightforward. I complete the
first two, leaving the others to the reader.

1. A → A ′ premise
2. ∼A ′ → ∼A ′ →. A ′ → ∼∼A ′ a9
3. ∼A ′ → ∼A ′ a1
4. A ′ → ∼∼A ′ 2, 3 r1
5. A ′ → A ′ →. A → ∼∼A ′ 1, 4 r3
6. A ′ → A ′ a1
7. A → ∼∼A ′ 5, 6 r1
8. A → ∼∼A ′ →. ∼A ′ → ∼A a9
9. ∼A ′ → ∼A 7, 8 r1

1. A → A ′ premise
2. A & B → A a2
3. A → A →. A & B → A ′ 1, 2 r3
4. A → A a1
5. A & B → A ′ 1, 4 r3
6. A & B → B a3
7. (A & B → A ′) & (A & B → B) 5, 6 r2
8. (A & B → A ′) & (A & B → B) →. A & B →

A ′ & B

a4

9. A & B → A ′ & B 7, 8 r1

With this family of principles, we can derive the replacement of equivalents
by a simple induction on the structure of the formula context C(−).

This substitutivity result means that we can define the Lindenbaum Algebra for
MC.
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definition 2 [lindenbaum algebra] The Lindenbaum Algebra for MC (given a
languageL) is the algebra on the set of equivalence classes of logically equivalent
formulas inL:

[A] = {A ′ : ⇒ A → A ′ and ⇒ A ′ → A}

Each connective lifts to an operator on equivalence classes in the natural way

[A] & [B] = [A & B] [A] → [B] = [A → B]

[A] ∨ [B] = [A ∨ B] ∼[A] = [∼A]

since the substitutivity of equivalents means that the choice of representative for
an equivalence class is irrelevant. Our equivalence classes are naturally ordered
by provable implication:

[A] ≤ [B] iff ⇒ A → B

Since the equivalence classes are defined by logical equivalence, this relation is
indeed a partial order. If [A] ≤ [B] and [B] ≤ [A] then [A] = [B], since A and
B are logically equivalent. The Lindenbaum algebra is a lattice under the order-
ing≤, for which conjunction and disjunction are greatest lower and least upper
bounds, respectively.

Finally, it is useful to have a record in the algebra of the theorems of the logic,
so we isolate a subset of elements like so: T = {[A] : ⇒ A}.7

This set T is a filter in MC’s Lindenbaum algebra: It is closed upward under the
order (if x ∈ T and x ≤ x ′ then x ′ ∈ T too), since anything that follows from a
theorem is itself a theorem, and it is closed under conjunction (if x, y ∈ T then
x & y ∈ T ). In fact, T is rather special in Lindenbaum algebra for MC: T is prime,
in the following sense: If x ∨ y ∈ T then either x ∈ T or y ∈ T , since in MC, we
have ⇒ A ∨ B if and only if either ⇒ A or ⇒ B [5, p. 366–7].8

The Lindenbaum algebra is but one example of an algebraic model for MC. It is an
algebra in which we perform the fewest identifications possible. There are many
more algebras in which many more formulas are identified. (A Lindenbaum al-
gebra for classical propositional logic is a free Boolean algebra generated by the
set of propositional atoms. There are many other Boolean algebras, right down to
the two-element algebra familiar from truth tables.) In the following definition I
characterise a class of algebras which model MC, of which the Lindenbaum al-
gebra is an extreme case:

7As we have seen, in MC, as with other relevant logics, there are many different non-
equivalent theorems, so T is not a singleton. [p → p] and [q → q] are distinct members of
T .

8Brady proves that the theorems of MC form a prime filter by a metavaluation argument [5,
p. 366–7].
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definition 3 [brady algebras] A Brady algebra is a lattice ⟨B,≤, &, ∨⟩ (in which
& and ∨ are greatest lower bound and least upper bound for the order≤ respec-
tively) equipped with one unary operator ∼, one binary operator →, and a distin-
guished set T of elements, where

• T is a filter (if x ∈ T and x ≤ x ′ then x ′ ∈ T ; and if x ∈ T and y ∈ T then
x & y ∈ T ), which is also prime (if x ∨ y ∈ T then x ∈ T or y ∈ T ).

• ∼ is order inverting (if x ≤ y then ∼y ≤ ∼x) and period two (∼∼x = x).

• → reflects the lattice order inside T (x ≤ y iff x → y ∈ T ).

In addition, the following conditions are satisfied:

* (x → y) & (x → z) ≤ x → (y & z)

* (x → z) & (y → z) ≤ (x ∨ y) → z

* (x → y) & (y → z) ≤ x → z

* If x ≤ y and v ≤ w then y → v ≤ x → w

* x → ∼y ≤ y → ∼x

Once we have a Brady algebraB, it is straightforward to define an evaluation map
[[·]] from formulas into values in B. An evaluation is a map that respects each of
MC’s connectives: [[A & B]] = [[A]] & [[B]], [[A → B]] = [[A]] → [[B]], and so on,
for the four connectives of propositional MC. With evaluations defined, we can
prove the following theorem.

theorem 2 [brady algebras model MC] There is anMC-Hilbert proof forX ⇒ A

if and only if, for each Brady algebraB and any valuation [[·]] into B, if [[B]] ∈ T for each
member B of X, then [[A]] ∈ T .

Proof: The left-to-right direction (soundness) is an induction on the structure of
the Hilbert proof for ⇒ A, while the right-to-left direction (completeness) ap-
peals to a generalisation of the Lindenbaum algebra construction. The techniques
are utterly standard, so I will cover this ground rather briskly.

For soundness, it suffices to check that every MC axiom lands in the truth fil-
ter for every Brady algebra, and that inference steps using the rules, or the meta-
rule never lead us away from T , in a standard inductive argument. That the ax-
ioms land inside T is straightforward to verify, using the fact that the arrow in
the algebra reflects the order inside the truth filter, and the particular features
of Brady algebras in the definition. For example, axiom a4 lands in the truth
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filter, since in Brady algebras we have imposed the condition ([[A]] → [[B]]) &

([[A]] → [[C]]) ≤ [[A]] → ([[B]] & [[C]]). This gives [[(A → B) & (A → C)]] ≤
[[A → (B & C)]], which means that [[(A → B) & (A → C) →. A → (B & C)]] ∈
T , as desired.

To verify that applications of the rules never lead us outside T , it suffices to
note that the fact that T is a filter (so, if [[A]] ∈ T and [[B]] ∈ T then [[A & B]] ∈ T ),
that → reflects the order inside T (so, if [[A → B]] ∈ T then [[A]] ≤ [[B]] and so,
if [[A]] ∈ T we must have [[B]] ∈ T too), and Brady algebras satisfy the constraint
that if [[A]] ≤ [[B]] and [[C]] ≤ [[D]] then [[B → C]] ≤ [[A → D]], which is exactly
what we need to verify rule r3.

Finally, for the meta-rule, if our proof contains a sub-proof for A, B ⇒ C and
also contains D ∨ A and D ∨ B, and we wish to infer D ∨ C, then, by induction,
we can assume not only that [[D ∨ A]] ∈ T and [[D ∨ B]] ∈ T but also that if [[A]]

and [[B]] are in T , then so is [[C]], since we have already verified soundness for the
sub-proofs of our proof. To verify that [[D ∨ C]] is in T , we note that T is prime, so
at least one of [[D]] and [[A]] are in T , and at least one of [[D]] and [[B]] are in T , too.
This means that either [[D]] is in T (giving us [[D ∨ C]] ∈ T as desired), or bothboth
[[A]] and [[B]] are in T which (by the validity of the sub-proof for A, B ⇒ C) gives
[[C]] ∈ T , which again means that [[D ∨ C]] ∈ T , as we wished to prove. This
completes the proof of soundness.

For completeness, we wish to show that if there is no proof for X ⇒ A then
there is some Brady algebra in which each member of X is in the truth filter but
A is not. This is a strong completeness theorem, as we allow X to be non-empty.
Showing that if ̸⇒ A then there is some map into a Brady algebra where A lands
outside the truth filter is a matter of showing that the Lindenbaum algebra is a
Brady algebra. Proving strong completeness is not much more difficult, as the
technique is a relatively standard construction. Instead of appealing to the Lin-
denbaum algebra, we construct relativised Lindenbaum algebra, in which we ex-
pand the truth filter to include each member of X, while A remains evaluated
outside it. The main constraint on such a construction is ensuring that the ex-
panded truth filter be prime. To do this, we start by noting that the pair ⟨X, {A}⟩,
is safe in the sense that there is no MC-proof from the members of the left com-
ponent to any disjunction of members of the right component. And we appeal to
a standard result to the effect that (if the underlying logic satisfies certain condi-
tions) any safe pair can be extended into a partition of the language ⟨L, R⟩, which
remains safe.9 Using this such a safe partition ⟨L, R⟩ in which X is a subset of L

9This is the Pair Extension Theorem (Theorem 5.17 in An Introduction to Substructural Logics [11,
Ch. 5]). The key feature of MC is that the Hilbert consequence relation satisfies the distribution
law, which we have proved above. It is proved by showing that if ⟨L, R⟩ is safe then for any formula
B, either ⟨L ∪ {B}, R⟩ or ⟨L, {B} ∪ R⟩must be safe, and for this we appeal to distribution.
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and A ∈ R, then, we can construct a relativised Lindenbaum algebra, in which
whose members are classes of formulas that are equivalent given L.

[B]L = {B ′ : L ⇒ B → B ′ and L ⇒ B ′ → B}

The ordering on the elements of the algebra is also L-relativised.

[B]L ≤ [C]L iff L ⇒ B → C

The natural truth filter in this algebra is determined by L:

TL = {[B]L : L ⇒ B}

We can define the operations &, ∨, ∼ and → on the elements of this algebra just
as we did in the Lindenbaum algebra, since the substitutivity of equivalents gen-
eralises: our proof of Theorem 1 straightforwardly generalises to show that if L ⇒
B → B ′ and L ⇒ B ′ → B then L ⇒ C(B) → C(B ′) and L ⇒ C(B ′) → C(B) for
any context C(−).

The properties of implication immediately ensure that the L-relativised Lin-
denbaum algebra is a lattice under & and ∨, and that TL is a filter. The fact that
⟨L, R⟩ is a safe partition of the language ensures that TL is prime. If [B ∨ C]L ∈ TL

then B ∨ C ∈ L (L must contain all of its MC-consequences, since if one of its
consequences were in R and not L, the partition would not be safe.) If neither B

nor C were in L, then they would both be in R, which again would ensure that
⟨L, R⟩ is not safe, since an element of L (namely B ∨ C) would MC-entail a dis-
junction of members of R (namely, B∨C). So, one of B and C are in L, and hence,
one of [B]L and [C]L are in TL.

The negation operator on our algebra is order inverting (since if L ⇒ B → C it
folows that L ⇒ ∼C → ∼B) and period two, since MC-theorems (here, ∼∼B → B

and B → ∼∼B) can be proved, vacuously, from L.
The conditional operator reflects the lattice order inside TL in this algebra,

since this is how the ordering was defined: [B]L ≤ [C]L iff L ⇒ B → C which
holds if and only if [B]L → [C]L ∈ TL.

For the other conditions on Brady algebras, we reason as we did for the nega-
tion conditions: these correspond toMC-theorems, so they hold in theL-relativised
Lindenbaum algebra, too. That is, all except the arrow ordering condition to the
effect that if [B]L ≤ [B ′]L and [C]L ≤ [C ′]L then [B ′]L → [C]L ≤ [B]L → [C ′]L.
This corresponds, not to an axiom, but to rule r3. To verify that it holds in the
L-relativised algebra, we reason as follows. If [B]L ≤ [B ′]L and [C]L ≤ [C ′]L then
we have L ⇒ B → B ′ and L → C → C ′. So, we can extend a proof from L, which
reaches to the conclusions B → B ′ and C → C ′, by appealing to r3, the conclu-
sion (B ′ → C) → (B → C ′) which ensures that L ⇒ (B ′ → C) → (B → C ′),
and hence, that [B ′]L → [C]L ≤ [B]L → [C ′]L, as desired.
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This completes the verification that the L-relativised Lindenbaum algebra is
a Brady algebra. The completeness proof is then immediate, if there is no proof
for X ⇒ A then we find a safe partition ⟨L, R⟩ extending ⟨X, {A}⟩, and the L-
relativised Lindenbaum algebra will provide a counterexample, given the homo-
phonic valuation, where we set [[B]] = [B]L. This is indeed a valuation function
(since the operators reflect the connectives, by design), and it sends every mem-
ber of X into the truth filter TL, but it leaves A outside, so it is also a counterex-
ample to the validity of the argument. The strong completeness theorem, then, is
proved.

It follows that Brady lattices model MC. So, we can, therefore, use them to shed
light on MC’s distinctive features. That is my plan for the rest of this paper.

4 illustrating the distinctives of mc

Recall, the features of MC that I would like to better understand are these:

1. MC takes the distribution of lattice connectives to hold as a rule, but not as
a provable conditional.

2. MC has conjunctive syllogism, but no contraction.

3. MC excludes the Church and Ackermann constants.

4. MC excludes fusion.

We will start with the first feature, since it is relatively straightforward. There
are many examples of lattices that fail to be distributive. In any Brady algebra in
which x & (y ∨ z) ̸≤ (x & y) ∨ (x & z) (that is, any such algebra in which
the underlying lattice is not distributive) then the corresponding conditional p &

(q∨r) → (p & q)∨(p & r) will also fail, since the conditional reflects the order
inside the truth filter. We then need to show how some non-distributive lattices
can be equipped with a conditional operator, a negation, and a prime truth filter
satisfying all the conditions of a Brady algebra. We will do just this in the next
section, shedding light on how, exactly, distribution may be present in one sense
and absent in another.

4.1 how distribution is both present and absent
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Non-distributive lattices are familiar structures. The Hasse dia-
gram10 to the right depicts a six-element lattice, O6, which fails to

10You read a Hasse diagram from bottom-to-top, with the lines indicating the partial order.
Here, 0 is under a, b, c and d, which are all incomparable with one another, but all elements are
under 1.
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be distributive. In this lattice, a & (b ∨ c) = a & 1 = a, while
(a & b) ∨ (a & c) = 0 ∨ 0 = 0.

Can we make O6 into a Brady lattice? If we define the operator ∼

on the algebra by setting ∼1 = 0, ∼a = b and ∼c = d, and imposing
the condition that ∼∼x = x for every x, then this operation is indeed
order inverting and of period two.11 This satisfies the negation-only conditions
for a Brady lattice. However, O6 cannot be made into a Brady lattice, since there
is no non-trivial prime filter on O6. Any truth filter on a Brady algebra of size≥ 2

must exclude some member of the algebra. (Pick two elements x, y where x ̸≤ y.
We have x → y ̸∈ T .) The only non-trivial filters in O6 are {1}, {1, a}, {1, b}, {1, c}

and {1, d}, since if F is a filter and (for example), a, b ∈ F then a & b = 0 ∈ F,
and hence, F excludes no element of O6 (since once a filter contains the bottom
element 0, it excludes nothing.). However, none of these filters is prime. For any
filter on the list, choose two elements from among a, b, c, d that are not in the
filter. The disjunction of those two elements is 1, which is in the filter, and so, we
have a counterexample to primality. O6, therefore, is a non-starter for construct-
ing a Brady lattice.
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Here is the structure in which we do have a prime filter in a non-
distributive lattice. L8, to the right, an eight-element lattice, is found
by extending O6 with a new top element and new bottom element.
In this algebra, we can assign negation in a natural way, setting ∼f =

t. Now it is no longer an ortholattice, but remains a lattice with an
order inverting involution. There is a trivial way to assign values for
implication: x → y = 1 if x ≤ y and x → y = 0 otherwise. The
filter, set in yellow, consisting of all of the elements other than 0, is
prime, since if x ∨ y ∈ T then t ≤ x ∨ y, and so t ≤ x or t ≤ y,
which means x ∈ T or y ∈ T .12 The implication, as evaluated with
our crude all-or-nothing values, clearly reflects the order in T , since
x → y ∈ T iff x → y = 1 (since 0 ̸∈ T , and 0 and 1 are the only values x → y can
take), iff x ≤ y.

It is not too hard to show that, in fact, this choice of T and the definition of the
implication operation on L8 makes the structure a Brady lattice. Instead of work-
ing through the verification in this particular case, I will pause to note that the
construction turns out to be quite general. Let’s construct many Brady algebras
in one go:

11In fact, it is an orthonegation, and O6 with this negation operator is an ortholattice, which is a
bounded lattice with a negation operator ∼ where x & ∼x is the least element 0, and x ∨ ∼x is the
greatest element 1; ∼∼x = x, and whenever x ≤ y then ∼y ≤ ∼x.

12There is one other prime filter on the lattice L8, the singleton {1}. The choice of the more
generous truth filter in my example is purely a matter of taste.
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theorem 3 If L is a bounded lattice with an order inverting negation operation of period
2, with a non-trivial prime filter, T , then if we define the extra operation → on L by setting
x → y = 1 iff x ≤ y and x → y = 0 otherwise, then the result is a Brady lattice.

Proof: The structure is a lattice with bounds 0 and 1, with an order inverting,
period-two negation, and by definition, → reflects the lattice order inside the
non-trivial prime filter T . It remains to show that the five remaining Brady lattice
conditions on → are satisfied. I take them in turn.

To show that (x → y) & (x → z) ≤ x → (y & z), it suffices to rule out the
case where x → y and x → z are 1 while x → (y & z) is 0. But that would mean
that x ≤ y and x ≤ z but x ̸≤ y & z, which violates the lattice conditions on L.
The same reasoning applies for the second condition, concerning disjunction.

To show that (x → y) & (y → z) ≤ x → z, it suffices to show that we cannot
have x → y = 1 and y → z = 1 and x → z = 0, but this is immediate, given the
transitivity of≤.

For the fourth condition, if x ≤ y and v ≤ w then if y ≤ v then x ≤ w, which
means x → w = 1 and hence y → v ≤ x → w. On the other hand, if y ̸≤ v then
y → v = 0 and then certainly, y → v ≤ x → w, regardless.

Finally, to show that x → ∼y ≤ y → ∼x, suppose that x ≤ ∼y, in which case
we have x → ∼y = 1. Since negation is order inverting we have ∼∼y ≤ ∼x, and
since it has period two, we have y ≤ ∼x, and then, y → ∼x = 1, too. On the
other hand, if x ̸≤ ∼y, then x → ∼y = 0, and then certainly x → ∼y ≤ y → ∼x,
regardless.

So, in particular, L8 is a Brady lattice. It fails to be distributive at the level of the
lattice ordering, since a & (b ∨ c) = a & f = a, while (a & b) ∨ (a & c) =

t ∨ t = t, and a ̸≤ t.
However, given that the truth filter T on L8 is prime, distributivity holds in a

coarser way: if x & (y ∨ z) ∈ T then (x & y) ∨ (x & z) ∈ T , no matter what
values x, y and z take. We can see that although (a & b) ∨ (a & c) (which is
t) falls below a & (b ∨ c) (which is a), it does not fall so far as to go outside the
truth filter. In this way, we have a concrete representation of the two notions of
distribution at work in MC.

So, we have seen that not every lattice contains a non-trivial prime filter (O6 is
but one example of many), but some non-distributive lattices do contain one, such
as L8. The behaviour of the filter T in L8 illustrates a general phenomenon. We
can see here that conjunction and disjunction are T-functional, in the following
sense: x ∨ y ∈ T iff x ∈ T or y ∈ T , and x & y ∈ T iff x ∈ T and y ∈ T . We can
take the quotient of our lattice with respect to membership in T , and get a two-

Greg Restall, gr69@st-andrews.ac.uk january 14, 2024

https://consequently.org/writing/
mailto:gr69@st-andrews.ac.uk


https://consequently.org/writing/ 17

element lattice, which is, of necessity, distributive.13 Not all lattices (such as O6)
allow for such an operation, since any non-trivial filters on O6 fail to be prime.

It is worth reflecting on the other distinctive features of MC, to see whether
this construction on bounded lattices can shed further light on MC. First, we
should notice that the evaluation conditions for the conditional validate the con-
traction rule as well as conjunctive syllogism (since x → (x → y) = 1 iff x ≤
x → y which means that either x = 0 (in which case x → y = 1, or x ̸= 0,
in which case since x ≤ x → y we must have x → y = 1 regardless. So,
x → (x → y) ≤ x → y in these algebras), so this construction gives no in-
sight into the difference between conjunctive syllogism and contraction. Second,
this construction works only on bounded lattices (we use 0 and 1 essentially in the
semantics of the conditional), so there is no insight into the absence of Church
constants.

Now consider fusion, which is a conjunction-like operator that stands to →
as regular conjunction stands to material implication in classical or intuitionistic
logic. The defining conditions are that ⇒ A ◦ B → C iff ⇒ A → (B → C). In a
Brady algebra, a fusion operator is at least implicitly present if we can find some
way to define x ◦ y such that x ◦ y ≤ z iff x ≤ y → z. In any Brady algebra
defined in the construction of Theorem 3 the fusion operator is, in fact, definable.
Set x ◦ y = y when y ̸= 0, and x ◦ 0 = 0. It is straightforward to show that the
fusion rules are satisfied: if x ◦ y ≤ z then either x = 0—and hence, x ≤ y → z

as desired—or x ̸= 0—and hence, x ◦ y = y ≤ z and hence, y → z = 1, so
x ≤ y → z, as desired. Conversely, if x ≤ y → z, either x = 0—in which case
x ◦ y = 0 and x ◦ y ≤ z—or x ̸= 0—and then x ≤ y → z means that y → z = 1

(since conditionals are either 0 or 1), which means that y ≤ z, but if x ̸= 0 then
x ◦ y = y and x ◦ y ≤ z as desired. So, in all of these models fusion is definable,
and so, the models do not give us any particular insight into how we might have
a logic in which fusion is absent.

Furthermore, in the lattice L8 (and in any other finite examples we can con-
struct) the truth filter is principal: T has the form {x : a ≤ x} for some given item
a. (In any finite algebra, we take the conjunction of all of the elements in T : this
is in T , and is our target value a.) This element a can be the semantic value of
the Ackermann constant t, since if we assign t this value in every valuation, it is
straight forward to verify the rules A ⇒ t → A and its converse, t → A ⇒ A.
Not every prime filter in a lattice is principal, but it would help to see exactly how
such a thing could arise in a concrete example, so I will turn to this in the next
section, and then leave the final section to discuss models without the Church

13This operation of taking the quotient does not preserve ∼ or →. Notice that ∼ on L8 is not
T-functional: ∼1 is 0, which is outside T , while ∼f is t, which remains inside. The same goes for
implications.
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constants and without fusion, and in which we reject contraction while retaining
conjunctive syllogism.

4.2 a truth filter without t

The aim is to find a concrete Brady algebra in which the truth filter is prime, but not
principal: in such an algebra, there is no way to interpret the Ackermann constant
t. As we have seen above, this means that our target is an infinite algebra, whose
truth filter is closed under finitary conjunctions (as all filters must be), but not
arbitrary conjunctions. In this section, I will construct a simple countable Brady
algebra in which the truth filter is not principal.14

To start, recall that algebras arising out of possible worlds semantics take each
proposition to be a set of worlds, where conjunction is represented by intersec-
tion and disjunction by union. The true propositions, from the point of view of
a given world w, then, are the sets that contain w. If this family of propositions
contains every set of worlds, then indeed, the filter of all true propositions con-
tains a smallest member {w}. If, on the other hand, not every set of worlds counts
as a proposition, then perhaps our truth filter contains no minimal element.

Here is one example of such a structure. Take ω, the set of natural numbers,
and consider the set of cofinite subsets of ω. (A set α is cofinite in ω if its com-
plement ω\α is finite.) The cofinite sets in ω are closed under union and under
intersection. They form a (distributive) lattice under the subset ordering⊆, and
this lattice contains a greatest element ω, but no least element. The set consisting
of all of those cofinite subsets of ω containing 0 is a filter in this lattice (if α and β

both contain 0 then so does α ∩ β, and if α ⊆ α ′, then α ′ contains 0, too), and it
is prime (if α ∪ β contains 0, then so must one of α and β). However, the filter is
not principal. For any cofinite α containing 0, we can find the first n (other than
0) in α and α\{n} is also cofinite and in the filter, and is a proper subset of α.

So, this structure can give us some insight into how we might have a non-
principal truth filter. The target value {0} cannot be precisely individuated by any
one proposition. However, it is not quite the structure we need to apply Theorem 3
to simply make a Brady lattice. The family of cofinite subsets of ω is not a bounded
lattice, and we cannot define on it an order inverting negation of period two. (We
could do so only if, from the point of view of the order, the structure is up-down
symmetric, and the cofinite subsets of ω ordered by subsethood are anything but
up-down symmetric.) However, it is easy enough to use what we have learned as

14Of course, the Lindenbaum algebra for MC is another example of such an algebra, but recall,
our aim is to find some independent grasp on the distinctive properties of MC. Simply appealing
to the algebra arising out of the axiomatic system of MC and leaving it at that gives little indepen-
dent insight. After all, had we included the truth constant t in the axiomatisation of MC, then the
truth filter in its Lindenbaum algebra would have been principal.
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the basis for defining such a structure.

Consider the set of all pairs ⟨α, ϵ⟩ where α is either a cofinite subset of ω, or
is { }, and ϵ is either a finite subset of ω, or is ω itself. This structure forms a lat-
tice, under the pairwise subset order: ⟨α, ϵ⟩ ≤ ⟨α ′, ϵ ′⟩ iff α ⊆ α ′ and ϵ ⊆ ϵ ′,
and joint and meet are pairwise union and intersection respectively. The lattice
is bounded with minimal element ⟨{ }, { }⟩ and maximal element ⟨ω, ω⟩. In ad-
dition, we now have a natural order-inverting negation of period two, by setting
∼⟨α, ϵ⟩ = ⟨ω\ϵ, ω\α⟩. (That was the point of using pairs of cofinite and finite
sets.) The set T of all pairs ⟨α, ϵ⟩ where 0 ∈ α form a non-trivial prime filter in
this lattice, so the conditions of Theorem 3 apply, and with the conditional defined
in the usual way, the result is a Brady lattice.15 So, we have constructed an inde-
pendent example of how we might have a Brady lattice in which the Ackermann
constant t is not only absent, but in which there is no semantic value that such a
constant could take.

4.3 church constants, contraction and fusion

The examples we have seen so far have not provided any insight into the absence
of Church constants, how contraction might fail while preserving conjunctive syl-
logism, and the absence of fusion in MC. Theorem 3 has its uses in constructing
Brady lattices, but these examples obscure other important features of MC. What
can we say about these remaining distinctives?

For the absence of Church constants, it is natural to think of Meyer and Slaney’s
Abelian Logic [9]. Abelian logic is a contra-classical substructural logic, extending
the multiplicative and additive fragment of linear logic with the distribution of
the additive (lattice) connectives (so, unlike MC, abelian logic validates the dis-
tribution axiom), and containing the non-classical principle

A → B → B → A

(remember, without parentheses, the arrow associates to the left). This can is a
generalisation of A → ⊥ → ⊥ → A, which is a notational variant of ∼∼A → A,
if we understand ∼A as A → ⊥. In abelian logic, any proposition B might be
understood as a ‘falsum’, defining a kind of order inverting involutive negation. It
follows immediately that the Church constant ⊤ (a proposition for which A →
⊤ always holds) trivialises abelian logic, if present, since A → ⊤ → ⊤ must
hold, and by modus ponens, we have A, for any A whatsoever. Abelian logic resists

15Notice that the traditional four-valued semantics for first-degree entailment embeds nicely
in this Brady algebra, with the values ⟨ω, ω⟩ for true, ⟨{ }, { }⟩ for false, ⟨ω, { }⟩ for both and
⟨{ }, ω}⟩ for neither. Both ⟨ω, { }⟩ and ⟨{ }, ω}⟩ are fixed-points for negation, while the other two
values are the top and bottom elements of the algebra.
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the Church constant ⊤ and dually, also the Church constant ⊥, since ⊥ → ⊥ is
equivalent to⊤ since⊥ → (A → ⊥) entails A → (⊥ → ⊥), by permutation.
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The integers Z under the natural ordering forms the standard al-
gebraic model for abelian logic. By design, there is no greatest and
no least element, and the implication connective is modelled by sub-
traction [[A → B]] = [[B]] − [[A]]. Here, the truth filter is the set
of non-negative numbers, since [[A → B]] ≥ 0 iff [[A]] ≤ [[B]], and
we can see that [[A → B → B → A]] = 0, so the generalised double
negation axiom is always inside the truth filter (if only barely).

This model for abelian logic is a natural way to understand logics
without Church constants. This model does not merely fail to assign
a value to a Church constant⊤ or⊥—there is no value in the algebra
to assign any formula with the desired properties. No semantic value
is at the limit of truth or falsity, as they extend indefintely in either
direction.

Alas, Z, understood in this way, is not a model of MC. We can see
that the conjunctive syllogism axiom a10 fails in this model. If we as-
sign [[p]] = 1, [[q]] = 2 and [[r]] = 3, then [[p → q]] = [[q → r]] =

−1 and so [[(p → q) & (q → r)]] = −1, but [[p → r]] = −2, so
[[(p → q) & (q → r) → (p → r)]] = −1, and this value falls out-
side of the truth filter. This algebra fails to model MC.

Nonetheless, we can revise the evaluation conditions for the con-
ditional to find values that are more amenable to MC. We see in this
counterexample to conjunctive syllogism that the problem arises
with the values for false conditionals. If we cap the value of false con-
ditionals at −1, not allowing falsity to pile up any more than that,
then the conditional respects the constraints required for a Brady algebra.

x → y =

{
y − x if x ≤ y

−1 otherwise

Let us call the resulting structure BZ, for Brady’s Integers. It is straightforward to
check that → reflects the ordering in T = {x : 0 ≤ x} on BZ, since 0 ≤ x → y if
and only if x ≤ y. T is indeed a prime filter on Z (as every filter on Z ordered in
the standard way is prime). The negation conditions are satisfied if we define ∼x

to be −x (this is order inverting and period two, and x → ∼y = y → ∼x, since
(−y) − x = (−x) − y, and x ≤ −y iff y ≤ −x, for every x and y.

The conditions on implication in Brady lattices are easy to verify for BZ. We
will check the ordering condition (if x ≤ y and v ≤ w then y → v ≤ x → w)
and conjunctive syllogism, and the others are verified just as simply. First the
ordering condition. Let’s suppose that x ≤ y and v ≤ w. Then, if y ≤ v then

Greg Restall, gr69@st-andrews.ac.uk january 14, 2024

https://consequently.org/writing/
mailto:gr69@st-andrews.ac.uk


https://consequently.org/writing/ 21

y → v = v − y ≤ w − x = x → w as desired. On the other hand, if y ̸≤ v

then y → v = −1 which is the lowest possible value for any conditional, and so,
y → v ≤ x → w.

Second, the conjunctive syllogism condition: Suppose x ≤ y and y ≤ z. Then
(x → y) & (y → z) is the smaller of y − x and z − x. Since x ≤ y ≤ z, this
is less than or equal to z − x, which is x → z, as desired. Suppose, on the other
hand, that either x ̸≤ y or y ̸≤ z. Then (x → y) & (y → z) = −1, which is the
smallest value any conditional can take, and so, it is less than or equal to x → z,
as desired.

The other verifications are just as simple, so I will declare that BZ is, therefore,
a Brady algebra, and so, is a model for MC. It is a model that is robustly resistant
to the definition of the Church constants, since it has no truest truth and no falsest
falsehood.

BZ illustrates the remaining distinctive features of MC, too. As we have seen,
the revised clause for the conditional was enough to validate conjunctive syllo-
gism. The variation, however, does not validate contraction. If we assign [[A]] =

−2 and [[B]] = −1, then [[A → B]] = −1−(−2) = 1, while [[A →. A → B]] = 1−

(−2) = 3, so this model is a counterexample to the inference from A →. A → B

to A → B. Similarly, the depth-irrelevant modus ponens formula B & (B → A) →
A is refuted when we assign A and B the same values: [[B & (B → A)]] = −1

while [[A]] = −2 so the whole formula has value −1, which is outside the truth
filter.

We have a model in which contraction (including the modus ponens formula)
fails but conjunctive syllogism is verified. One diagnosis of this fact, consonant
with the general motivation for MC, is that in this model conditional formulas
are somewhat special: they have only a limited range of values they can take (never
dipping below −1). This means that there are some formulas that are not equiv-
alent to any conditional formulas. In linear logic, or in the relevant logics R and
RW, any formula A is equivalent to A → A → A, and so, if conjunctive syllogism
were to hold, then we could infer an instance

(A → A → A) & (A → B) →. A → A → B

which, would then entail

A & (A → B) →. A → A → B

(since A → A → A is equivalent to A), and then, since we can in linear logic,
and stronger logics, prove A → A → B → B,16 we have the modus ponens axiom
A & (A → B) → B. In MC this argument is blocked from the beginning.

16Remember, conditionals associate to the left.
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Conditional formulas (understood as statements of meaning containment) may
have a special semantic status. There is no guarantee that every statement may be
equivalent to a conditional. In each of the Brady algebras discussed in this paper,
in fact, conditional formulas take special values. In the products of Theorem 3,
conditionals have the value 0 or 1. In this algebra on Z conditionals are limited
to never take a value lower than −1. In each case, there are algebra elements that
are never fated to be the values of conditionals.

The final distinctive feature of MC to explore is the absence of fusion. Recall,
a fusion operator is definable on a structure if we can find for each x and y a value
x◦y such that, for every z,x◦y ≤ z if and only if x ≤ y → z. There cannot be such
an operator on BZ, given the values of conditional formulas. If there were such
an operator, we would have, for example, for every z, −2 ◦ 1 ≤ z iff −2 ≤ 1 → z.
But −2 ≤ 1 → z always (whatever value z takes), so we must have −2 ◦ 1 ≤
z for every z. But this is impossible, since there is no least element in BZ. So,
fusion is not definable in BZ. The intrinsic structure of the ordering (here, having
no least elements) and the distinctive behaviour of conditionals (having values
restricted to −1 and above) conspire to ensure that there is no way to define a
fusion connective. The structure BZ prohibits it.

* * *

I started this paper describing the different ways that I did not understand or
appreciate the distinctive features of Brady’s logic MC of meaning containment.
Having spent the time to reflect on those properties and constructing concrete
models that exhibit each of those features, I have come to understand some of
these features a little more. If this helps others engage with Brady’s contributions
to logic, this paper will have done its work.
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