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RELEVANCE LOGIC

1 INTRODUCTION

1.1 Delimiting the topic

The title of this piece is not ‘A Survey of Relevance Logic’. Such a project
was impossible in the mid 1980s when the first version of this article was
published, due to the development of the field and even the space limitations
of the Handbook. The situation is if anything, more difficult now. For
example Anderson and Belnap and Dunn’s two volume [1975, 1992] work
Entailment: The Logic of Relevance and Necessity, runs to over 1200 pages,
and is their summary of just some of the work done by them and their co-
workers up to about the late 1980s. Further, the comprehensive bibliography
(prepared by R. G. Wolf) contains over 3000 entries in work on relevance
logic and related fields.

So, we need some way of delimiting our topic. To be honest the fact that
we are writing this is already a kind of delimitation. It is natural that you
shall find emphasised here the work that we happen to know best. But still
rationality demands a less subjective rationale, and so we will proceed as
follows.

Anderson [1963] set forth some open problems for his and Belnap’s sys-
tem E that have given shape to much of the subsequent research in relevance
logic (even much of the earlier work can be seen as related to these open
problems, e.g. by giving rise to them). Anderson picks three of these prob-
lems as major: (1) the admissibility of Ackermann’s rule γ (the reader
should not worry that he is expected to already know what this means),
(2) the decision problems, (3) the providing of a semantics. Anderson also
lists additional problems which he calls ‘minor’ because they have no ‘philo-
sophical bite’. We will organise our remarks on relevance logic around three
major problems of Anderson. The reader should be told in advance that
each of these problems are closed (but of course ‘closed’ does not mean
‘finished’—closing one problem invariably opens another related problem).
This gives then three of our sections. It is obvious that to these we must add
an introduction setting forth at least some of the motivations of relevance
logic and some syntactical specifications. To the end we will add a section
which situates work in relevance logic in the wider context of study of other
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logical systems, since in the recent years it has become clear that relevance
logics fit well among a wider class of ‘resource-conscious’ or ‘substructural’
logics [Schroeder-Heister and Došen, 1993, Restall, 2000] [and cite the S–H
article in this volume]. We thus have the following table of contents:

1. Introduction

2. The Admissibility of γ

3. Semantics

4. The Decision Problem

5. Looking About

We should add a word about the delimitation of our topic. There are by now
a host of formal systems that can be said with some justification to be ‘rele-
vance logics’. Some of these antedate the Anderson–Belnap approach, some
are more recent. Some have been studied somewhat extensively, whereas
others have been discussed for only a few pages in some journal. It would be
impossible to describe all of these, let alone to assess in each and every case
how they compare with the Anderson–Belnap approach. It is clear that the
Anderson–Belnap-style logics have been the most intensively studied. So
we will concentrate on the research program of Anderson, Belnap and their
co-workers, and shall mention other approaches only insofar as they bear
on this program. By way of minor recompense we mention that Ander-
son and Belnap [1975] have been good about discussing related approaches,
especially the older ones.

Finally, we should say that our paradigm of a relevance logic throughout
this essay will be the Anderson–Belnap system R or relevant implication
(first devised by Belnap—see [Belnap, 1967a, Belnap, 1967b] for its history)
and not so much the Anderson–Belnap favourite, their system E of entail-
ment. There will be more about each of these systems below (they are explic-
itly formulated in Section 1.3), but let us simply say here that each of these
is concerned to formalise a species of implication (or the conditional—see
Section 1.2) in which the antecedent suffices relevantly for the consequent.
The system E differs from the system R primarily by adding necessity to
this relationship, and in this E is a modal logic as well as a relevance logic.
This by itself gives good reason to consider R and not E as the paradigm
of a relevance logic.1

1It should be entered in the record that there are some workers in relevance logic
who consider both R and E too strong for at least some purposes (see [Routley, 1977],
[Routley et al., 1982], and more recently, [Brady, 1996]).
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1.2 Implication and the Conditional

Before turning to matters of logical substance, let us first introduce a frame-
work for grammar and nomenclature that is helpful in understanding the
ways that writers on relevance logic often express themselves. We draw
heavily on the ‘Grammatical Propaedeutic’ appendix of [Anderson and Belnap, 1975]
and to a lesser extent on [Meyer, 1966], both of which are very much rec-
ommended to the reader for their wise heresy from logical tradition.

Thus logical tradition (think of [Quine, 1953]) makes much of the gram-
matical distinction between ‘if, then’ (a connective), and ‘implies’ or its
rough synonym ‘entails’ (transitive verbs). This tradition opposes

1. If today is Tuesday, then this is Belgium

to the pair of sentences

2. ‘Today is Tuesday’ implies ‘This is Belgium’,

3. That today is Tuesday implies that this is Belgium.

And the tradition insists that (1) be called a conditional, and that (2) and
(3) be called implications.

Sometimes much philosophical weight is made to rest on this distinction.
It is said that since ‘implies’ is a verb demanding nouns to flank it, that
implication must then be a relation between the objects stood for by those
nouns, whereas it is said that ‘if, then’ is instead a connective combining that
implication (unlike ‘if, then’) is really a metalinguistic notion, either overtly
as in (2) where the nouns are names of sentences, or else covertly as in (3)
where the nouns are naming propositions (the ‘ghosts’ of linguistic entities).
This last is then felt to be especially bad because it involves ontological
commitment to propositions or some equally disreputable entities. The first
is at least free of such questionable ontological commitments, but does raise
real complications about ‘nested implications’, which would seem to take us
into a meta-metalanguage, etc.

The response of relevance logicians to this distinction has been largely one
of ‘What, me worry?’ Sometime sympathetic outsiders have tried to apolo-
gise for what might be quickly labelled a ‘use–mention confusion’ on the part
of relevance logicians [Scott, 1971]. But ‘hard-core’ relevance logicians often
seem to luxuriate in this ‘confusion’. As Anderson and Belnap [1975, p. 473]
say of their ‘Grammatical Propaedeutic’: “the principle aim of this piece
is to convince the reader that it is philosophically respectable to ‘confuse’
implication or entailment with the conditional, and indeed philosophically
suspect to harp on the dangers of such a ‘confusion’. (The suspicion is
that such harpists are plucking a metaphysical tune on merely grammatical
strings.)”
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The gist of the Anderson–Belnap position is that there is a generic
conditional-implication notion, which can be carried into English by a va-
riety of grammatical constructions. Implication itself can be viewed as a
connective requiring prenominalisation: ‘that implies that ’, and as
such it nests. It is an incidental feature of English that it favours sentences
with main subjects and verbs, and ‘implies’ conforms to this reference by
the trick of disguising sentences as nouns by prenominalisation. But such
grammatical prejudices need not be taken as enshrining ontological presup-
positions.

Let us use the label ‘Correspondence Thesis’ for the claim that Anderson
and Belnap come close to making (but do not actually make), namely, that
in general there is nothing other than a purely grammatical distinction
between sentences of the forms

4. If A, then B, and

5. That A implies that B.

Now undoubtedly the Correspondence Thesis overstates matters. Thus, to
bring in just one consideration, [Castañeda, 1975, pp. 66 ff.] distinguishes
‘if A then B’ from ‘A only if B’ by virtue of an essentially pragmatic distinc-
tion (frozen into grammar) of ‘thematic’ emphases, which cuts across the
logical distinction of antecedent and consequent. Putting things quickly, ‘if’
introduces a sufficient condition for something happening, something being
done, etc. whereas ‘only if’ introduces a necessary condition. Thus ‘if’ (by
itself or prefixed with ‘only’) always introduces the state of affairs thought
of as a condition for something else, then something else being thus the
focus of attention. Since ‘that A implies that B’ is devoid of such thematic
indicators, it is not equivalent at every level of analysis to either ‘if A then
B’ or ‘A only if B’.

It is worth remarking that since the formal logician’s A → B is equally
devoid of thematic indicators, ‘that A implies that B’ would seem to make
a better reading of it than either ‘if A then B’ or ‘A only if B’. And yet
it is almost universally rejected by writers of elementary logic texts as even
an acceptable reading.

And, of course, another consideration against the Correspondence Thesis
is produced by notorious examples like Austin’s

6. There are biscuits on the sideboard if you want some,

which sounds very odd indeed when phrased as an implication. Indeed, (6)
poses perplexities of one kind or another for any theory of the conditional,
and so should perhaps best be ignored as posing any special threat tot he
Anderson and Belnap account of conditionals. Perhaps it was Austin-type
examples that led Anderson and Belnap [1975, pp. 491–492] to say “we
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think every use of ‘implies’ or ‘entails’ as a connective can be replaced by a
suitable ‘if-then’; however, the converse may not be true”. They go on to say
“But with reference to the uses in which we are primarily interested, we feel
free to move back and forth between ‘if-then’ and ‘entails’ in a free-wheeling
manner”.

Associated with the Correspondence Thesis is the idea that just as there
can be contingent conditionals (e.g. (1)), so then the corresponding implica-
tions (e.g. (3)) must also be contingent. This goes against certain Quinean
tendencies to ‘regiment’ the English word ‘implies’ so that it stands only for
logical implication. Although there is no objection to thus giving a technical
usage to an ordinary English word (even requiring in this technical usage
that ‘implication’ be a metalinguistic relation between sentences), the point
is that relevance logicians by and large believe we are using ‘implies’ in the
ordinary non-technical sense, in which a sentence like (3) might be true
without there being any logical (or even necessary) implication from ‘Today
is Tuesday’ to ‘This is Belgium’.

Relevance logicians are not themselves free of similar regimenting ten-
dencies. Thus we tend to differentiate ‘entails’ from ‘implies’ on precisely
the ground that ‘entails’, unlike ‘implies’, stands only for necessary impli-
cation [Meyer, 1966]. Some writings of Anderson and Belnap even suggest
a more restricted usage for just logical implication, but we do not take this
seriously. There does not seem to be any more linguistic evidence for thus
restricting ‘entails’ than there would be for ‘implies’, though there may be
at least more excuse given the apparently more technical history of ‘entails’
(in its logical sense—cf. The oed).

This has been an explanation of, if not an apology for, the ways in which
relevance logicians often express themselves. but it should be stressed that
the reader need not accept all, or any, of this background in order to make
sense of the basic aims of the relevance logic enterprise. Thus, e.g. the
reader may feel that, despite protestations to the contrary, Anderson, Bel-
nap and Co. are hopelessly confused about the relationships among ‘entails’,
‘implies’, and ‘if-then’, but still think that their system R provides a good
formalisation of the properties of ‘if-then’ (or at least ‘if-then relevantly’),
and that they system E does the same for some strict variant produced by
the modifier ‘necessarily’.

One of the reasons the recent logical tradition has been motivated to
insist on the fierce distinction between implications and conditionals has
to do with the awkwardness of reading the so-called ‘material conditional’
A→ B as corresponding to any kind of implication (cf. [Quine, 1953]).

The material conditional A → B can of course be defined as ¬A ∨ B,
and it certainly does seem odd, modifying an example that comes by oral
tradition from Anderson, to say that:
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7. Picking a guinea pig up by its tail implies that its eyes will fall out.

just on the grounds that its antecedent is false (since guinea pigs have no
tails). But then it seems equally false to say that:

8. If one picks up a guinea pig by its tail, then its eyes will fall out.

And also both of the following appear to be equally false:

9. Scaring a pregnant guinea pig implies that all of her babies will be
born tailless.

10. If one scares a pregnant guinea pig, then all of her babies will be born
tailless.

It should be noted that there are other ways to react to the oddity of sen-
tences like the ones above other than calling them simply false. Thus there
is the reaction stemming from the work of Grice [1975] that says that at
least the conditional sentences (8) and (10) above are true though nonethe-
less pragmatically odd in that they violate some rule based on conversa-
tional co-operation to the effect that one should normally say the strongest
thing relevant, i.e. in the cases above, that guinea pigs have no tails (cf.
[Fogelin, 1978, p. 136 ff.] for a textbook presentation of this strategy).

Also it should be noted that the theory of the ‘counterfactual’ conditional
due to Stalnaker–Thomason, D. K. Lewis and others (cf. Chapter [[??]] of
this Handbook), while it agrees with relevance logic in finding sentences like
(8) (not (10) false, disagrees with relevance logic in the formal account it
gives of the conditional.

It would help matters if there were an extended discussion of these
competing theories (Anderson–Belnap, Grice, Stalnaker-Thomason-Lewis),
which seem to pass like ships in the night (can three ships do this without
strain to the image?) but there is not the space here. Such a discussion
might include an attempt to construct a theory of a relevant counterfactual
conditional (if A were to be the case, then as a result B would be the case).
The rough idea would be to use say The Routley–Meyer semantics for rel-
evance logic (cf. Section 3.7) in place of the Kripke semantics for modal
logic, which plays a key role in the Stalnaker–Thomason–Lewis semantical
account of the conditional (put the 3-placed alternativeness relation in the
role of the usual 2-placed one). Work in this area is just starting. See
the works of [Mares and Fuhrmann, 1995] and [Akama, 1997] which both
attempt to give semantics for relevant counterfactuals.

Also any discussion relating to Grice’s work would surely make much of
the fact that the theory of Grice makes much use of a basically unanalysed
notion of relevance. One of Grice’s chief conversational rules is ‘be relevant’,
but he does not say much about just what this means. One could look at
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relevance logic as trying to say something about this, at least in the case of
the conditional.

Incidentally, as Meyer has been at great pains to emphasise, relevance
logic gives, on its face anyway, no separate account of relevance. It is not
as if there is a unary relevance operator (‘relevantly’).

One last point, and then we shall turn to more substantive issues. Or-
thodox relevance logic differs from classical logic not just in having an ad-
ditional logical connective (→) for the conditional. If that was the only
difference relevance logic would just be an ‘extension’ of classical logic, us-
ing the notion of Haack [1974], in much the same way as say modal logic
is an extension of classical logic by the addition of a logical connective �

for necessity. The fact is (cf. Section 1.6) that although relevance logic
contains all the same theorems as classical logic in the classical vocabulary
say, ∧,∨,¬ (and the quantifiers), it nonetheless does not validate the same
inferences. Thus, most notoriously, the disjunctive syllogism (cf. Section 2)
is counted as invalid. Thus, as Wolf [1978] discusses, relevance logic does
not fit neatly into the classification system of [Haack, 1974], and might best
be called ‘quasi-extension’ of classical logic, and hence ‘quasi-deviant’. In-
cidentally, all of this applies only to ‘orthodox’ relevance logic, and not to
the ‘classical relevance logics’ of Meyer and Routley (cf. Section 3.11).

1.3 Hilbert-style Formulations

We shall discuss first the pure implicational fragments, since it is pri-
marily in the choice of these axioms that the relevance logics differ one
from the other. We shall follow the conventions of Anderson and Belnap
[Anderson and Belnap, 1975], denoting by ‘R→’ what might be called the
‘putative implicational fragment of R’. Thus R→ will have as axioms all
the axioms of R that only involve the implication connective. That R→

is in fact the implicational fragment of R is much less than obvious since
the possibility exists that the proof of a pure implicational formula could
detour in an essential way through formulas involving connectives other
than implication. In fact Meyer has shown that this does not happen (cf.
his Section 28.3.2 of [Anderson and Belnap, 1975]), and indeed Meyer has
settled in almost every interesting case that the putative fragments of the
well-known relevance logics (at least R and E) are the same as the real
fragments. (Meyer also showed that this does not happen in one interesting
case, RM, which we shall discuss below.)

For R→ we take the rule modus ponens (A, A→ B ` B) and the following
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axiom schemes.

A→ A Self-Implication (1)

(A→ B)→ [(C → A)→ (C → B)] Prefixing (2)

[A→ (A→ B)]→ (A→ B) Contraction (3)

[A→ (B → C)]→ [B → (A→ C)] Permutation. (4)

A few comments are in order. This formulation is due to Church [1951b]
who called it ‘The weak implication calculus’. He remarks that the axioms
are the same as those of Hilbert’s for the positive implicational calculus (the
implicational fragment of the intuitionistic propositional calculus H) except
that (1) is replaced with

A→ (B → A) Positive Paradox. (1′)

(Recent historical investigation by Došen [1992] has shown that Orlov con-
structed an axiomatisation of the implication and negation fragment of R

in the mid 1920s, predating other known work in the area. Church and
Moh, however, provided a Deduction Theorem (see Section 1.4) which is
absent from Orlov’s treatment.)

The choice of the implicational axioms can be varied in a number of in-
formative ways. Thus putting things quickly, (2) Prefixing may be replaced
by

(A→ B)→ [(B → C)→ (A→ C)] Suffixing. (2′)

(3) Contraction may be replaced by

[A→ (B → C)]→ [(A→ B)→ (A→ C)] Self- Distribution, (3′)

and (4) Permutation may be replaced by

A→ [(A→ B)→ B] Assertion. (4′)

These choices of implicational axioms are ‘isolated’ in the sense that one
choice does not affect another. Thus

THEOREM 1 R→ may be axiomatised with modus ponens, (1) Self-Implication
and any selection of one from each pair {(2), (2′)}, {(3), (3′)}, and {(4), (4′)}.

Proof. By consulting [Anderson and Belnap, 1975, pp. 79–80], and fid-
dling. �
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There is at least one additional variant of R→ that merits discussion. It
turns out that it suffices to have Suffixing, Contraction, and the pair of
axiom schemes

[(A→ A)→ B]→ B Specialised Assertion, (4a)

A→[(A→ A)→ A] Demodaliser. (4b)

Thus (4b) is just an instance of Assertion, and (4a) follows from Assertion
by substitution A → A for A and using Self-Implication to detach. That
(4a) and (4b) together with Suffixing and Contraction yield Assertion (and,
less interestingly, Self-Implication) can be shown using the fact proven in

[Anderson and Belnap, 1975, Section 8.3.3], that these yield (letting ~A ab-
breviate A1 → A2)

~A→ [( ~A→ B)→ B] Restricted-Assertion. (4′′)

The point is that (4a) and (4b) in conjunction say that A is equivalent to

(A → A) → A, and so every formula A has an equivalent form ~A and so
‘Restricted Assertion’ reduces to ordinary Assertion.2

Incidentally, no claim is made that this last variant of R→ has the same
isolation in its axioms as did the previous axiomatisations. Thus, e.g.
that Suffixing (and not Prefixing) is an axiom is important (a matrix of
J. R. Chidgey’s (cf. [Anderson and Belnap, 1975, Section 8.6]) can be used
to show this.

The system E of entailment differs primarily from the system R in that
it is a system of relevant strict implication. Thus E is both a relevance logic
and a modal logic. Indeed, defining �A =df (A→ A)→ A one finds E has
something like the modality structure of S4 (cf. [Anderson and Belnap, 1975,
Sections 4.3 and 10]).

This suggests that E→ can be axiomatised by dropping Demodaliser from
the axiomatisation of R→, and indeed this is right (cf. [Anderson and Belnap, 1975,
Section 8.3.3], for this and all other claims about axiomatisations of E→).3

The axiomatisation above is a ‘fixed menu’ in that Prefixing cannot be
replaced with Suffixing. There are other ‘à la carte’ axiomatisations in the
style of Theorem 1.

THEOREM 2 E→ may be axiomatised with modus ponens, Self-Implication
and any selection from each of the pairs {Prefixing, Suffixing}, {Contraction,
Self-Distribution} and {Restricted-Permutation, Restricted-Assertion} (one
from each pair).

2There are some subtleties here. Detailed analysis shows that both Suffixing and
Prefixing are needed to replace ~A with A (cf. Section 1.3). Prefixing can be derived from
the above set of axioms (cf. [Anderson and Belnap, 1975, pp. 77–78 and p. 26].

3The actual history is backwards to this, in that the system R was first axiomatised
by [Belnap, 1967a] by adding Demodaliser to E.
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Another implicational system of less central interest is that of ‘ticket en-
tailment’ T→. It is motivated by Anderson and Belnap [1975, Section 6]
as deriving from some ideas of Ryle’s about ‘inference tickets’. It was mo-
tivated in [Anderson, 1960] as ‘entailment shorn of modality’. The thought
behind this last is that there are two ways to remove the modal sting from
the characteristic axiom of alethic modal logic, �A→ A. One way is to add
Demodaliser A → �A so as to destroy all modal distinctions. The other is
to drop the axiom �A→ A. Thus the essential way one gets T→ from E→ is
to drop Specialised Assertion (or alternatively to drop Restricted Assertion
or Restricted Permutation, depending on which axiomatisation of E→ one
has). But before doing so one must also add whichever one of Prefixing and
Suffixing was lacking, since it will no longer be a theorem otherwise (this is
easiest to visualise if one thinks of dropping Restricted permutation, since
this is the key to getting Prefixing from Suffixing and vice versa). Also
(and this is a strange technicality) one must replace Self-Distribution with
its permuted form:

(A→ B)→ [[A→ (B → C)]→ (A→ C)] Permuted Self-Distribution.

(3′′)

This is summarised in

THEOREM 3 (Anderson and Belnap [Section 8.3.2, 1975]) T→ is axioma-
tised using Self-Implication, Prefixing, Suffixing, and either of {Contraction,
Permuted Self-Distribution}, with modus ponens.

There is a subsystem of E→ called TW→ (and P−W, and T−W in
earlier nomenclature) axiomatised by dropping Contraction (which corre-
sponds to the combinator W) from T→. This has obtained some interest
because of an early conjecture of Belnap’s (cf. [Anderson and Belnap, 1975,
Section 8.11]) that A → B and B → A are both theorems of TW→ only
when A is the same formula as B. That Belnap’s Conjecture is now Bel-
nap’s Theorem is due to the highly ingenious (and complicated) work of E.
P. Martin and R. K. Meyer [1982] (based on the earlier work of L. Powers
and R. Dwyer). Martin and Meyer’s work also highlights a system S→ (for
Syllogism) in which Self-Implication is dropped from TW→.

Moving on now to adding the positive extensional connectives ∧ and ∨,
in order to obtain R→,∧,∨ (denoted more simply as R+) one adds to R→
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the axiom schemes

A ∧ B → A, A ∧ B → B Conjunction Elimination (5)

[(A→ B) ∧ (A→ C)]→ (A→ B ∧ C) Conjunction Introduction (6)

A→ A ∨B, B → A ∨ B Disjunction Introduction (7)

[(A→ C) ∧ (B → C)]→ (A ∨ B → C) Disjunction Elimination (8)

A ∧ (B ∨ C)→ (A ∧ B) ∨ C Distribution (9)

plus the rule of adjunction (A, B ` A ∧ B). One can similarly get the
positive intuitionistic logic by adding these all to H→.

Axioms (5)–(8) can readily be seen to be encoding the usual elimination
and introduction rules for conjunction and disjunction into axioms, giving
∧ and ∨ what might be called ‘the lattice properties’ (cf. Section 3.3). It
might be thought that A → (B → A ∧ B) might be a better encoding
of conjunction introduction than (6), having the virtue that it allows for
the dropping of adjunction. This is a familiar axiom for intuitionistic (and
classical) logic, but as was seen by Church [1951b], it is only a hair’s breadth
away from Positive Paradox (A→ (B → A)), and indeed yields it given (5)
and Prefixing. For some mysterious reason, this observation seemed to
prevent Church from adding extensional conjunction/disjunction to what
we now call R→ (and yet the need for adjunction in the Lewis formulations
of modal logic where the axioms are al strict implications was well-known).

Perhaps more surprising than the need for adjunction is the need for ax-
iom (9). It would follow from the other axioms if only we had Positive Para-
dox among them. The place of Distribution in R is continually problematic.
It causes inelegancies in the natural deduction systems (cf. Section 1.5) and
is an obstacle to finding decision procedures (cf. Section 4.8). Incidentally,
all of the usual distributive laws follow from the somewhat ‘clipped’ version
(9).

The rough idea of axiomatising E+ and T+ is to add axiom schemes
(5)–(9) to E→ and T→. This is in fact precisely right for T+, but for E+

one needs also the axiom scheme (remember �A =df (A→ A)→ A):

�A ∧�B → �(A ∧ B) (10)

This is frankly an inelegance (and one that strangely enough disappears in
the natural deduction context of Section 1.5). It is needed for the inductive
proof that necessitation (` C ⇒ ` �C) holds, handling he case where C
just came by adjunction (cf. [Anderson and Belnap, 1975, Sections 21.2.2
and 23.4]). There are several ways of trying to conceal this inelegance, but
they are all a little ad hoc. Thus, e.g. one could just postulate the rule of
necessitation as primitive, or one could strengthen the axiom of Restricted
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Permutation (or Restricted Assertion) to allow that ~A be a conjunction
(A1 → A1) ∧ (A2 → A2).

As Anderson and Belnap [1975, Section 21.2.2] remark, if propositional
quantification is available, �A could be given the equivalent definition
∀p(p→ p)→ A, and then the offending (10) becomes just a special case of
Conjunction Introduction and becomes redundant.

It is a good time to advertise that the usual zero-order and first-order rele-
vance logics can be outfitted with a couple of optional convenience features
that come with the higher-priced versions with propositional quantifiers.
Thus, e.g. the propositional constant t can be added to E+ to play the role
of ∀p(p→ p), governed by the axioms.

(t→ A)→ A (11)

t→ (A→ A), (12)

and again (10) becomes redundant (since one can easily show (t → A) ↔
[(A→ A)→ A]).

Further, this addition of t is conservative in the sense that it leads to
no new t-free theorems (since in any given proof t can always be replaced
by (p1 → p1) ∧ · · · ∧ (pn → pn) where p1, . . . , pn are all the propositional
variables appearing in the proof — cf. [Anderson and Belnap, 1975]).

Axiom scheme (11) is too strong for T+ and must be weakened to

t. (11T)

In the context of R+, (11) and (11T) are interchangeable. and in R+, (12)
may of course be permuted, letting us characterise t in a single axiom as
‘the conjunction of all truths’:

A↔ (t→ A) (13)

(in E, t may be thought of as ‘the conjunction of all necessary truths’).
‘Little t’ is distinguished from ‘big T ’, which can be conservatively added

with the axiom scheme

A→ T (14)

(in intuitionistic or classical logic t and T are equivalent).
Additionally useful is a binary connective ◦, labelled variously ‘inten-

sional conjunction’, ‘fusion’, ‘consistency’ and ‘cotenability’. these last
two labels are appropriate only in the context of R, where one can define
A ◦B =df ¬(A→ ¬B). One can add ◦ to R+ with the axiom scheme:

[(A ◦B)→ C]↔ [A→ (B → C)] Residuation (axiom). (15)
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This axiom scheme is too strong for other standard relevance logics, but
Meyer and Routley [1972] discovered that one can always add conservatively
the two way rule

(A ◦B)→ C a ` A→ (B → C) Residutation (rule) (16)

(in R+ (16) yields (15)). Before adding negation, we mention the positive
fragment B+ of a kind of minimal (Basic) relevance logic due to Routley
and Meyer (cf. Section 3.9). B+ is just like TW+ except for finding the
axioms of Prefixing and Suffixing too strong and replacing them by rules:

A→ B ` (C → A)→ (C → B) Prefixing (rule) (17)

A→ B ` (B → C)→ (A→ C) Suffixing (rule) (18)

As for negation, the full systems R, E, etc. may be formed adding to the
axiom schemes for R+, E+, etc. the following 4

(A→ ¬A)→ ¬A Reductio (19)

(A→ ¬B)→ (B → ¬A) Contraposition (20)

¬¬A→ A Double Negation. (21)

Axiom schemes (19) and (20) are intuitionistically acceptable negation prin-
ciples, but using (21) one can derive forms of reductio and contraposition
that are intuitionistically rejectable. Note that (19)–(21) if added to H+

would give the full intuitionistic propositional calculus H.
In R, negation can alternatively be defined in the style of Johansson, with

¬A =df (A→ f), where f is a false propositional constant, cf. [Meyer, 1966].
Informally, f is the disjunction of all false propositions (the ‘negation’ of
t). Defining negation thus, axiom schemes (19) and (20) become theorems
(being instances of Contraction and Permutation, respectively). But scheme
(21) must still be taken as an axiom.

Before going on to discuss quantification, we briefly mention a couple of
other systems of interest in the literature.

Given that E has a theory of necessity riding piggyback on it in the
definition �A =df (A → A) → A, the idea occurred to Meyer of adding to
R a primitive symbol for necessity � governed by the S4 axioms.

�A→ A (�1)

�(A→ B)→ (�A→ �B) (�2)

�A ∧�B → �(A ∧ B) (�3)

�A→ ��A, (�4)

4Reversing what is customary in the literature, we use ¬ for the standard negation of
relevance logic, reserving ∼ for the ‘Boolean negation’ discussed in Section 3.11. We do
this so as to follow the notational policies of the Handbook.
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and the rule of Necessitation (` A⇒ ` �A).
His thought was that E could be exactly translated into this system R�

with entailment defined as strict implication. That this is subtly not the
case was shown by Maksimova [1973] and Meyer [1979b] has shown how to
modify R� so as to allow for an exact translation.

Yet one more system of interest is RM (cf. Section 3.10) obtained by
adding to R the axiom scheme

A→ (A→ A) Mingle. (22)

Meyer has shown somewhat surprisingly that the pure implicational system
obtained by adding Mingle to R is not the implicational fragment of RM,
and he and Parks have shown how to axiomatise this fragment using a
quite unintelligible formula (cf. [Anderson and Belnap, 1975, Section 8.18]).
Mingle may be replaced equivalently with the converse of Contraction:

(A→ B)→ (A→ (A→ B)) Expansion. (23)

Of course one can consider ‘mingled’ versions of E, and indeed it was in
this context that McCall first introduced mingle, albeit in the strict form
(remember ~A = A1 → A2),

~A→ ( ~A→ ~A) ~Mingle (24)

(cf. [Dunn, 1976c]).
We finish our discussion of axiomatics with a brief discussion of first-

order relevance logics, which we shall denote by RQ, EQ, etc. We shall
presuppose a standard definition of first-order formula (with connectives
¬,∧,∨,→ and quantifiers ∀, ∃). For convenience we shall suppose that we
have two denumerable stocks of variables: the bound variables x, y, etc.
and the free variables (sometimes called parameters) a, b, etc. The bound
variables are never allowed to have unbound occurrences.

The quantifier laws were set down by Anderson and Belnap in accord with
the analogy of the universal quantifier with a conjunction (or its instances),
and the existential quantifier as a disjunction. In view of the validity of
quantifier interchange principles, we shall for brevity take only the universal
quantifier ∀ as primitive, defining ∃xA =df ¬∀x¬A. We thus need

∀xA→ A(a/x) ∀-elimination (25)

∀x(A→ B)→ (A→ ∀xB) ∀- introduction (26)

∀x(A ∨ B)→ A ∨ ∀xB Confinement. (27)

If there are function letters or other term forming operators, then (25)
should be generalised to ∀xA → A(t/x), where t is any term (subject to
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our conventions that the ‘bound variables’ x, y, etc. do not occur (‘free’)
in it). Note well that because of our convention that ‘bound variables’ do
not occur free, the usual proviso that x does not occur free in A in (26)
and (27) is automatically satisfied. (27) is the obvious ‘infinite’ analogy
of Distribution, and as such it causes as many technical problems for RQ

as does Distribution for R (cf. Section 4.8). Finally, as an additional rule
corresponding to adjunction, we need:

A(a/x)

∀xA
Generalisation. (28)

There are various more or less standard ways of varying this formulation.
Thus, e.g. (cf. Meyer, Dunn and Leblanc [1974]) one can take all universal
generalisations of axioms, thus avoiding the need for the rule of Generalisa-
tion. Also (26) can be ‘split’ into two parts:

∀x(A→ B)→ (∀xA→ ∀xB) (26a)

A→ ∀xA Vacuous Quantification (26b)

(again note that if we allowed x to occur free we would have to require that
x not be free in A).

The most economical formulation is due to Meyer [1970]. It uses only
the axiom scheme of ∀-elimination and the rule.

A→ B ∨ C(a/x)

A→ B ∨ ∀xC
(a cannot occur in A or B) (29)

which combines (26)–(28).

1.4 Deduction Theorems in Relevance Logic

Let X be a formal system, with certain formulas of X picked out as axioms
and certain (finitary) relations among the formulas of X picked out as rules.
(For the sake of concreteness, X can be thought of as any of the Hilbert-
style systems of the previous section.) Where Γ is a list of formulas of X

(thought of as hypotheses) it is customary to define a deduction from Γ to
be a sequence B1, . . . , Bn, where for each Bi(1 ≤ i ≤ n), either (1) Bi is in
Γ, or (2) B is an axiom of X, or (3) Bi ‘follows from’ earlier members of
the sequence, i.e. R(Bj1 , . . . , Bjk

, Bi) holds for some (k + 1)—any rule R of
X and Bj1 , . . . , Bjk

all precede Bi in the sequence B1, . . . , Bn. A formula
A is then said to be deducible from Γ just in case there is some deduction
from Γ terminating in A. We symbolise this as Γ `X A (often suppressing
the subscript).

A proof is of course a deduction from the empty set, and a theorem is
just the last item in a proof. There is the well-known
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Deduction Theorem (Herbrand). If A1, . . . , An, A `H→
B, then we have

also A1, . . . , An `H→
A→ B.

This theorem is proven in standard textbooks for classical logic, but the
standard inductive proof shows that in fact the Deduction Theorem holds
for any formal system X having modus ponens as its sole rule and H→ ⊆
X (i.e. each instance of an axiom scheme of H→ is a theorem of X). Indeed
H→ can be motivated as the minimal pure implicational calculus having
modus ponens as its sole rule and satisfying the Deduction Theorem. This
is because the axioms of H→ can all be derived as theorems in any formal
system X using merely modus ponens and the supposition that X satisfies
the Deduction Theorem. Thus consider as an example:

(1) A, B ` A Definition of `
(2) A ` B → A (1), Deduction Theorem
(3) ` A→ (B → A) (2), Deduction Theorem.

Thus the most problematic axiom of H→ has a simple ‘a priori deduc-
tion’, indeed one using only the Deduction Theorem, not even modus ponens
(which is though needed for more sane axioms like Self-Distribution).

It might be thought that the above considerations provide a very powerful
argument for motivating intuitionistic logic (or at least some logic having he
same implicational fragment) as The One True Logic. For what else should
an implication do but satisfy modus ponens and the Deduction Theorem?

But it turns out that there is another sensible notion of deduction. This is
what is sometimes called a relevant deduction.(Anderson and Belnap [1975,
Section 22.2.1] claim that this is the only sensible notion of deduction, but
we need not follow them in that). If there is anything that sticks out in the
a priori deduction of Positive Paradox above it is that in (1), B was not
used in the deduction of A.

A number of researchers have been independently bothered by this point
and have been motivated to study a relevant implication that goes hand in
hand with a notion of relevant deduction. This, in this manner Moh [1950]
and Church [1951b] came up with what is in effect R→. And Anderson
and Belnap [1975, p. 261] say “In fact, the search for a suitable deduction
theorem for Ackermann’s systems . . . provided the impetus leading us to the
research reported in this book.” This research program begun in the late
1950s took its starting point in the system(s) of Ackermann [1956], and the
bold stroke separating the Anderson–Belnap system E from Ackermann’s
system Π′ was basically the dropping of Ackermann’s rule γ so as to have
an appropriate deduction theorem (cf. Section 2.1).

Let us accordingly define a deduction of B from A1, . . . , An to be relevant
with respect to a given hypothesis Ai just in case Ai is actually used in
the given deduction of B in the sense (paraphrasing [Church, 1951b]) that
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there is a chain of inferences connecting Ai with the final formula B. This
last can be made formally precise in any number of ways, but perhaps the
most convenient is to flag Ai with say a ] and to pass the flag along in
the deduction each time modus ponens is applied to two items at least one
of which is flagged. It is then simply required that the last step of the
deduction (B) be flagged. Such devices are familiar from various textbook
presentations of classical predicate calculus when one wants to keep track
whether some hypothesis Ai(x) was used in the deduction of some formula
B(x) to which one wants to apply Universal Generalisation.

We shall define a deduction of B from A1, . . . , An to be relevant sim-
pliciter just in case it is relevant with respect to each hypothesis Ai. A
practical way to test for this is to flag each Ai with a different flag (say the
subscript i) and then demand that all of the flags show up on the last step
B.

We can now state a version of the

Relevant Deduction Theorem (Moh, Church). If there is a deduction
in R→ of B from A1, . . . , An, A that is relevant with respect to A, then
there is a deduction in R→ of A → B from A1, . . . , An. Furthermore the
new deduction will be ‘as relevant’ as the old one, i.e. any Ai that was used
in the given deduction will be used in the new deduction.

Proof. Let the given deduction be B1, . . . , Bk, and let it be given with a
particular analysis as to how each step is justified. By induction we show
for each Bi that if A was used in obtaining Bi (Bi is flagged), then there is
a deduction of A→ Bi from A1, . . . , An, and otherwise there is a deduction
of Bi from those same hypotheses. The tedious business of checking that
the new deduction is as relevant as the old one is left to the reader. We
divide up cases depending on how the step Bi is justified.

Case 1. Bi was justified as a hypothesis. Then neither Bi is A or it
is some Aj . But A → A is an axiom of R→ (and hence deducible from
A1, . . . , An), which takes care of the first alternative. And clearly on the
second alternative Bi is deducible from A1, . . . , An (being one of them).

Case 2. Bi was justified as an axiom. Then A was not used in obtaining
Bi, and of course Bi is deducible (being an axiom).

Case 3. Bi was justified as coming from preceding steps Bj → Bi and
Bj by modus ponens. There are four subcases depending on whether A was
used in obtaining the premises.

Subcase 3.1. A was used in obtaining both Bj → Bi and Bj . Then by
inductive hypothesis A1, . . . , An `R→

A→ (Bj → Bi) and A1, . . . , An `R→

A→ Bj . So A→ B may be obtained using the axiom of Self-Distribution.
Subcase 3.2. A was used in obtaining Bj → Bi but not Bj . Use the

axiom of Permutation to obtain A→ Bi from A→ (Bj → Bi) and Bj .
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Subcase 3.3. A was not used in obtaining Bj → Bi but was used for Bj .
Use the axiom of Prefixing to obtain A→ Bi from Bj → Bi and A→ Bj .

Subcase 3.4. A was not used in obtaining either Bj → Bi nor Bj . Then
Bi follows form these using just modus ponens.

Incidentally, R→ can easily be verified to be the minimal pure implica-
tional calculus having modus ponens as sole rule and satisfying the Relevant
Deduction Theorem, since each of the axioms invoked in the proof of this
theorem can be easily seen to be theorems in any such system (cf. the next
section for an illustration of sorts).

There thus seem to be at least two natural competing pure implicational
logics R→ and H→, differing only in whether one wants one’s deductions
to be relevant or not.5 �

Where does the Anderson–Belnap’s [1975] preferred system E→ fit into
all of this? The key is that the implication of E→ is both a strict and
a relevant implication (cf. Section 1.3 for some subtleties related to this
claim). As such, and since Anderson and Belnap have seen fit to give it
the modal structure of the Lewis system S4, it is appropriate to recall the
appropriate deduction theorem for S4.

Modal Deduction Theorem [Barcan Marcus, 1946] If A1 → B1, . . . , An →
Bn, A `S4 B (→ here denotes strict implication), then A1 → B1, . . . , An →
Bn `S4 A→ B.

The idea here is that in general in order to derive the strict (necessary)
implication A → B one must not only be able to deduce B from A and
some other hypotheses but furthermore those other hypotheses must be
supposed to be necessary. And in S4 since Ai → Bj is equivalent to �(Ai →
Bj), requiring those additional hypotheses to be strict implications at least
suffices for this.

Thus we could only hope that E→ would satisfy the

Modal Relevant Deduction Theorem [Anderson and Belnap, 1975]
If there is a deduction in E→ of B from A1 → B1, . . . , An → Bn, A that is
relevant with respect to A, then there is a deduction in E→ of A→ B from
A1 → B1, . . . , An → Bn that is as relevant as the original.

The proof of this theorem is somewhat more complicated than its un-
modalised counterpart which we just proved (cf. [Anderson and Belnap, 1975,
Section 4.21] for a proof).

We now examine a subtle distinction (stressed by Meyer—see, for exam-
ple, [Anderson and Belnap, 1975, pp. 394–395]), postponed until now for

5This seems to differ from the good-humoured polemical stand of Anderson and Belnap
[1975, Section 22.2.1], which says that the first kind of ‘deduction’, which they call
(pejoratively) ‘Official deduction’, is no kind of deduction at all.
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pedagogical reasons. We must ask, how many hypotheses can dance on the
head of a formula? The question is: given the list of hypotheses A, A, do we
have one hypothesis or two? When the notion of a deduction was first intro-
duced in this section and a ‘list’ of hypotheses Γ was mentioned, the reader
would naturally think that this was just informal language for a set. And
of course the set {A, A} is identical to the set {A}. Clearly A is relevantly
deducible from A. The question is whether it is so deducible from A, A. We
have then two different criteria of use, depending on whether we interpret
hypotheses as grouped together into lists that distinguish multiplicity of
occurrences (sequences)6 or sets. This issue has been taken up elsewhere
of late, with other accounts of deduction appealing to ‘resource conscious-
ness’ [Girard, 1987, Troelstra, 1992, Schroeder-Heister and Došen, 1993] as
motivating some non-classical logics. Substructural logics in general appeal
to the notion that the number of times a premise is used, or even more
radically, the order in which premises are used, matter.

At issue in R and its neighbours is whether A→ (A→ A) is a correct rel-
evant implication (coming by two applications of ‘The Deduction Theorem’
from A, A ` A). This is in fact not a theorem of R, but it is the character-
istic axiom of RM (cf. Section 1.3). So it is important that in the Relevant
Deduction Theorem proved for R→ that the hypotheses A1, . . . , An be un-
derstood as a sequence in which the same formula may occur more than
once. One can prove a version of the Relevant Deduction Theorem with
hypotheses understood as collected into a set for the system RMO→, ob-
tained by adding A→ (A→ A) to R→ (but the reader should be told that
Meyer has shown that RMO→, is not the implicational fragment of RM,
cf. [Anderson and Belnap, 1975, Section 8.15]).7

Another consideration pointing to the naturalness of R→ is its connection
to the λI-calculus. A formula is a theorem of R→ if and only if it is the
type of a closed term of the λI-calculus as defined by Church. A λI term is
a λ term in which every lambda abstraction binds at least one free variable.
So, λx.λy.xy has type A →

(

(A → B) → B
)

, and so, is a theorem of R→,
while λx.λy.x, has type A → (B → A), which is an intuitionistic theorem,
but not an R→ theorem. This is reflected in the λ term, in which the λy
does not bind a free variable.

We now briefly discuss what happens to deduction theorems when the

6Sequences are not quite the best mathematical structures to represent this grouping
since it is clear that the order of hypotheses makes no difference (at least in the case of
R). Meyer and McRobbie [1979] have investigated ‘firesets’ (finitely repeatable sets) as
the most appropriate abstraction.

7Arnon Avron has defended this system, RMO→, as a natural way to charac-
terise relevant implication [Avron, 1986, Avron, 1990a, Avron, 1990b, Avron, 1990c,
Avron, 1992]. In Avron’s system, conjunction and disjunction are intensional connec-
tives, defined in terms of the implication and negation of RMO→. As a result, they do
not have all of the distributive lattice properties of traditional relevance logics.
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pure implication systems R→ and E→ are extended to include other con-
nectives, especially ∧. R will be the paradigm, its situation extending
straight-forwardly to E. The problem is that the full system R seems not
to be formulable with modus ponens as the sole rule; there is also need for
adjunction (A, B ` A ∧ B) (cf. Section 1.3).

Thus when we think of proving a version of the Relevant Deduction Theo-
rem for the full system R, it would seem that we are forced to think through
once more the issue of when a hypothesis is used, this time with relation to
adjunction. It might be thought that the thing to do would be to pass the
flag ] along over an application of adjunction so that A∧B ends up flagged
if either of the premises A or B was flagged, in obvious analogy with the
decision concerning modus ponens.

Unfortunately, that decision leads to disaster. For then the deduction
A, B ` A ∧ B would be a relevant one (both A and B would be ‘used’),
and two applications of ‘The Deduction Theorem’ would lead to the thesis
A→ (B → A ∧ B), the undesirability of which has already been remarked.

A more appropriate decision is to count hypotheses as used in obtaining
A∧B just when they were used to obtain both premises. This corresponds to
the axiom of Conjunction Introduction (C → A)∧(C → B)→ (C → A∧B),
which thus handles the case in the inductive proof of the deduction theorem
when the adjunction is applied. This decision may seem ad hoc (perhaps
‘use’ simpliciter is not quite the right concept), but it is the only decision to
be made unless one wants to say that the hypothesis A can (in the presence
of the hypothesis B) be ‘used’ to obtain A∧B and hence B (passing on the
flag from A this way is something like laundering dirty money).

This is the decision that was made by Anderson and Belnap in the con-
text of natural deduction systems (see next section), and it was applied by
Kron [1973, 1976] in proving appropriate deduction theorems for R, E (and
T). It should be said that the appropriate Deduction Theorem requires si-
multaneous flagging of the hypothesis (distinct flags being applied to each
formula occurrence, say using subscripts in the manner of the ‘practical
suggestion’ after our definition of relevant deduction for R→), with the re-
quirement that all of the subscripts are passed on to the conclusion. So the
Deduction Theorem applies only to fully relevant deductions, where every
premise is used (note that no such restriction was placed on the Relevant
Deduction Theorem for R→).

An alternative stated in Meyer and McRobbie [1979] would be to adjust
the definition of deduction, modifying clause (2) so as to allow as a step in
a deduction any theorem (not just axiom) of R, and to restrict clause (3) so
that the only rule allowed in moving to later steps is modus ponens.8 This

8Of course this requires we give an independent characterisation of proof (and theo-
rem), since we can no longer define a proof as a deduction from zero premisses. We thus
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is in effect to restrict adjunction to theorems, and reminds one of similar
restrictions in the context of deduction theorems of similarly restricting the
rules of necessitation and universal generalisation. It has the virtue that
the Relevant Deduction Theorem and its proof are the same as for R→.
(Incidentally, Meyer’s and Kron’s sense of deduction coincide when all of
A1, . . . , An are used in deducing B; this is obvious in one direction, and less
than obvious in the other.)

There are yet two other versions of the deduction theorem that merit
discussion in the context of relevance logic (relevance logic, as Meyer often
points out, allows for many distinctions).

First in Belnap [1960b] and Anderson and Belnap [1975], there is a
theorem (stated for E, but we will state it for our paradigm R) called
The Entailment Theorem, which says that A1, . . . , An ‘entails’ B iff `R
(A1 ∧ . . . ∧ An) → B. A formula B is defined in effect to be entailed by

hypothesis A1, . . . , An just in case there is a deduction of B using their con-
junction A1 ∧ . . .∧An. Adjunction is allowed, but subject to the restriction
that the conjunctive hypothesis was used in obtaining both premises. The
Entailment Theorem is clearly implied by Kron’s version of the Deduction
Theorem.

The last deduction theorem for R we wish to discuss is the

Enthymematic Deduction Theorem (Meyer, Dunn and Leblanc [1974]).
If A1, . . . , An, A `R B, then A1, . . . , An `R A ∧ t→ B.

Here ordinary deducibility is all that is at issue (no insistence on the
hypotheses being used). It can either be proved by induction, or cranked
out of one of the more relevant versions of the deduction theorem. Thus it
falls out of the Entailment Theorem that

`R X ∧ A ∧ T → B,

where X is the conjunction of A1, . . . , An, and T is the conjunction of all
the axioms of R used in the deduction of B. But since `R t→ T , we have
`R X ∧ A ∧ t→ B.

However, the following R theorem holds:

`R (X ∧ A ∧ t→ B)→ (X ∧ t→ (A ∧ t→ B)).

So `R X ∧ t→ (A ∧ t→ B), which leads (using `R t) to X `R A ∧ t→ B,
which dissolving the conjunction gives the desired

A1, . . . , An `R A ∧ t→ B.

define a proof as a sequence of formulas, each of which is either an axiom or follows from
preceding items by either modus ponens or adjunction (!).
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In view of the importance of the notion, let us symbolise A ∧ t → B
as A →t B. This functions as a kind of ‘enthymematic implication’ (A
and some truth really implies B) and there will be more about Anderson,
Belnap and Meyer’s investigations of this concept in Section 1.7. Let us
simply note now that in the context of deduction theorems, it functions like
intuitionistic implication, and allows us in R→ to have two different kinds
of implication, each well motivated in its relation to the two different kinds
of deducibility (ordinary and relevant).9 For a more extensive discussion
of deduction theorems in relevance logics and related systems, more recent
papers by Avron [1991] and Brady [1994] should be consulted.

1.5 Natural Deduction Formulations

We shall be very brief about these since natural deduction methods are
amply discussed by Anderson and Belnap [1975], where such methods in fact
are used s a major motivation for relevance logic. Here we shall concentrate
on a natural deduction system NR for R.

The main idea of natural deduction (cf. Chapters [[were I.1 and I.2]] of the
Handbook) of course is to allow the making of temporary hypotheses, with
some device usually being provided to facilitate the book-keeping concerning
the use of hypotheses (and when their use is ‘discharged’). Several textbooks
(for example, [Suppes, 1957] and [Lemmon, 1965])10 have used the device
of in effect subscripting each hypothesis made with a distinct numeral, and
then passing this numeral along with each application of a rule, thus keeping
track of which hypothesis are used. When a hypothesis is discharged, the
subscript is dropped. A line obtained with no subscripts is a ‘theorem’ since
it depends on no hypotheses.

Let us then let α, β, etc. range over classes of numerals. The rules for →
are then naturally:

A→ Bα

Aβ

Bα∪β

[→E]

A{k}

...
Bα

A→ Bα−{k} (provided k ∈ α)

[→I ]

Two fussy, really incidental remarks must be made. First, in the rule →E
it is to be understood that the premises need not occur in the order listed,
nor need they be adjacent to each other or to the conclusion. Otherwise we
would need a rule of ‘Repetition’, which allows the repeating of a formula
with its subscripts as a later line. (Repetition is trivially derivable given

9In E enthymematic implication is like S4 strict implication. See [Meyer, 1970a].
10The idea actually originates with [Feys and Ladrière, 1955].
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our ‘non-adjacent’ understanding of→E—in order to repeat Aα, just prove
A → A and apply →E.) Second, it is understood that we have what one
might call a rule of ‘Hypothesis Introduction’: anytime one likes one can
write a formula as a line with a new subscript (perhaps most conveniently,
the line number).

Now a non-fussy remark must be made, which is really the heart of the
whole matter. In the rule for →I , a proviso has been attached which has
the effect of requiring that the hypothesis A was actually used in obtaining
B. This is precisely what makes the implication relevant (one gets the
intuitionistic implication system H→ if one drops this requirement). The
reader should find it instructive to attempt a proof of Positive Paradox
(A → (B → A)) and see how it breaks down for NR→ (but succeeds in
NH→. The reader should also construct proofs in NR→ of all the axioms
in one of the Hilbert-style formulations of R→ from Section 1.3.

Then the equivalence of R→ in its Hilbert-style and natural deduction
formulations is more or less self-evident given the Relevant Deduction The-
orem (which shows that the rule→ I can be ‘simulated’ in the Hilbert-style
system, the only point at issue).

Indeed it is interesting to note that Lemmon [1965], who seems to have
the same proviso on →I that we have for NR→ (his actual language is
a bit informal), does not prove Positive Paradox until his second chapter
adding conjunction (and disjunction) to the implication-negation system
he developed in his first chapter. His proof of Positive Paradox depends
finally upon an ‘irrelevant’ ∧I rule. The following is perhaps the most
straightforward proof in his system (differing from the proof he actually
gives):

(1) A1 Hyp
(2) B2 Hyp
(3) A ∧ B1,2 1, 2,∧I?
(4) A1,2 3,∧E
(5) B → A1 2, 4,→ I
(6) A→ (B → A) 1, 5,→ I .

We think that the manoeuvre used in getting B’s 2 to show up attached to
A in line (4) should be compared to laundering dirty money by running it
through an apparently legitimate business. The correct ‘relevant’ versions
of the conjunction rules are instead

Aα

Bα

A ∧ Bα

[∧I ]
A ∧ Bα

Aα

A ∧ Bα

Bα
[∧E]

What about disjunction? In R (also E, etc.) one has de Morgan’s Laws and
Double Negation, so one can simply define A∨B = ¬(¬A∧¬B). One might
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think that settling down in separate int-elim rules for ∨ would then only be a
matter of convenience. Indeed, one can find in [Anderson and Belnap, 1975]
in effect the following rules:

Aα

A ∨ Bα

Bα

A ∨ Bα
[∨I ]

A ∨ Bα

...
Ak

...
Cβ∪{k}

Bh

...
Cβ∪{h}

Cα∪β

[∨E]

But (as Anderson and Belnap point out) these rules are insufficient. ¿From
them one cannot derive the following

A ∧ (B ∨ C)α
Distribution.

(A ∧ B) ∨ Cα

And so it must be taken as an additional rule (even if disjunction is defined
from conjunction and negation).

This is clearly an unsatisfying, if not unsatisfactory, state of affairs. The
customary motivation behind int-elim rules is that they show how a connec-
tive may be introduced into and eliminated from argumentative discourse
(in which it has no essential occurrence), and thereby give the connective’s
role or meaning. In this context the Distribution rule looks very much to
be regretted.

One remedy is to modify the natural deduction system by allowing hy-
potheses to be introduced in two different ways, ‘relevantly’ and ‘irrele-
vantly’. The first way is already familiar to us and is what requires a
subscript to keep track of the relevance of the hypothesis. It requires that
the hypotheses introduced this way will all be used to get the conclusion.
The second way involves only the weaker promise that at least some of the
hypotheses so introduced will be used. This suggestion can be formalised by
allowing several hypotheses to be listed on a line, but with a single relevance
numeral attached to them as a bunch. Thus, schematically, an argument of
the form

(1) A, B1

(2) C, D2

...
(k) E1,2
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should be interpreted as establishing

A ∧ B → (C ∧D → E).

Now the natural deduction rules must be stated in a more general form
allowing for the fact that more than one formula can occur on a line. Key
among these would be the new rule:

Γ, A ∨Bα

...
Γ, Ak

...
∆β∪{k}

Γ, Bl

...
∆β∪{l}

∆α∪β

[∨E′]

It is fairly obvious that this rule has Distribution built into it. Of course,
other rules must be suitably modified. It is easiest to interpret the formulas
on a line as grouped into a set so as not to have to worry about ‘structural
rules’ corresponding to the commutation and idempotence of conjunction.

The rules →I,→E,∨I,∨E,∧I , and ∧E can all be left as they were (or
except for →I and →E, trivially generalised so as to allow for the fact that
the premises might be occurring on a line with several other ‘irrelevant’
premises), but we do need one new structural rule:

Γα

∆α

Γ, ∆α

[Comma I ]

Once we have this it is natural to take the conjunction rules in ‘Ketonen
form’:

Γ, A, Bα
[∧I ′]

Γ, A ∧ Bα

Γ, A ∧Bα
[∧E′]

Γ, A, Bα

with the rule
Γ, ∆α

[Comma E]
Γα
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It is merely a tedious exercise for the reader to show that this new system
N ′R is equivalent to NR. Incidentally, N ′R was suggested by reflection
upon the Gentzen System LR+ of Section 4.9.

Before leaving the question of natural deduction for R, we would like to
mention one or two technical aspects. First, the system of Prawitz [1965]
differs from R in that it lacks the rule of Distribution. This is perhaps
compensated for by the fact that Prawitz can prove a normal form theorem
for proofs in his system. A different system yet is that of [Pottinger, 1979],
based on the idea that the correct ∧I rule is

Aα

Bβ

A ∧ Bα∪β

He too gets a normal form theorem. We conjecture that some appropriate
normal form theorem is provable for the system N ′R+ on the well-known
analogy between cut-elimination and normalisation and the fact that cut-
elimination has been proven for LR+ (cf. Section 4.9). Negation though
would seem to bring extra problems, as it does when one is trying to add it
to LR+.

One last set of remarks, and we close the discussion of natural deduction.
The system NR above differs from the natural deduction system for R

of Anderson and Belnap [1975]. Their system is a so-called ‘Fitch-style’
formalism, and so named FR. The reader is presumed to know that in
this formalism when a hypothesis is introduced it is thought of as starting
a subproof, and a line is drawn along the left of the subproof (or a box is
drawn around the subproof, or some such thing) to demarcate the scope
of the hypothesis. If one is doing a natural deduction system for classical
or intuitionistic logic, subproofs or dependency numerals can either one be
used to do essentially the same job of keeping track the use of hypotheses
(though dependency numerals keep more careful track, and that is why they
are so useful for relevant implication).

Mathematically, a Fitch-style proof is a nested structure, representing
the fact that subproofs can contain further subproofs, etc. But once one
has dependency numerals, this extra structure, at least for R, seems otiose,
and so we have dispensed with it. The story for E is more complex, since
on the Anderson and Belnap approach E differs from R only in what is
allowed to be ‘reiterable’ into subproof. Since implication in E is necessary
as well as relevant, the story is that in deducing B from A in order to show
A → B, one should only be allowed to use items that have been assumed
to be necessarily true, and that these can be taken to be formulas of the
form C → D. So only formulas of this form can be reiterated for use in the
subproof from A to B. Working out how best to articulate this idea using



RELEVANCE LOGIC 27

only dependency numerals (no lines, boxes, etc.) is a little messy. This
concern to keep track of how premises are used in a proof by way of labels
has been taken up in a general way by recent work on Labelled Deductive
Systems [D’Agostino and Gabbay, 1994, Gabbay, 1997].

We would be remiss not to mention other formulations of natural deduc-
tion systems for relevance logics and their cousins. A different generalisa-
tion of Hunter’s natural deduction systems (which follows more closely the
Gentzen systems for positive logics — see Section 4.9) is in [Read, 1988,
Slaney, 1990].11

1.6 Basic Formal Properties of Relevance Logic

This section contains a few relatively simple properties of relevance logics,
proofs for which can be found in [Anderson and Belnap, 1975]. With one
exception (the ‘Ackermann Properties’—see below), these properties all hold
for both the system R and E, and indeed for most of the relevance logics
defined in Section 1.3. For simplicity, we shall state these properties for
sentential logics, but appropriate versions hold as well for their first-order
counterparts.

First we examine the Replacement Theorem For both R and E,

` (A↔ B) ∧ t→ (χ(A) ↔ χ(B)).

Here χ(A) is any formula with perhaps some occurrences of A and χ(B) is
the result of perhaps replacing one or more of those occurrences by B. The
proof is by a straightforward induction on the complexity of χ(A), and one
clear role of the conjoined t is to imply χ → χ when χ(= χ(A)) contains
no occurrences of A, or does but none of them is replaced by B. It might
be thought that if these degenerate cases are ruled out by requiring that
some actual occurrence of A be replaced by B, then the need for t would
vanish. This is indeed true for the implication-negation (and of course the
pure implication) fragments of R and E, but not for the whole systems in
virtue of the non-theoremhood of what V. Routley has dubbed ‘Factor’:

1. (A→ B)→ (A ∧ χ→ B ∧ χ).

Here the closest one can come is to

2. (A→ B) ∧ t→ (A ∧ χ→ B ∧ χ),

11The reader should be informed that still other natural deduction formalisms for R

of various virtues can be found in [Meyer, 1979b] and [Meyer and McRobbie, 1979].
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the conjoined g giving the force of having χ → χ in the antecedent, and
the theorem (A → B) ∧ (χ → χ) → (A ∧ χ → B ∧ χ) getting us home.
(2) of course is just a special case of the Replacement Theorem. Of more
‘relevant’ interest is the

Variable Sharing Property. If A→ B is a theorem of R (or E), then
there exists some sentential variable p that occurs in both A and B. This
is understood by Anderson and Belnap as requiring some commonality of
meaning between antecedent and consequent of logically true relevant impli-
cations. The proof uses an ingenious logical matrix, having eight values, for
which see [Anderson and Belnap, 1975, Section 22.1.3]. There are discussed
both the original proof of Belnap and an independent proof of Dončenko,
and strengthening by Maksimova. Of modal interest is the

Ackermann Property. No formula of the form A → (B → C) (A
containing no →) is a theorem of E. The proof again uses an ingenious
matrix (due to Ackermann) and has been strengthened by Maksimova (see
[Anderson and Belnap, 1975, Section 22.1.1 and Section 22.1.2]) (contributed
by J. A. Coffa) on ‘fallacies of modality’.

1.7 First-degree Entailments

A zero degree formula contains only the connectives ∧,∨, and ¬, and can
be regarded as either a formula of relevance logic or of classical logic, as one
pleases. A first degree implication is a formula of the form A → B, where
both A and B are zero-degree formulas: Thus first degree implications can
be regarded as either a restricted fragment of some relevance logic (say R

or E) or else as expressing some metalinguistic logical relation between two
classical formulas A and B. This last is worth mention, since then even a
classical logician of Quinean tendencies (who remains unconverted by the
considerations of Section 1.2 in favour of nested implications) can still take
first degree logical relevant implications to be legitimate.

A natural question is what is the relationship between the provable first-
degree implications of R and those of E. It is well-known that the corre-
sponding relationship between classical logic and some normal modal logic,
say S4 (with the → being the material conditional and strict implication,
respectively), is that they are identical in their first degree fragments. The
same holds of R and E (cf. [Anderson and Belnap, 1975, Section 2.42]).

This fragment, which we shall call Rfde (Anderson and Belnap [1975] call
it Efde) is stable (cf. [Anderson and Belnap, 1975, Section 7.1]) in the sense
that it can be described from a variety of perspectives. For some semantical
perspectives see Sections 3.3 and 3.4. We now consider some syntactical
perspectives of more than mere ‘orthographic’ significance.
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The perhaps least interesting of these perspectives is a ‘Hilbert-style’
presentation of Rfde (cf. [Anderson and Belnap, 1975, Section 15.2]). It
has the following axioms:

3. A ∧ B → A, A ∧ B → B Conjunction Elimination

4. A→ A ∨ B, B → A ∨ B Disjunction Introduction

5. A ∧ (B ∨ C)→ (A ∧ B) ∨ C Distribution

6. A→ ¬¬A,¬¬A→ A Double Negation

It also has gobs of rules:

7. A→ B, B → C ` A→ C Transitivity

8. A→ B, A→ C ` A→ B ∧ C Conjunction Introduction

9. A→ C, B → C ` A ∨ B → C Disjunction Introduction

10. A→ B ` ¬B → ¬A Contraposition.

More interesting is the characterisation of Anderson and Belnap [1962b,
1975] of Rfde as ‘tautological entailments’. The root idea is to consider first
the ‘primitive entailments’.

11. A1 ∧ . . . ∧ Am → B1 ∨ . . . ∨ Bn,

where each Ai and Bj is either a sentential variable or its negate (an ‘atom’)
and make it a necessary and sufficient criterion for such a primitive entail-
ment to hold that same Ai actually be identically the same formula as some
Bj (that the entailment be ‘tautological’ in the sense that Ai is repeated).
This rules out both

12. p ∧ ¬p→ q,

13. p→ q ∨ ¬q,

where there is no variable sharing, but also such things as

14. p ∧ ¬p ∧ q → ¬q,

where there is (of course all of (12)–(14) are valid classically, where a prim-
itive entailment may hold because of atom sharing or because either the
antecedent is contradictory or else the consequent is a logical truth).

Now the question remains as to which non-primitive entailments to count
as valid. Both relevance logic and classical logic agree on the standard
count as valid. Both relevance logic and classical logic agree on the stan-
dard ‘normal form equivalences’: commutation, association, idempotence,



30 J. MICHAEL DUNN AND GREG RESTALL

distribution, double negation, and de Morgan’s laws. So the idea is, given
a candidate entailment A→ B, by way of these equivalences, A can be put
into disjunctive normal form and B may be put into conjunctive normal
form, reducing the problem to the question of whether the following is a
valid entailment:

15. A1 ∨ · · · ∨Ak → B1 ∧ · · · ∧ Bh.

But simple considerations (on which both classical and relevance logic
agree) having to do with conjunction and disjunction introduction and elim-
ination show that (15) holds if for each disjunct Ai and conjunct Bj , the
primitive entailment Ai → Bj is valid. For relevance logic this means that
there must be atom sharing between the conjunction Ai and the disjunction
Bj .

This criterion obviously counts the Disjunctive Syllogism

16. ¬p ∧ (p ∨ q)→ q,

as an invalid entailment, for using distribution to put its antecedent into
disjunctive normal form, (16) is reduced to

16′ (¬p ∧ p) ∨ (¬p ∧ q)→ q.

But by the criterion of tautological entailments,

17. ¬p ∧ p→ q,

which is required for the validity of (16′), is rejected.
Another pleasant characterisation of Rfde is contained in [Dunn, 1976a]

using a simplification of Jeffrey’s ‘coupled trees’ method for testing clas-
sically valid entailments. The idea is that to test A → B one works out
a truth-tree for A and a truth tree for B. One then requires that every
branch in the tree for A ‘covers’ some branch in the tree for B in the sense
that every atom in the covered branch occurs in the covering branch. This
has the intuitive sense that every way in which A might be true is also a
way in which B would be true, whether these ways are logically possible
or not, since ‘closed’ branches (those containing contradictions) are not ex-
empt as they are in Jeffrey’s method for classical logic. This coupled-trees
approach is ultimately related to the Anderson–Belnap tautological entail-
ment method, as is also the method of [Dunn, 1980b] which explicates an
earlier attempt of Levy to characterise entailment (cf. also [Clark, 1980]).

1.8 Relations to Familiar Logics

There is a sense in which relevance logic contains classical logic.
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ZDF Theorem (Anderson and Belnap [1959a]). The zero-degree formulas
(those containing only the connectives ∧,∨,¬) provable in R (or E) are
precisely the theorems of classical logic.

The proof went by considering a ‘cut-free’ formulation of classical logic
whose axioms are essentially just excluded middles (which are theorems of
R / E) and whose rules are all provable first-degree relevant entailments (cf.
Section 2.7). This result extends to a first-order version [Anderson and Belnap Jr., 1959b].
(The admissibility of γ (cf. Section 2) provides another route to the proof
to the ZDF Theorem.)

There is however another sense in which relevance logic does not contain
classical logic:

Fact (Anderson and Belnap [1975, Section 25.1]). R (and E) lack as a
derivable rule Disjunctive Syllogism:

¬A, A ∨ B ` B.

This is to say there is no deduction (in the standard sense of Section 1.4)
of B from ¬A and A ∨ B as premises. This is of course the most notori-
ous feature of relevance logic, and the whole of Section 2 is devoted to its
discussion.

Looking now in another direction, Anderson and Belnap [1961] began
the investigation of how to translate intuitionistic and strict implication
into R and E, respectively, as ‘enthymematic’ implication. Anderson and
Belnap’s work presupposed the addition of propositional quantifies to, let us
say R, with the subsequent definition of ‘A intuitionistically implies B’ (in
symbols A ⊃ B) as ∃p(p∧ (A∧p → B)). This has the sense that A together
with some truth relevantly implies B, and does seem to be at least in the
neighbourhood of capturing Heyting’s idea that A ⊃ B should hold if there
exists some ‘construction’ (the p) which adjoined to A ‘yields’ (relevant
implication) B. Meyer in a series of papers [1970a, 1973] has extended
and simplified these ideas, using the propositional constant t in place of
propositional quantification, defining A ⊃ B as A∧t→ B. If a propositional
constant F for the intuitionistic absurdity is introduced, then intuitionistic
negation can be defined in the style of Johansson as ¬A =df A ⊃ F . As
Meyer has discovered one must be careful what axiom one chooses to govern
F . F → A or even F ⊃ A is too strong. In intuitionistic logic, the absurd
proposition intuitionistically implies only the intuitionistic formulas, so the
correct axiom is F ⊃ A∗, where A∗ is a translation into R of an intuitionistic
formula. Similar translations carry S4 into E and classical logic into R.
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2 THE ADMISSIBILITY OF γ

2.1 Ackermann’s Rule γ

The first mentioned problem for relevance logics in Anderson’s [1963] sem-
inal ‘open problems’ paper is the question of ‘the admissibility of γ’. To
demystify things a bit it should be said that γ is simply modus ponens for
the material conditions (¬A ∨ B):

1.
A

¬A ∨ B
.

B

It was the third listed rule of Ackermann’s [1956] system of strenge Imp-
likation (α, β, γ; 1st, 2nd, 3rd). This was the system Anderson and Belnap
‘tinkered with’ to produce E (Ackermann also had a rule δ which they
replaced with an axiom).

The major part of Anderson and Belnap’s ‘tinkering’ was the extremely
bold step of simply deleting γ as a primitive rule, on the well- motivated
ground that the corresponding object language formula

2. A ∧ (¬A ∨ B)→ B

is not a theorem of E.
It is easy to see that (2) could not be a theorem of either E or R, since

it is easy to prove in those systems

3. A ∧ ¬A→ A ∧ (¬A ∨B)

(largely because ¬A → ¬A ∨ B is an instance of an axiom), and of course
(3) and (2) yield by transitivity the ‘irrelevancy’

4. A ∧ ¬A→ B.

The inference (1) is obviously related to the Stoic principle of the dis-
junctive syllogism:

5.
¬A

A ∨B
.

B

Indeed, given the law of double negation (and replacement) they are equiv-
alent, and double negation is never at issue in the orthodox logics. Thus E

and R reject

6. ¬A ∧ (A ∨ B)→ B
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as well as (2).

This rejection is typically the hardest thing to swallow concerning rele-
vance logics. One starts off with some pleasant motivations about relevant
implication and using subscripts to keep track of whether a hypothesis has
actually been used (as in Section 1.5), and then one comes to the point
where one says ‘and of course we have to give up the disjunctive syllogism’
and one loses one’s audience. Please do not stop reading! We shall try to
make this rejection of disjunctive syllogism as palatable as we can.

(See [Belnap and Dunn, 1981, Restall, 1999] for related discussions, and
also discussion of [Anderson and Belnap, 1975, Section 16.1]); see Burgess
[1981] for an opposing point of view.

2.2 The Lewis ‘Proof’

One reason that disjunctive syllogism has figured so prominently int he
controversy surrounding relevance logic is because of the use it was put to by
C. I. Lewis [Lewis and Langford, 1932] in his so-called ‘independent proof’:
that a contradiction entails any sentence whatsoever (taken by Anderson
and Belnap as a clear breakdown of relevance). Lewis’s proof (with our
notations of justification) goes as follows:

(1) p ∧ ¬p
(2) p 2, ∧-Elimination
(3) ¬p 1, ∧-Elimination
(4) p ∨ q 2, ∨-Introduction
(5) q 3, 4 disjunctive syllogism

Indeed one can usefully classify alternative approaches to relevant implica-
tion according to how they reject the Lewis proof. Thus, e.g. Nelson rejects
∧-Elimination and ∨-Introduction, as does McCall’s connexive logic. Parry,
on the other hand, rejects only ∨-Introduction. Geach, and more recently,
Tennant [1994],accept each step, but says that ‘entailment’ (relevant impli-
cation) is not transitive. It is the genius of the Anderson–Belnap approach
to see disjunctive syllogism as the culprit and the sole culprit.12

Lewis concludes his proof by saying, “If by (3), p is false; and, by (4), at
least one of the two, p and q is true, then q must be true”. As is told in
[Dunn, 1976a], Dunn was saying such a thing to an elementary logic class

12Although this point is complicated, especially in some of their earlier writings (see,
e.g. [Anderson and Belnap Jr., 1962a]) by the claim that there is a kind of fallacy of
ambiguity in the Lewis proof. the idea is that if ∨ is read in the ‘intensional’ way (as
¬A → B), then the move from (3) and (4) to (5) is ok (it’s just modus ponens for
the relevant conditional), but the move from (2) to (4) is not (now being a paradox of
implication rather than ordinary disjunction introduction).
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one time (with no propaganda about relevance logic) when a student yelled
out, “But p was the true one—look again at your assumption”.

That student had a point. Disjunctive syllogism is not obviously ap-
propriate to a situation of inconsistent information—where p is assumed
(given, believed, etc.) to be both true and false. This point has been
argued strenuously in, e.g. [Routley and Routley, 1972, Dunn, 1976a] and
Belnap [1977b, 1977a]. The first two of these develop a semantical analysis
that lets both p and ¬p receive the value ‘true’ (as is appropriate to model
the situation where p ∧ ¬p has been assumed true), and there will be more
about these ideas in Section 3.4. The last is particularly interesting since
it extends the ideas of Dunn [1976a] so as to provide a model of how a
computer might be programmed as to make inferences from its (possibly in-
consistent) database. One would not want trivially inconsistent information
about the colour of your car that somehow got fed into the fbi’s computer
(perhaps by pooled databases) to lead to the conclusion that you are Public
Enemy Number One.

We would like to add yet one more criticism of disjunctive syllogism,
which is sympathetic to many of the earlier criticisms.

We need as background to this criticism the natural deduction framework
of [Gentzen, 1934] as interpreted by [Prawitz, 1965] and others. the idea (as
in Section 1.5) is that each connective should come with rules that introduce
it into discourse(as principal connective of a conclusion) and rules that elim-
inate it from discourse (as principal connective of a premise). further the
‘normalisation ideas of Prawitz, though of great technical interest and com-
plication, boil down philosophically to the observation that an elimination
rule should not be able to get out of a connective more than an introduction
rule can put into the connective. This is just the old conservation Principle,
‘You can’t get something for nothing’, applied to logic.

The paradigm here is the introduction and elimination rules for conjunc-
tion. The introduction rule, from A, B to infer A ∧ B packs into A ∧ B
precisely what the elimination rule, from A ∧ B to infer either A or B
(separately), then unpacks.

Now the standard introduction rule for disjunction is this: from either A
or B separately, infer A∨B. We have no quarrel with an introduction rule.
an introduction rule gives meaning to a connective and the only thing to
watch out for is that the elimination rule does not take more meaning from
a connective than the introduction rule gives to it (of course, one can also
worry about the usefulness and/or naturalness of the introduction rules for
a given connective, but that (pace [Parry, 1933]) seems not an issue in the
case of disjunction.

In the Lewis ‘proof’ above, it is then clear that the disjunctive syllogism
is the only conceivably problematic rule of inference. Some logicians (as
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indicated above) have queried the inferences from (1) to (2) and (4), and
from (2) to (3), but from the point of view that we are now urging, this is
simply wrongheaded. Like Humpty Dumpty, we use words to mean what
we say. So there is nothing wrong with introducing connectives ∧ and ∨
via the standard introduction rules. Other people may want connectives for
which they provide different introduction (and matching elimination) rules,
but that is their business. We want the standard (‘extensional’) senses of
∧ and ∨.

Now the d.s. is a very odd rule when viewed as an elimination rule for ∨
parasitical upon the standard introduction rules (whereas the constructive
dilemma, the usual ∨-Elimination rule is not at all odd). Remember that
the introduction rules provide the actual inferences that are to be stored in
the connective’s battery as potential inferences, perhaps later to be released
again as actual inferences by elimination rules. The problem with the dis-
junctive syllogism is that it can release inferences from ∨ that it just does
not contain. (In another context, [Belnap, 1962] observed that Gentzen-
style rules for a given connective should be ‘conservative’, i.e. they should
not create new inferences not involving the given connective.)

Thus the problem with the disjunctive syllogism is just that p ∨ q might
have been introduced into discourse (as it is in the Lewis ‘proof’) by ∨-
Introduction from p. So then to go on to infer q from p ∨ q and ¬p by the
disjunctive syllogism would be legitimate only if the inference from p,¬p to
q were legitimate. But this is precisely the point at issue. At the very least
the Lewis argument is circular (and not independent).13

2.3 The Admissibility of γ

Certain rules of inference are sometimes ‘admissible’ in formal logics in
the sense that whenever the premises are theorems, so is the conclusion a
theorem, although these rules are nonetheless invalid in the sense that the
premises may be true while the conclusion is not. Familiar examples are the
rule of substitution in propositional logic, generalisation in predicate logic,
and necessitation in modal logic. Using this last as paradigm, although the
inference from A to �A (necessarily A) is clearly invalid and would indeed
vitiate the entire point of modal logic, still for the (‘normal’) modal logics,
whenever A is a theorem so is �A (and indeed their motivation would be
somehow askew if this did not hold).

Anderson [1963] speculated that something similar was afoot with respect
to the rule γ and relevance logic. Anderson hoped for a ‘sort of lucky
accident’, but the admissibility of γ seems more crucial to the motivation
of E and R than that. Kripke [1965] gives a list of four conditions that a

13This is a new argument on the side of Anderson and Belnap [1962b, pp. 19, 21].
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propositional calculus must meet in order to have a normal characteristic
matrix, one of which is the admissibility of γ.14 ‘Normal’ is meant in the
sense of Church, and boils down to being able to divide up its elements into
the ‘true’ and the ‘false’ with the operations of conjunction, disjunction,
and negation treating truth and falsity in the style of the truth tables (a
conjunction is true if both components are true, etc.). If one thinks of
E (as Anderson surely did) as the logic of propositions with the logical
operations, and surely this should divide itself up into the true and the false
propositions.15

2.4 Proof(s) of the Admissibility of γ

There are by now at least four variant proofs of the admissibility of γ for E

and R. The first three proofs (in chronological order: [Meyer and Dunn, 1969],
[Routley and Meyer, 1973] and [Meyer, 1976a]) are all basically due to Meyer
(with some help from Dunn on the first, and some help from Routley on the
second), and all depend on the same first lemma. The last proof was ob-
tained by Kripke in 1978 and is unpublished (see [Dunn and Meyer, 1989]).

All of the Meyer proofs are what Smullyan [1968] would call ‘synthetic’
in style, and are inspired by Henkin-style methods. The Kripke proof is
‘analytic’ in style, and is inspired by Kanger–Beth–Hintikka tableau-style
methods. In actual detail, Kripke’s argument is modelled on completeness
proofs for tableau systems, wherein a partial valuation for some open branch
is extended to a total valuation. As Kripke has stressed, this avoids the
apparatus of inconsistent theories that has hitherto been distinctive of the
various proofs of γ’s admissibility.

We shall sketch the third of Meyer’s proofs, leaving a brief description
of the first and second for Section 3.11. Since they depend on semantical
notions introduced there.

The strategy of all the Meyer proofs can be divided into two segments:
The Way Up and The Way Down. Of course we start with the hypotheses
that ` A and ` ¬A ∨ B, yet assume not ` B for the sake of reduction. We
shall be more precise in a moment, but The Way Up involves constructing
in a Henkin-like manner a maximal theory T (containing all the logical the-
orems) with B 6∈ T . The problem though is that T may be inconsistent in
the sense of having both C,¬C ∈ T for some formula C. (Of course this
could not happen in classical logic, for by virtue of the paradox of implica-

14The other conditions are that it be consistent, that it contain all classical tautologies,
and that it be ‘complete in the sense of Halldén’. R and E can be rather easily seen to
have the first two properties (see Section 1.8 for the bit about classical tautologies), but
the last is rather more difficult (see Section 3.11).

15This would be less obvious to Routley and Meyer [1976], and Priest [1987, 1995] who
raise the ‘consistency of the world’ as a real problem.
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tion C ∧ ¬C → B, B would be a member of T contrary to construction.)
The Way Down fixes this by finding in effect some subtheory T ′ ⊆ T that
is both complete and consistent, and indeed is a ‘truth set’ in the sense of
[Smullyan, 1968] (Meyer has labelled it the Converse Lindenbaum Lemma).
Thus for all formulas X and Y , ¬X ∈ T ′ iff X 6∈ T ′, and X ∨ Y ∈ T ′ iff at
least one of X and Y is in T ′. So since ¬A ∨ B ∈ T ′, at least one of ¬A
and B is in T ′. But since A ∈ T ′, then ¬A is not in T ′. So B must be in
T ′.16 But T ′ is a subset of T , which was constructed to keep B out. So B
cannot be in T ′, and so by reductio we obtain B as desired.

Enough of strategy! We now collect together a few notions needed for a
more precise statement of The Way Up Lemma. Incidentally, we shall from
this point on in our discussion of γ consider only the case of R. Results for
E (and a variety of neighbours) hold analogously.

By an ‘R-theory’ we mean a set of formulas T of R closed under adjunc-
tion And logical relevant implication, i.e. such that

1. if A, B ∈ T , then A ∧B ∈ T ;

2. if `R A→ B and A ∈ T , then B ∈ T .

Note that an arbitrary R-theory may lack some or all of the theorems of
R (in classical logic and most familiar logics this would be impossible be-
cause of the paradox of strict implication which says that a logical theorem
is implied by everything). We thus need a special name for those R–theories
that contain all of the R-theorems—those are called regular.17 In this sec-
tion, since we have no use of irregular theories and shall be talking only
of R, by a theory we shall always mean a regular R theory (irregular R-
theories however play a great role in the completeness theorems of Section 3
below and there we shall have to be more careful about our distinctions).

A theory T is called prime if whenever A ∨ B ∈ T , then A ∈ T or
B ∈ T . The converse of this holds for any theory T in virtue of the R-
axioms A→ A ∨B and B → A ∨B and property (2). A theory T is called
complete if for every formula A, A ∈ T or ¬A ∈ T , and called consistent if

16The proof as given here would appear to use disjunctive syllogism in the meta-
language at just this point, but it can be restructured (indeed we so restructured the
original proofs [Meyer and Dunn, 1969]) so as to avoid at least such an explicit use of
disjunctive syllogism. The idea is to obtain by distribution (A ∈ T ′ and A 6∈ T ′) or
(B ∈ T ′ and B 6∈ T ′) from the hypothesis B 6∈ T ′. The whole question of a ‘relevant’
version of the admissibility of γ is a complicated one, and admits of various interpreta-
tions. See [Belnap and Dunn, 1981, Meyer, 1978].

17It is interesting to note for regular theories, condition (2) may be replaced with the
condition

(2′) if A ∈ T and (A → B) ∈ T , then B ∈ T , in virtue of the R-theorem A∧ (A → B) →
B.
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for no formula A do we have both A,¬A ∈ T . In virtue of the R-theorem
A ∨ ¬A, we have that all prime theories are complete. A consistent prime
theory is called normal, and it should by now be apparent that a normal
theory is a truth set in the sense of Smullyan given above.

Where Γ is a set of formulas, we write Γ `R A to mean that A is deducible
from Γ in the ‘official sense’ of there being a finite sequence B1, . . . , Bn, with
Bn = A and each Bi being either a member of Γ, or an axiom of R, or a
consequence of earlier terms by modus ponens or adjunction (in context we
shall often omit the subscript R). We write Γ `∆ A to mean that Γ∪∆ `R A,
and quite standardly we write things like Γ, A `R B in place of the more
formal Γ ∪ {A} `R B. Note that for any theory T , writing `T A in place
of φ `T A boils down to saying that A is a theorem of T (A ∈ T ). Where
∆ is a set of formulas not necessarily a theory, `∆ A can be thought of
as saying that A is deducible from the ‘axioms’ ∆. The set {A :`∆ A} is
pretty intuitively the smallest theory containing the axioms ∆, and we shall
label it as Th(∆).

We can now state and sketch a proof of the

Way Up Lemma. Suppose not `R A. Then there exists a prime theory T
such that not `T A.

Proof. Enumerate the formulas of R : X1, X2, . . .. Define a sequence of
sets of formulas by induction as follows.

T0 = set of theorems of R.

Ti+1 = Th(Ti ∪ {Xi+1}) if it is not the case that Ti, Xi+1 ` A;
Ti, otherwise.

Let T be the union of all these Tn’s. It is easy to see as is standard that T
is a theory not containing A. Also we can show that T is prime.

Thus suppose `T X ∨ Y and yet X, Y 6∈ T . Then it is easy to se that
since neither X nor Y could be added to the construction when their turn
came up without yielding A, we have both

1. X `T A,

2. Y `T A.

But by reasonably standard moves (R has distribution), we get

3. X ∨ Y `T A,

and so `T A contrary to the construction. �
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The Way Down Lemma. Let T ′ be a prime theory. Then there exists a
normal theory T ⊆ T ′.

The concept we need is that of a ‘metavaluation’ (more precisely as we
use it here a ‘quasi-metavaluation’, but we shall not bother the reader with
such detail). The concept and its use re γ may be found in [Meyer, 1976a].
(See also Meyer [1971, 1976b] for other applications.) For simplicity we
assume for a while that the only primitive connectives are ¬,∨ and → (∧
can be defined via de Morgan). A metavaluation v is a function from the
set of formulas into the truth values {0, 1}, such that

1. for a propositional variable p, v(p) = 1 iff p ∈ T ;

2. v(¬A) = 1 iff both (a) v(A) = 0 and (b) ¬A ∈ T ;

3. v(A ∨ B) = 1 iff either v(A) = 1 or v(B) = 1.

4. v(A→ B) = 1 iff both (a) v(A) = 0 or v(B) = 1, and (b) A→ B ∈ T .

One surprising aspect of these conditions is the double condition in (2)
that must be met for ¬A to be assigned the value 1. Not only must (a) A
be assigned 0 (the usual ‘extensional condition’), but also (b) ¬A must be
a theorem of T (the ‘intensional condition’). and of course there are similar
remarks about (4). The condition in (1) also relies upon G (actually to a
lesser extent than it might seem—when both p,¬p ∈ T , it would not hurt
to let v(p) = 0).

We now set T ′ = {A : v(A) = 1}. The following lemma is useful, and has
an easy proof by induction on complexity of formulas (the case when A is
a negation evaluated as 0 uses the completeness of T ).

Completeness Lemma. If v(A) = 1, then A ∈ T . If v(A) = 0, then
¬A ∈ T .

It is reasonably easy to see that T ′ is in fact a truth set. That it behaves
ok with respect to disjunction can be read right off of clause (3) in the
definition of v, so we need only look at negation where the issue is whether
T ′ is both consistent and complete. It is clear from clause (2) that T ′

is consistent, but T ′ is also complete. Thus, suppose A 6∈ T ′, then by
the Completeness Lemma ¬A ∈ T . This is the intensional condition for
v(¬A) = 1, but our supposition that A 6∈ T ′ is just the extensional condition
that v(A) = 0. Hence v(¬A) = 1, i.e. ¬A ∈ T ′ as desired.

It is also reasonably easy to check that T ′ is an R-theory. It is left to
the reader to do the easy calculation that T ′ is closed under adjunction and
R-implication, i.e. that these preserve assignments by v of the value 1. Here
we will illustrate the more interesting verification that the R-axioms all get
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assigned the value 1. We shall not actually check all of them, but rather
consider several typical ones.

First we check suffixing: (A → B) → [(B → C) → (A → C)]. Suppose
v assigns it 0. Since it is a theorem of R and a fortiori of T , then it
satisfies the intensional condition and so must fail to satisfy the extensional
condition. So v(A → B) = 1 and v((B → C) → (A → C)) = 0. By the
Completeness Lemma, then (A→ B) ∈ T , and so by modus ponens from the
very axiom in question (Suffixing) we have that (B → C)→ (A→ C) ∈ T .
So v((B → C)→ (A→ C)) satisfies the intensional condition, and so must
fail to satisfy the extensional condition since it is 0. So v(B → C) = 1
and v(A → C) = 0. By reasoning analogous to that above (one more
modus ponens) we derive that v(A → C) must finally fail to satisfy the
extensional condition, i.e. v(A) = 1 and v(C) = 0. But clearly since all of
v(A→ B) = 1, v(B → C) = 1, v(A) = 1, then by the extensional condition,
v(C) = 1, and we have a contradiction.

The reader might find it instructive in seeing how negation is handled
to verify first the intuitionistically acceptable form of the Reductio axioms
(A → ¬A) → ¬A, and then to verify its classical variant (used in some
axiomatisations of R), (¬A → A) → A. The first is easier. Also Classical
Double Negation, ¬¬A→ A is fun.

This completes the sketch of Meyer’s latest proof of the admissibility of
γ for R.

2.5 γ for First-order Relevance Logics

The first proof of the admissibility of γ for first-order R, E, etc. (which we
shall denote as RQ, etc.) was in Meyer, Dunn and Leblanc [1974], and uses
algebraic methods analogous to those used for the propositional relevance
logic in [Meyer and Dunn, 1969]. The proof we shall describe here though
will again be Meyer’s metavaluation-style proof.

The basic trick needed to handle first-order quantifiers is to produce this
time a first-order truth set. Assuming that only the universal quantifier ∀
is primitive (the existential can be defined: ∃x =df ¬∀x¬), this means we
need

(∀) ∀xA ∈ T iff A(a/x) ∈ T for all parameters (free variables) a.

This is easily accommodated by adding a clause to the definition of the
metavaluation v so that

5. v(∀xA) = 1 iff v(A(a/x)) = 1 for all parameters a.

This does not entirely fix things, for in proving the Completeness Lemma
we have now in the induction to consider the case when A is of the form
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∀xB. If v(∀xB) = 1, then (by (5)), va(B(a/x)) = 1 for all parameters a.
By inductive hypothesis, for all a, B(a/x) ∈ T . But, and here’s the rub,
this does not guarantee that ∀xB(a/x) ∈ T . We need to have constructed
on The Way Up a theory T that is ‘ω-complete’ in just the sense that this
guarantee is provided. ([Meyer et al., 1974] call such a theory ‘rich’.) Of
course it is understood by ‘theory’ we now mean a ‘regular RQ-theory’,
i.e. one containing all of the axioms of RQ and closed under its rules (see
Section 1.3). Actually things can be arranged as in [Meyer et al., 1974] so
that generalisation is in effect built into the axioms so that the only rules
can continue to be adjunction and modus ponens.

Thus we need the following

Way Up Lemma for RQ. Suppose A is not a theorem of first-order RQ.
Then there exists a prime rich theory T so that A 6∈ T .

This lemma is Theorem 3 of [Meyer et al., 1974], and its proof is of basi-
cally a Henkin style with one novelty. In usual Henkin proofs one can assure
ω-completeness by building into the construction of T that whenever ¬∀xB
is put in, then so is ¬B(a/x) for some new parameter a. This guarantees
ω-completeness since if B(a) ∈ T for all a, but ∀xB 6∈ T , then by complete-
ness ¬∀xB ∈ T and so by the usual construction ¬B(a) ∈ T for some a, and
so by consistency (??) B(a) 6∈ T for some a, contradicting the hypothesis
for ω-completeness. But we of course have for relevance logics no guarantee
that T is consistent, as has been remarked above.

The novelty then was to modify the construction so as to keep things
out as well as put things in, though this last still was emphasised. Full
symmetry with respect to ‘good guys’ and ‘bad guys’ was finally obtained
by Belnap, 18 in what is called the Belnap Extension Lemma, which shall
be stated after a bit of necessary terminology.

We shall call an ordered pair (∆, Θ) of sets of formulas of RQ and ‘RQ-
pair’. We shall say that one RQ pair (∆1, Θ1) extends another (∆0, Θ0) if
∆0 ⊆ ∆1 and Θ0 ⊆ Θ1. An RQ pair is defined to be exclusive if for no
A1, . . . , Am ∈ ∆, B1, . . . , Bn ∈ Θ do we have ` A1∧· · ·∧Am → B1∨· · ·∨Bn.
It is called exhaustive if for every formula A, either A ∈ ∆ or A ∈ Θ.19

It is now easiest to assume that ∧ and ∃ are back as primitive. We call a
set of formulas Γ ∨-prime (∧-prime) if whenever A ∨ B ∈ Γ(A ∧ B ∈ Γ),

18Belnap’s result is unpublished, although he communicated it to Dunn in 1973. Dunn
circulated a write-up of it about 1975. It is cited in some detail in [Dunn, 1976d]. Gabbay
[1976] contains an independent but precise analogue for the first-order intuitionistic logic
with constant domain.

19We choose our terminology carefully, not calling (∆, Θ) a ‘theory’, not using ‘consis-
tency’ for exclusiveness, and not using ‘completeness’ for exhaustiveness. We do this so
as to avoid conflict with our earlier (and more customary) usage of these terms and in
this we differ on at least one term from usages on other occasions by Gabbay, Belnap, or
Dunn.
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at least one of A or B ∈ Γ (clearly ∨-primeness is the same as primeness).
Analogously, we call Γ ∃-prime (∀- prime) if whenever ∃xA ∈ Γ(∀xA ∈ Γ),
then A(a/x) ∈ Γ for some a. Given an RQ pair (∆, Θ) we shall call ∆(Θ)
completely prime if ∆ is both ∨- and ∃-prime (Θ is both ∧- and ∀-prime).
the pair (∆, Θ) is called completely prime if both ∆ and Θ are completely
prime. We can now state the

Belnap Extension Lemma. Let (∆, Θ) be an exclusive RQ pair. Then
(∆, Θ) can be extended to an exclusive, exhaustive, completely prime RQ

pair (T, F ) in a language just like the language of RQ except for having
denumerably many new parameters.

We shall not prove this lemma here, but simply remark that it is a
surprisingly straightforward application of Henkin methods to construct a
maximal RQ-pair and show it has the desired properties (indeed it simply
symmetrises the usual Henkin construction of first-order classical logic).

In order to derive the RQ Way Up Lemma we simply set ∆ = RQ

and Θ = {A} and extend it to the pair (T, F ) using the Belnap Extension
Lemma. It is easy to see that T is a (regular) RQ-theory, and clearly
G is prime. but also T is ω-complete. Thus suppose B(a/x) ∈ T for
all a, but ∀xB 6∈ T . Then by exhaustiveness ∀xB ∈ FR. Then by ∀-
primeness, B(a/x) ∈ FR for some a. But since `RQ B(a/x) → B(a/x),
this contradicts the exclusiveness of the pair (T, F ).

2.6 γ for Higher-order Relevance Logics and Relevant Arith-
metic

The whole point about γ being merely an admissible rule is that it might
not hold for various extensions of F (cf. [Dunn, 1970] for actual counter
examples). Thus, as we just saw, it was an achievement to show that γ
continues to e admissible in R when it is extended to include first-order
quantification. The question of the admissibility of γ naturally has great
interest when R is further extended to include theories in the foundations
of mathematics such as type theory (set theory) and arithmetic.

Meyer [1976a] contains investigations of the admissibility of γ for relevant
type theory (Rω). We shall report nothing in the way of detail here except
to observe that Meyer’s result is invariant among various restrictions of the
formulas A in the Comprehension Axiom scheme:

∃Xx+1∀yn(Xn+1(yn)↔ A).

As for relevantly formulated arithmetic, most work has gone on in study-
ing Meyer’s systems R] , R]] and their relatives, based on Peano arithmetic,
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though Dunn has also considered a relevantly formulated version of Robin-
son Arithmetic [Anderson et al., 1992]. Here we will recount the results for
R] and R]] for they are rather surprising. In a nutshell, γ is admissible in
relevant arithmetics with the infinitary ω-rule (from A(0), A(1), A(2), . . . to
infer ∀xA(x)), but not without it [Friedman and Meyer, 1992, Meyer, 1998].

The system R] is given by rewriting the traditional axioms of Peano
arithmetic with relevant implication instead of material implication in the
natural places. You get the following list of axioms

Identity y = z → (x = y → x = z)
Successor x′ = y′ → x = y

x = y → x′ = y′

0 6= x′

Addition x + 0 = x
x + y′ = (x + y)′

Multiplication x0 = 0
xy′ = xy + x

Induction A(0) ∧ ∀x
(

A(x)→ A(x′)
)

→ ∀xA(x)

which you add to those of RQ in order to obtain an arithmetic theory. The
question about the admissibility of γ was open for many years, until Fried-
man teamed up with Meyer to show that it is not [Friedman and Meyer, 1992].
The proof does not provide a direct counterexample to γ. Instead, it takes
a more circuitous route. First, we need Meyer’s classical containment result
for R] . When we map formulae in the extensional vocabulary of arithmetic
to the language of R] by setting τ(x = y) to (x = y)∨ (0 6= 0) and leaving
the rest of the map to respect truth functions (so τ(A ∧B) = τ(A) ∧ τ(B),
τ(¬A) = ¬τ(A) and τ(∀xA) = ∀xτ(A)) then we have the following theorem:

τ(A) is a theorem of R] iff A is a theorem of classical Peano
arithmetic.

This is a subtle result. The proof goes through by showing, by induction,
that τ(A) is equivalent either to (A∧ (0 = 0))∨ (0 6= 0) or to (A∨ (0 6= 0))∧
(0 = 0), and then that γ and the classical form of induction (with material
implication in place of relevant implication) is valid for formulae of this form
in R] . Then, if we had the admissibility of γ for R] , we could infer A
from τ(A). (If τ(A) is equivalent to (A ∧ (0 = 0)) ∨ (0 6= 0), then we can
use 0 = 0 and γ to derive A∧ (0 = 0), and hence A. Similarly for the other
case).

The next significant result is that not all theorems of classical Peano
arithmetic are theorems of R] . Friedman provided a counterexample, which
is simple enough to explain here. First, we need some simple preparatory
results.
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• R] is a conservative extension of the theory R]+ axiomatised by the
negation free axioms of R] [Meyer and Urbas, 1986].

• If classical Peano theorem is to be provable in R] and if it contains
no negations, then it must be provable in R]+.

• Any theorem provable in R]+ must be provable in the classical positive
system PA+ which is based on classical logic, instead of R.

The proofs of these results are relatively straightforward. The next result
is due to Friedman, and it is much more surprising.

• The ring of complex numbers is a model of PA+.

The only difficult thing to show is that it satisfies the induction axiom.
For any formula A(x) in the vocabulary of arithmetic, the set of complex
numbers α such that A(α) is true is either finite or cofinite. If A(x) is
atomic, then it is equivalent to a polynomial of the form f(x) = 0, and f
must either have finitely many roots or be 0 everywhere. But the set of
either finite or cofinite sets is closed under boolean operations, so no A(x)
we can construct will have an extension which is neither finite or cofinite.)
As a result, the induction axiom must be satisfied. For if A(0) holds and
if A(x) ⊃ A(x′) holds then there are infinitely many complex numbers α
such that A(α). So the extension of A is at least cofinite. But if there is a
point α such that A(α) fails, then so would A(α − 1), A(α − 2) and so on
by the induction step A(x) ⊃ A(x′), and this contradicts the confinitude of
the extension of A. As a result, A(α) holds for every α.

We can then use this surprising model of positive Peano arithmetic to
construct a Peano theorem which is not a theorem of R] . It is known that
for any odd prime p, there is a positive integer y which is not a quadratic
residue mod p. That is, ∃y∀z¬(y ≡ z2 mod p) is provable in Peano arith-
metic. This formula can be rewritten in the language or arithmetic with
a little work. However, the corresponding formula is false in the complex
numbers, so it is not a theorem of PA+. Therefore it isn’t a theorem of R]

+, and by the conservative extension result, it is not a theorem of R] . As
a consequence, R] is not closed under γ.

Where is the counterexample to γ? Meyer’s containment result provides
a proof of τ(B), where B is the quadratic residue formula. The γ rule would
allow us to derive B from τ(B), and it is here that γ must fail.

If we replace the induction axiom by the infinitary rule ω, we can prove
the admissibility of γ using a modification of the Belnap Extension Lemma
for the Way Up and using the standard metavaluation technique for the
Way Down. The modification of the Belnap Extension Lemma is due to
Meyer [1998].



RELEVANCE LOGIC 45

Belnap Extension Lemma, with Witness Protection:

Let (∆, Θ) be an exclusive R]] pair in the language of arithmetic
(that is, with 0 as the only constant). Then (∆, Θ) can be
extended to an exclusive, exhaustive, completely prime R]] pair
(T, F ) in the same language.

This lemma requires the ω-rule for its proof. Consider the induction stage
in which you wish to place ∀xA(x) in Θi. The witness condition dictates
that there be some term t such that A(t) also appear in Θi. The ω-rule
ensures that we can do this without the need for a new term, for if no term
0′′···′ could be consistently added to Θi, then each A(0′′···′) is a consequence
of ∆i, and by the ω-rule, so is ∀xA(x), contradicting the fact that we can
add ∀xA(x) to Θi. So, we know that some 0′′···′ will do, and as a result, we
need add no new constants to form the complete theory T . The rest of the
way up lemma and the whole of the way down lemma can then be proved
with little modification. (for details, see [Meyer, 1998]). Consequently, γ is
admissible in R]] .

These have been surprising results, and important ones, for relevant arith-
metic is an important ‘test case’ for accounts of relevance. It is a theory in
which we can have some fairly clear idea of what it is for one formulae to
properly follow from another. In R] and R]] , we have 0 = 2→ 0 = 4 be-
cause there is an ‘arithmetically appropriate’ way to derive 0 = 4 from
0 = 2 — by multiplying both sides by 2. However, we cannot derive
0 = 2 → 0 = 3, and, correspondingly, there is no way to derive 0 = 3
from 0 = 2 using the resources of arithmetic. The only way to do it within
the vocabulary is to appeal to the falsity of 0 = 3, and this is not a rele-
vantly acceptable move. 0 6= 3 → (0 = 3 → 0 = 2) does not have much to
recommend as pattern of reasoning which respects the canons of relevance.

We are left with important questions. Are there axiomatisable extensions
of R] which are closed under γ? Can theories like R] and R]] be ex-
tended to deal with more interesting mathematical structures, while keeping
account of some useful notion of relevance? Early work on this area, from a
slightly different motivation (paraconsistency, not relevance) indicates that
there are some interesting results at hand, but the area is not without its
difficulties [Mortensen, 1995].

The admissibility of γ would also seem to be of interest for relevant
type theory (even relevant second-order logic) with an axiom of infinity (see
[Dunn, 1979b]).

One of the chief points of philosophical interest in showing the admissibil-
ity of γ for some relevantly formulated version of a classical theory relates to
the question of the consistency of the classical theory (this was first pointed
out in Meyer, Dunn and Leblanc [1974]). As we know from Gödel’s work,
interesting classical theories cannot be relied upon to prove their own con-
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sistency. To exaggerate perhaps only a little, the consistency of systems like
Peano (even Robinson) arithmetic must be taken in faith.

But using relevance logic in place of classical logic in formulating such
theories gives us a new strategy of faith. It is conceivable that since rele-
vance logic is weaker than classical logic, the consistency of the resultant
theory might be easier to demonstrate. This has proved true at least in the
sense of absolute consistency (some sentence is unprovable) as shown by
[Meyer, 1976c] for Peano arithmetic using elementary methods. Classically
of course there is no difference between absolute consistency and ordinary
(negation) consistency (for no sentence are both A and ¬A provable), and
if γ is admissible for the theory, then this holds for relevance logic, too. The
interesting thing then would be to produce a proof of the admissibility of
γ, which we know from Gödel would itself have to be non-elementary.

One could then imagine arguing with a classical mathematician in the
following Pascal’s Wager sort of way [Dunn, 1980a].

Look. You have equally good reason to believe in the negation
consistency of the classical system and the (relative) complete-
ness of the relevant system. In both cases you have a non-
elementary proof which secures your belief, but which might be
mistaken. Consider the consequences in each case if it is mis-
taken. If you are using the classical system, disaster! Since even
one contradiction classically implies everything, for each theo-
rem you have proven, you might just as well have proven its
negation. But if you are using the relevant system, things are
not so bad. For at least large classes of sentences, it can be
shown by elementary methods (Meyer’s work) that not both the
sentences and their negations are theorems.

2.7 Ackermann’s γ and Gentzen’s Cut: Gentzen Systems as
Relevance Logic

In [Meyer et al., 1974] an analogy was noted between the role that the ad-
missibility of γ plays in relevance logic and the role that cut elimination
plays in Gentzen calculi (even those for classical systems). For the reader
unfamiliar with Gentzen calculi, this subsection will make more sense after
she has read Sections 4.6 and 4.7. The Gentzen system for the classical
propositional calculus LK with the material conditional and negation as
primitive (as is well-known, all of the other truth-functional connectives
can be defined from these) may be obtained by adding to the rules of LR¬

→

of Section 4.7. the rule of Thinning (see Section 4.6) on both the left and
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right. Gentzen also had as a primitive rule:

α ` A, B γ, A ` δ
,

α, γ ` B, δ
(Cut)

which has as a special case

` A ` B
.

` B
(1)

Since A ` B is derivable just when ` A → B is derivable, and since in
classical logic A→ B is equivalent to ¬A ∨ B, (1) above is in effect

` A ` ¬A ∨ B
,

` B
(1′)

which is just γ.
All of the Gentzen rules except Cut have the Subformula Property: Every

formula that occurs in the premises also occurs in the conclusion, though
perhaps there as a subformula. Gentzen showed via his Hauptsatz that
Cut was redundant—it could be eliminated without loss (hence this is often
called the Elimination Theorem). Later writers have tended to think of
Gentzen systems as lacking the Cut Rule, and so the Elimination Theorem
is stated as showing that Cut is admissible in the sense that whenever the
premises are derivable so is the conclusion. There is thus even a parallel
historical development with Ackermann’s rule γ in relevance logic, since
writers on relevance logic have tended to follow Anderson and Belnap’s
decision to drop γ as a primitive rule.

Note that the Subformula Property can be thought of as a kind of rela-
tion of relevance between premises and conclusion. Thus Cut as primitive
destroys a certain kind of relevance property of Gentzen systems, just as
γ as primitive destroys the relevance of premises to conclusion in relevance
logic. The analogies become even clearer if we reformulate Gentzen’s system
according to the following ideas of [Schütte, 1956].

The basic objects of Gentzen’s calculus LK were the sequents A1, . . . , Am `
B1, . . . , Bn, where the Ai’s and Bj ’s are formulas (any or all of which might
be missing). Such a sequent may be interpreted as a statement to the ef-
fect that either one of the Ai’s is false or one of the Bj ’s is true. To every
such sequent there corresponds what we might as well call its ‘right-handed
counterpart’:

` ¬A1, . . . ,¬Am, B1, . . . , Bn

It is possible to develop a calculus parallel to Gentzen’s using only ‘right-
handed’ sequents, i.e. those with empty left side. This is in effect what
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Schütte did, but with one further trick. Instead of working with a right-
handed sequent ` A1, . . . , Am, which can be thought of as a sequence of
formulas, he in effect replaced it with the single formula A1 ∨ · · · ∨Am.20

With these explanations in mind, the reader should have no trouble in
perceiving Schütte’s calculus K1 as ‘merely’ a notational variant of Gentzen’s
original calculus LK (albeit, a highly ingenious one). Also Schütte’s sys-
tem had the existential quantifier which we have omitted here purely for
simplicity. Dunn and Meyer [1989] treats it as well.

The axioms of K1 are all formulas of the form A ∨ ¬A. The inference
rules divide themselves into two types:

Structural rules:

M∨ A ∨B ∨ N
[Interchange]

M∨ B ∨ A ∨ N

N ∨ A ∨A
[Contraction]

N ∨ A

Operational rules:

N
[Thinning]

N ∨B

N ∨ ¬A N ∨ ¬B
[de Morgan]

N ∨ ¬(A ∨ B)

N ∨ A
[Double Negation]

N ∨ ¬¬A

It is understood in every case but that of Thinning that either both of
M and N may be missing. Also there is an understanding in multiple
disjunctions that parentheses are to be associated to the right.

In [Meyer et al., 1974] it was said that the rule Cut is just γ ‘in peculiar
notation’. In the context of Schütte’s formalism the notation is not even so
different. Thus:

M∨ A ¬A ∨ N
[Cut]

M∨N

A ¬A ∨ B
[γ].

B

Since either M or N may be missing, obviously γ is just a special case of
Cut.

It is pretty easy to check that each of the rules above corresponds to a
provable first-degree relevant implication. Indeed [Anderson and Belnap Jr., 1959a]
with their ‘Simple Treatment’ formulation of classical logic (extended to
quantifiers in [Anderson and Belnap Jr., 1959b]) independently arrived at
a Cut-free system for classical logic much like Schütte’s (but with some
improvements, i.e. they have more general axioms and avoid the need for
structural rules). They used this to show that E contains all the classical
tautologies as theorems, the point being that the Simple Treatment rules
are all provable entailments in E (unlike the usual rule for axiomatic for-
mulations of classical logic, modus ponens for the material conditional, i.e.

20It ought be noted that similar “single sided” Gentzen systems find extensive use in
the proof theory for Linear Logic [Girard, 1987, Troelstra, 1992].
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γ). Thus the later proven admissibility of γ was not needed for this pur-
pose, although it surely can be so used. Schütte’s system can also clearly
be adapted to the purpose of showing that classical logic is contained in rel-
evance logic, and indeed [Belnap, 1960a] used K1 (with its quantificational
rules) to show that EQ contains all the theorems of classical first-order
logic.

It turns out that one can give a proof of the admissibility of Cut for
a classical Gentzen-style system, say Schütte’s K1, along the lines of a
Meyer-style proof of the admissibility of γ (see [Dunn and Meyer, 1989],
first reported in 1974).21 We will not give many details here, but the key
idea is to treat the rules of K1 as rules of deducibility and not merely as
theorem generating devices. Thus we define a deduction of A from a set of
formulas Γ as a finite tree of formulas with A as its origin, members of Γ or
axioms of K1 at its tips, and such that each point that is not a tip follows
from the points just above it by one of the rules of K1 (this definition has to
be slightly more complicated if quantifiers are present due to usual problems
caused by generalisation). We can then inductively build a prime complete
theory (closed under deducibility) on The Way up, which will clearly be
inconsistent since because of the ‘Subformula Property’ clearly, e.g. q is not
deducible from p,¬p. but this can be fixed on The Way Down by using
metavaluation techniques so as to find a complete consistent subtheory.

In 1976 E. P. Martin, Meyer and Dunn extended and analogised the
result of Meyer concerning the admissibility of γ for relevant type theory
described in the last subsection, in much the same way as the γ argument for
the first-order logic has been analogised here, so as to obtain a new proof of
Takeuti’s Theorem (Cut-elimination for simple type theory). This unpub-
lished proof dualises the proof of Takahashi and Prawitz (cf. [Prawitz, 1965])
in the same way that the proof here dualises the usual semantical proofs
of Cut-elimination for classical first-order logic. This dualisation is vividly
described by saying that in place of ‘Schütte’s Lemma’ that every semi-
(partial-) valuation may be extended to a (total) valuation, there is instead
the ‘Converse Schütte Lemma’ that every ‘ambi-valuation’ (sometimes as-
signs a sentence both the values 0, 1) may be restricted to a (consistent)
valuation.

21We hasten to acknowledge the nonconstructive character of this prof. In this our proof
compares with that of Schütte [1956] (also proofs for related formalisms due to Anderson
and Belnap, Beth, Hintikka, Kanger) in its uses of semantical (model-theoretic) notions,
and differs from Gentzen’s. Like the proofs of Schütte et al. this proof really provides a
completeness theorem. We may briefly label the difference between this proof and those
of Schütte and the others by using (loosely) the jargon of Smullyan [1968]. Calling both
Hilbert-style formalisms and their typical Henkin-style completeness proofs ‘synthetic’,
and calling both Gentzen-style formalisms and their typical Schütte-style completeness
proof ‘analytic’, it looks as if we can be said to have given an synthetic completeness
proof for an analytic formalism.
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3 SEMANTICS

3.1 Introduction

In Anderson’s [1963] ‘open problems’ paper, the last major question listed,
almost as if an afterthought, was the question of the semantics of E and
EQ. Despite this appearance Anderson said (p. 16) ‘the writer does not
regard this question as “minor”; it is rather the principle large question
remaining open’. Anderson cited approvingly some earlier work of Belnap’s
(and his) on providing an algebraic semantics for first-degree entailments,
and said (p. 16), ‘But the general problem of finding a semantics for the
whole of E, with an appropriate completeness theorem, remains unsolved’.

It is interesting to note that Anderson’s paper appeared in the same
Acta Filosphica Fennica volume as the now classic paper of Kripke [1963]
which provided what is now simply called ‘Kripke-style’ semantics for a
variety of modal logics (Kripke [1959a] of course provided a semantics for
S5, but it lacked the accessibility relation R which is so versatile in providing
variations).

When Anderson was writing his ‘open problems’ paper, the paradigm of a
semantical analysis of a non-classical logic was probably still something like
the work of McKinsey and Tarski [1948], which provided interpretations
for modal logic and intuitionistic logic by way of certain algebraic struc-
tures analogous to the Boolean algebras that are the appropriate structures
for classical logic. But since then the Kripke-style semantics (sometimes re-
ferred to as ‘possible-worlds semantics’, or ‘set-theoretical semantics’) seems
to have become the paradigm. Fortunately, E and R now have both an al-
gebraic semantics and a Kripke-style semantics. We shall first distinguish in
a kind of general way the differences between these two main approaches to
semantics, before going on to explain the particular details of the semantics
for relevant logics (again R will be our paradigm).

3.2 Algebraic vs. Set-theoretical Semantics

It is convenient to think of a logical system as having two distinct aspects
syntax (well-formed strings of symbols, e.g. sentences) and semantics (what,
e.g. these sentences mean, i.e. propositions). These double aspects compete
with one another as can be seen in the competing usages ‘sentential calculus’
and ‘propositional calculus’, but we should keep firmly in mind both aspects.

Since sentences can be combined by way of connectives, say he conjunc-
tion sign ∧, to form further sentences, typically there is for each logical
system at least one natural algebra arising at the level of syntax, the alge-
bra of sentences (if one has a natural logical equivalence relation there is
yet another that one obtains by identifying logically equivalent sentences to-
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gether into equivalence classes—the so-called ‘Lindenbaum algebra’). And
since propositions can be combined by the corresponding logical operations,
say conjunction, to form propositions, here is an analogous algebra of propo-
sitions.

Now undoubtedly some readers, who were taught to ‘Quine’ propositions
from an early age, will have troubles with the above story. The same reader
would most likely not find compelling any particular metaphysical account
we might give of numbers. We ask that reader then to at least suspend
disbelief in propositions so that we can get on with the mathematics.

There is an alternative approach to semantics which can be described
by saying that rather than taking propositions as primitive, it ‘constructs’
them out of certain other semantical primitives. Thus there is as a paradigm
of this approach the so-called ‘UCLA proposition’ as a set of ‘possible
worlds’.22 We here want to stress the general structural idea, not placing
much emphasis upon the particular choice of ‘possible worlds ’ as the se-
mantical primitive. Various authors have chosen ‘reference points’, ‘cases’,
‘situations’, ‘set-ups’, etc.—as the name for the semantical primitive varying
for sundry subtle reasons from author to author. We have both in relevance
logic contexts have preferred ‘situations’, but in a show of solidarity we shall
here join forces with the Routley’s [1972] in their use of ‘set-ups’.

Such ‘set-theoretical’ semantical accounts do not always explicitly verify
such a construction of propositions. Indeed perhaps the more common
approach is to provide an interpretation that says whether a formula A is
true and false at a given set-up S writing φ(a, S) = T or S � A or some
such thing. Think of Kripke’s [1963] presentation of his semantics for modal
logic. But (unless one has severe ontological scruples about sets) one might
just as well interpret A by assigning it a class of set-ups, writing Φ(A) or
|A| or some such thing. One can go from one framework to the other by
way of equivalence

S ∈ |A| iff S � A.

3.3 Algebra of First-degree Relevant Implications

Given two propositions a and b, it is natural to consider the implication
relation among them, which we write as a ≤ b (‘a implies b’). It might be
thought to be natural to write this the other way around as a ≥ b on some
intuition that a is the stronger or ‘bigger’ one if it implies b. Also it suggests
a ⊇ b (‘b is contained in a’), which is a natural enough way to think of impli-
cation. There are good reasons though behind our by now almost universal
choice (of course at one level it is just notation, and it doesn’t matter what

22Actually the germ of this idea was already in Boole (cf. [Dipert, 1978]), although
apparently he thought of it as an analogy rather than as a reduction.
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your convention is). Following the idea that a proposition might be identi-
fied with the set of cases in which it is true, a implies b corresponds to a ⊆ b,
which has the same direction as a ≤ b. Then conjunction ∧ corresponds to
intersection ∩, and they have roughly the same symbol (and similarly for ∨
and ∪).

It is also natural to assume, as the notation suggests, that implication is
a partial order, i.e.

(p.o.1) a ≤ a (Reflexivity),
(p.o.2) a ≤ b and b ≤ a⇒ a = b (Antisymmetry),
(p.o.3) a ≤ b and b ≤ c⇒ a ≤ c (Transitivity).

It is natural also to assume that there are operations of conjunction ∧ and
disjunction ∨ that satisfy

(∧lb) a ∧ b ≤ a, a ∧ b ≤ b,
(∧glb) x ≤ a and x ≤ b⇒ x ≤ a ∧ b,
(∨ub) a ≤ a ∨ b, b ≤ a ∨ b,
(∨lub) a ≤ x and b ≤ x⇒ a ∨ b ≤ x.

Note that (∧lb) says that a ∧ b is a lower bound both of a and of b, and
(∧glb) says it is the greatest such lower bound. Similarly a ∨ b is the least
upper bound of a and b.

A structure (L,≤,∧,∨) satisfying all the properties above is a well-known
structure called a lattice. Almost any logic would be compatible with the as-
sumption that propositions form a lattice (but there are exceptions, witness
Parry’s [1933] Analytic Implication which would reject (∨ub)).

Lattices can be defined entirely operationally as structures (L,∧,∨) with
the relation a ≤ b defined as a ∧ b = a. Postulates characterising the
operations are:

Idempotence: a ∧ a = a, a ∨ a = a
Commutativity: a ∧ b = b ∧ a, a ∨ b = b ∨ a
Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c, a ∨ (b ∨ c) = (a ∨ b) ∨ c
Absorption: a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a.

An (upper) semi-lattice is a structure (S,∨), with ∨ satisfying Idempotence,
Commutativity, and Associativity.

Given two lattices (L,∧,∨) and (L′,∧′,∨′), a function h from L into ′

is called a (lattice) homomorphism if both h(a ∧ b) = h(a) ∧′ h(b) and
h(a ∨ b) = h(a) ∨′ h(b). If h is one–one, h is called an isomorphism.

Many logics (certainly orthodox relevance logic) would insist as well that
propositions form a distributive lattice, i.e. that

a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c.
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This implies the usual distributive laws a ∧ (b ∨ c) = (a ∧ b) ∧ (a ∧ c) and
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). (Again there are exceptions, important ones
being quantum logic with its weaker orthomodular law, and linear logic with
its rejection of even the orthomodular law.)

The paradigm example of a distributive lattice is a collection of sets closed
under intersection and union (a so-called ‘ring’ of sets). Stone [1936] indeed
showed that abstractly all distributive lattices can be represented in this
way. Although we will not argue this here, it is natural to think that if
propositions correspond to classes of cases, then conjunction should carry
over to intersection and disjunction to union, and so productions should
form a distributive lattice.

Certain subsets of lattices are especially important. A filter is a non-
empty subset F such that

1. a, b ∈ F ⇒ a ∧ b ∈ F ,

2. a ∈ F and a ≤ b⇒ b ∈ F .

Filters are like theories. Note by easy moves that a filter satisfies

1′. a, b ∈ F ⇔ a ∧ b ∈ F ,

2′. a ∈ F or b ∈ F ⇒ a ∨ b ∈ F .

When a filter also satisfies the converse of (2′) it is called prime, and is like
a prime theory. A filter that is not the whole lattice is called proper. Stone
[1936] showed (using an equivalent of the Axiom of Choice) the

Prime Filter Separation Property. In a distributive lattice, if a 6≤ b,
then there exists a prime filter P with a ∈ P and b 6∈ P .

This is related to the Belnap Extension Lemma of Section 2.5.
So far we have omitted discussion of negation. This is because there is

less agreement among logics as to what properties it should have.23 There
is, however, widespread agreement that it should at least have these:

1. (Contraposition) a ≤ b⇒ ¬b ≤ ¬a,

2. (Weak Double Negation) a ≤ ¬¬a.

These can both be neatly packaged in one law:

3. (Intuitionistic Contraposition) a ≤ ¬b⇒ b ≤ ¬a.

We shall call any unary function ¬ satisfying (3) (or equivalently (1) and
(2)) a minimal complement. The intuitionists of course do not accept

23Cf. Dunn [1994, 1996] wherein the various properties below are related to various
ways of treating incompatibility between states of information.
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4. (Classical Contraposition) ¬a ≤ ¬b⇒ b ≤ a, or

5. (Classical Double Negation) ¬¬a ≤ a.

If one adds either of (4) or (5) to the requirements for a minimal complement
one gets what is called a de Morgan complement (or quasi-complement),
because, as can be easily verified, it satisfies all of de Morgan’s laws

(deM1) ¬(a ∧ b) = ¬a ∨ ¬b,
(deM2) ¬(a ∨ b) = ¬a ∧ ¬b.

Speaking in an algebraic tone of voice, de Morgan complement is just a
(one–one) order-inverting mapping (a dual automorphism) of period two.

De Morgan complement captures many of the features of classical nega-
tion, but it misses

(Irrelevance 1) a ∧ ¬a ≤ b,
(Irrelevance 2) a ≤ b ∨ ¬b.

If (either of) these are added to a de Morgan complement it becomes a
Boolean complement. If Irrelevance 1 is added to a minimal complement, it
becomes a Heyting complement (or pseudo-complement).

A structure (L,∧,∨,¬), where (L,∧,∨) is a distributive lattice and ¬
is a de Morgan (Boolean) complement is called a de Morgan (Boolean)
lattice. Note that we did not try to extend this terminological framework
to ‘Heyting lattices’, because in the literature a Heyting lattice requires an
operation called ‘relative pseudo-complementation’ in addition to Heyting
complementation (plain pseudo-complementation).

As an example of de Morgan lattices consider the following (here we use
ordinary Hasse diagrams to display the order; a ≤ b is displayed by putting
a in a connected path below b):
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The backwards numeral labelling the third lattice over is not a misprint.
It signifies that not only has the de Morgan complement been obtained by
inverting he order of the diagram, as in the order three (of course ¬I = Θ
and vice versa), but also by rotating it from right to left at the same time.
2 and 4are Boolean lattices.

A homomorphism (isomorphism) h between de Morgan Lattice with de
Morgan complements ¬ and ¬′ respectively is a lattice homomorphism (iso-
morphism) such that h(¬a) = ¬′h(a).

A valuation in a lattice outfitted with one or the other of these ‘com-
plementations’ is a map v from the zero-degree formulas into its elements
satisfying

v(¬A) = ¬v(A),

v(A ∧ B) = v(A) ∧ v(B),

v(A ∨ B) = v(A) ∨ v(B).

Note that the occurrence of ‘¬’ on the left-hand side of the equation denotes
the negation connective, whereas the occurrence on the right-hand side de-
notes the complementation operation in the lattice (similarly for ∧ and ∨).
Such ambiguities resolve themselves contextually.

A valuation v can be regarded as in interpretation of the formulas as
propositions.

De Morgan lattices have become central to the study of relevance of
logic, but they were antecedently studied, especially in the late 1950s by
Moisil and Monteiro, by Bia lynicki-Birula and Rasiowa (as ‘quasi-Boolean
algebras’), and by Kalman (as ‘distributive i-lattices’) (see Anderson and
Belnap [1975] or Rasiowa [1974] for references and information).
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Belnap seems to have first recognised their significance for relevance logic,
though his research favoured a special variety which he called an intension-
ally complemented distributive lattice with truth filter (‘icdlw/tf’), shortened
in Section 18 of [Anderson and Belnap, 1975] to just intensional lattice. An
intensional lattice is a structure (L,∧,∨,¬, T ), where (L,∧,∨,¬) is a de
Morgan lattice and T is a truth-filter, i.e. T is a filter which is complete in
the sense T contains at least one of a and ¬a for each a ∈ L, and consistent
in the sense that T contains no more than one of a and ¬a.

Belnap and Spencer [1966] showed that a necessary and sufficient condi-
tion for a de Morgan lattice to have a truth filter is that negation have no
fixed point, i.e. for no element a, a = ¬a (such a lattice was called an icdl).
For Boolean algebras this is a non-degeneracy condition, assuring that the
algebra has more than one element, the one element Boolean algebra being
best ignored for many purposes. But the experience in relevance logic has
been that de Morgan lattices where some elements are fixed points are ex-
tremely important (not all elements can be fixed points or else we do have
the one element lattice).

The viewpoint of [Dunn, 1966] was to take general de Morgan lattices as
basic to the study of relevance logics (though still results were analogised
wherever possible to the more special icdl’s). Dunn [1966] showed that upon
defining a first-degree implication A → B to be (de Morgan) valid iff for
every valuation v in a de Morgan lattice, v(A) ≤ v(B), A → B is valid iff
A → B is a theorem of Rfde (or Efde). The analogous result for icdl’s (in
effect due to Belnap) holds as well.

Soundness (`Rfde
A → B ⇒ A → B is valid) is a more or less trivial in-

duction on the length of proofs in Rfde fragment—cf. [Anderson and Belnap, 1975,
Section 18].

Completeness (A → B valid ⇒ `Rfde
A → B) is established by proving

the contrapositive. We suppose not `Rfde
A → B. We then form the

‘Lindenbaum algebra’, which has as an element for each zero degree formula
(zdf) X, [X ] =df {Y : Y is a zdf and `Rfde

X ↔ Y }. Operations are defined
so that ¬[X ] = [¬X ], [X ] ∧ [Y ] = [X ∧ Y ], and [X ] ∨ [Y ] = [X ∨ Y ], and
we set [X ] ≤ [Y ] whenever `Rfde

X → Y . It is more or less transparent,
given Rfde formulated as it is, that the result is a de Morgan lattice. It
is then easy to see that A → B is invalidated by the canonical valuation
vc(X) = [X ], since clearly [A] 6≤ [B].

The above kind of soundness and completeness result is really quite triv-
ial (though not unimportant), once at least the logic has had its axioms
chopped so that they look like the algebraic postulates merely written in a
different notation. The next result is not so trivial.

Characterisation Theorem of Rfde with Respect to 4. `Rfde
A→

B iff A→ B is valid in 4, i.e. for every valuation v in 4, v(A) ≤ v(B).
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Proof. Soundness follows from the trivial fact recorded above that Rfde is
sound with respect to de Morgan lattices in general. For completeness we
need the following:

4-Valued Homomorphism Separation Property. Let D be a de Morgan
lattice with a 6≤ b. Then there exists a homomorphism h of D into 4 so that
h(a) 6≤ h(b).

Completeness will follow almost immediately from this result, for upon
supposing that not `Rfde

A→ B, we have v(A) = h[A] 6≤ h[B] = v(B) (the
composition of a homomorphism with a valuation is transparently a valua-
tion). So we go on to establish the Homomorphism Separation Property.

Assume that a 6≤ b. By the Prime Filter Separation Property, we know
there is a prime filter P with a ∈ P and b 6∈ P . for a given element x,
we define h(x) according to the following four possible ‘complementation
patterns’ with respect to P .

1. x ∈ P,¬x 6∈ P : set h(x) = 1;

2. ¬x ∈ P, x 6∈ P : set h(x) = 0;

3. x ∈ P,¬x ∈ P : set h(x) = p;

4. x 6∈ P,¬x 6∈ P : set h(x) = q.

It is worth remarking that if D is a Boolean lattice, (3) (inconsistency)
and (4) (incompleteness) can never arise, which explains the well-known
significance of 2 for Boolean homomorphism theory. Clearly these specifi-
cations assure that h(a) ∈ {p, I} and h(b) ∈ {q, 0}, and so by inspection
h(a) 6≤ h(b). It is left to the reader to verify that h in fact is a homomor-
phism. (Hint to avoid more calculation: set [p) = {p, I} and [q) = {q, I}
(the principal filters determined by p and q). Observe that the definition
of h above is equivalent to requiring of h that h(x) ∈ [p) iff x ∈ P , and
h(x) ∈ [q) iff ¬a 6∈ P . Observe that if whenever i = p, q, y ∈ [i) iff z ∈ [i),
then y = z. Show for i = p, q, h(a∧b) ∈ [i) iff h(a)∧H(b) ∈ [i), h(a∨b) ∈ [i)
iff h(a) ∨ h(b) ∈ [i), and h(¬a) ∈ [i) iff ¬h(a) ∈ [i). �

3.4 Set-theoretical Semantics for First-degree Relevant Impli-
cation

Dunn [1966] (cf. also [Dunn, 1967]) considered a variety of (effectively equiv-
alent) representations of de Morgan lattices as structures of sets. We shall
here discuss the two of these that have been the most influential in the
development of set-theoretical semantics for relevance logic.

The earliest one of these is due to Bia lynicki-Birula and Rasiowa [1957]
and goes as follows. Let U be a non-empty set and let g : U → U be such
that it is of period two, i.e.
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1. g(g(x)) = x, for all x ∈ U .

(We shall call the pair (U, g) and involuted set—g is the involution, and is
clearly 1–1). Let Q(U) be a ‘ring’ of subsets of U (closed under ∩ and ∪)
closed as well under the operation of ‘quasi-complement’

2. ¬X = U − g[X ](X ⊆ U).

(Q(U),∪,∩,¬) is called a quasi-filed of sets and is a de Morgan lattice.

Quasi-fields of Sets Theorem [Bia lynicki-Birula and Rasiowa, 1957].
Every de Morgan lattice D is isomorphic to a quasi-field of sets.

Proof. Let U be the set of all prime filters of D, and let P range over U .
Let ¬P → {¬a : a ∈ P}, and define g(P ) = D−¬P . We leave to the reader
to verify that U is closed under g. For each element a ∈ D, set

f(a) = {P : a ∈ P}.

Clearly f is one–one because of the Prime Filter Separation Property, so
we need only check that f preserves the operations.

ad∧: P ∈ f(a ∧ b)⇔ a ∧ b ∈ P ⇔ ((1′) of Section 3.3) a ∈ P and b ∈ P ⇔
P ∈ f(a) and P ∈ f(b)⇔ P ∈ f(a) ∩ f(b). So f(a ∧ b) = f(a) ∩ f(b)
as desired.

ad∨: The argument that f(a ∨ b) = f(a) ∪ f(b) is exactly parallel using
(2′) (or alternately this can be skipped using the fact that a ∨ b =
¬(¬a ∧ ¬b).

ad¬: P ∈ f(¬a) ⇔ ¬a ∈ P ⇔ a ∈ ¬P ⇔ a 6∈ g(P ) ⇔ g(P ) 6∈ f(a) ⇔ P 6∈
g[f(a)]⇔ P ∈ U − g[f(a)].

We shall now discuss a second representation. Let U be a non-empty set
and let R be a ring of subsets of U (closed under intersection and union, but
not necessarily under complement, quasi-complement, etc.). by a polarity
in R we mean an ordered pair X = (X1, X2) such that X1, X2 ∈ R. We
define a relation and operations as follows, given polarities X = (X1, X2)
and Y = (Y1, Y2):

X ≤ Y ⇔ X1 ⊆ Y1 and Y2 ⊆ X2

X ∧ Y = (X1 ∩ Y1, X2 ∪ Y2)

X ∨ Y = (X1 ∪ Y1, X2 ∩ Y2)

¬X = (X2, X1).

By a field of polarities we mean a structure (P (R),≤,∧,∨,¬) where P (R)
is the set of all polarities in some ring of sets R, and the other components
are defined as above. We leave to the reader the easy verification that every
field of polarities is a de Morgan lattice. �
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We shall prove the following

Polarities Theorem [Dunn, 1966]. Every de Morgan lattice is isomor-
phic to a field of polarities.

Proof. Given he previous representation, it clearly suffices to show that
every quasi-field of sets is isomorphic to a field of polarities.

The idea is to set f(X) = (X, U − g[X ]). Clearly f is one–one. We check
that it preserves operations.

ad∧: f(X∩Y ) = (X∩Y, U−g[X∩Y ]) = (X∩Y, (U−g[X ])∩(U−g[Y ])) =
(X, U − g[X ]) ∧ (Y, U − g[Y ]) = f(X) ∧ f(Y ).

ad∨: Similar.

ad¬: f(¬X) = (¬X, U − g(¬X)) = (U − g[X ], U − g(U − g[X ])) = (U −
g[X ], X) = ¬f(X).

�

We now discuss informal interpretations of the representation theorems
that relate to semantical treatments of relevant first-degree implications
familiar in the literature.

Routley and Routley [1972] presented a semantics for Rfde, the main in-
gredients of which were a set K of ‘atomic set-ups’ (to be explained) on
which was defined an involution ∗. An ‘atomic set-up’ is just a set of propo-
sitional variables, and it is used to determine inductively when complex
formulas are also ‘in’ a given set-up. A set-up is explained informally as be-
ing like a possible world except that it is not required to be either consistent
or complete. The Routley’s [1972] paper seems to conceive of set-ups very
syntactically as literally being sets of formulas, but the Routley and Meyer
[1973] paper conceives of them more abstractly. We shall think of them this
latter way here so as to simplify exposition. The Routleys’ models can then
be considered a structure (K, ∗, �), where K is a non-empty set, ∗ is an
involution on K, and � is a relation from K to zero-degree formulas. We
read ‘a � A’ as the formula A holds at the set-up a:

1. (∧ �) a � A ∧ B ⇔ a � A and a � B

2. (∨ �) a � A ∨ B ⇔ a � A or a � B

3. (¬ �) a � ¬A⇔ not a∗ � A.

The connection of the Routleys’ semantics with quasi-fields of sets will be-
come clear if we let (K, ∗) induce a quasi-field of sets Q with quasi- com-
plement ¬, and let | | interpret sentences in Q subject to the following
conditions:
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1′. | ∧ | |A ∧B| = |A| ∩ |B|

2′. | ∨ | |A ∨B| = |A| ∪ |B|

3′. |¬| |¬A| = ¬|A|.

Clause (∧ �) results from clause | ∧ | by translating a ∈ |X | as a � X (cf.
Section 3.2). Thus clause | ∧ | says

a ∈ |A ∧ B| ⇔ a ∈ |A| and a ∈ |B|,

i.e. it translates as clause (∧ �). The case of disjunction is obviously the
same. The case of negation is clearly of special interest, so we write it out.

Thus clause |¬| says

a ∈ |¬A| ⇔ a ∈ ¬|A|,

⇔ a ∈ K − |A|∗,

⇔ a 6∈ |A|∗,

⇔ a∗ 6∈ |A|.

But the translation of this last is just clause (¬ �).
Of course the translation works both ways, so that the Routleys’ seman-

tics is just an interpretation in the quasi-fields of sets of Bia lynicki-Birula
and Rasiowa written in different notation. Incidentally soundness and com-
pleteness of Rfde relative to the Routleys’ semantics follows immediately
via the translation above from the corresponding theorem of the previous
section vis à vis de Morgan lattices together with their representation as
quasi-fields of sets. Of course the Routleys’ conceived their results and de-
rived them independently from the representation of Bia lynicki-Birula and
Rasiowa.

We will not say very much here about what intuitive sense (if any) can be
attached to the Routleys’ use of the ∗-operator in their valuational clause
for negation. Indeed this question has had little extended discussion in
the literature (though see [Meyer, 1979a, Copeland, 1979]). The Routleys’
[1972] paper more or less just springs it on the reader, which led Dunn in
[Dunn, 1976a] to describe the switching of a with a∗ as ‘a feat of prestidigi-
tation’. Routley and Meyer [1973] contains a memorable story about how a∗

‘weakly asserts’, i.e. fails to deny, precisely what a asserts, but one somehow
feels that this makes the negation clause vaguely circular. Still, semantics
often gives one this feeling and maybe it is just a question of degree. One
way of thinking of a and a∗ is to regard them as ‘mirror images’ of one
another reversing ‘in’ and ‘out’. Where one is inconsistent (containing both
A and ¬A), the other is incomplete (lacking both A and ¬A), and vice versa
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(when a = a∗, a is both consistent and complete and we have a situation ap-
propriate to classical logic). Viewed this way the Routleys’ negation clause
makes sense, but it does require some anterior intuitions about inconsistent
and incomplete set-ups. More about the interpretation of this clause will
be discussed in Section 5.1.

Let us now discuss the philosophical interpretation(s) to be placed on
the representation of de Morgan lattices as fields of polarities. In Dunn
[1966, 1971] the favoured interpretation of a polarity (X1, X2) was as a
‘proposition surrogate’, X1 consisting of the ‘topics’ the proposition gives
definite positive information about and, X2 of the topics the proposition
gives definite negative information about. A valuation of a zero degree
formula in a de Morgan lattice can be viewed after a representation of the
elements of the lattice as polarities as an assignment of positive and negative
content to the formula. The ‘mistake’ in the ‘classical’ Carnap/Bar-Hillel
approach to content is to take the content of ¬A to be the set-theoretical
complement of the content of A (relative to a given universe of discourse).
In general there is no easy relation between the content of A and that of
¬A. They may overlap, they may not be exhaustive. Hence the need for
the double-entry bookkeeping done by proposition surrogates (polarities).
If A is interpreted as (X1, X2), ¬A gets interpreted as the interchanged
(X2, X1).

Another semantical interpretation of the same mathematics is to be found
in Dunn [1969, 1976a]. There given a polarity X = (X1, X2), X1 is thought
of as the set of situations in which X is true and X2 as the set of situations
in which X is false. These situations are conceived of as maybe inconsistent
and/or incomplete, and so again X1 and X2 need not be set-theoretic com-
plements. This leads in the case when the set of situations being assessed
is a singleton {a} to a rather simple idea. The field of polarities looks like
this

({a}, ∅) T (= {T})
s

�
�

�s
@

@
@s�

�
�

s@
@

@

(∅, {a}) F (= {F})

({a}, {a}) B (= {T, F}) (∅, ∅) N (= ∅)

We have taken the liberty of labelling the points so as to make clear the
informal meaning. (Thus the top is a polarity that is simply true in a and
the bottom is one that is simply false, but the left-hand one is both true
and false, and the right-hand one is neither.) Note that the de Morgan
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complement takes fixed points on both B and N. This is of course our old
friend 4, which we know to be characteristic for Rfde.

This leads to the idea of an ‘ambi-valuation’ as an assignment to sentences
of one of the four values T, F, B, N, conceived either as primitive or realised
as sets of the usual two truth values as suggested by the labelling. On this
latter plan we have the valuation clauses (with double entry bookkeeping):

(∧) T ∈ v(A ∧ B)⇔ T ∈ v(A) and T ∈ v(B),
F ∈ v(A ∧ B)⇔ F ∈ v(A) or F ∈ v(B),

(∨) T ∈ v(A ∨ B)⇔ T ∈ v(A) or T ∈ v(B),
F ∈ v(A ∨ B)⇔ F ∈ v(A) and F ∈ v(B),

(¬) T ∈ v(¬A)⇔ F ∈ v(A),
F ∈ v(¬A)⇔ T ∈ v(A).

We stress here (as in [Dunn, 1976a]) that all this talk of something’s
being both true and false or neither is to be understood epistemically and
not ontologically. One can have inconsistent and or incomplete assumptions,
information, beliefs, etc. and this is what we are trying to model to see what
follows from them in an interesting (relevant!) way. Belnap [1977b, 1977a]
calls the elements of the lattice ‘told values’ to make just this point, and goes
on to develop (making connections with Scott’s continuous lattices) a theory
of ‘a useful four-valued logic’ for ‘how a computer should think’ without
letting minor inconsistencies in its data lead to terrible consequences.

Before we leave the semantics of first-degree relevant implications, we
should mention the interesting semantics of van Fraassen [1969] (see also An-
derson and Belnap [1975, Section 20.3.1] and van Fraassen [1973]), which
also has a double-entry bookkeeping device. We will not mention details
here, but we do think it is an interesting problem to try to give a represen-
tation of de Morgan lattices using van Fraassen’s facts so as to try to bring
it under the same umbrella as the other semantics we have discussed here.

3.5 The Algebra of R

This section is going to be brief. Dunn has already exposited on this
topic in Section 28.2 of [Anderson and Belnap, 1975] and the interested
reader should consult that and then Meyer and Routley [1972] for infor-
mation about how to algebraise related weaker systems and how to give
set-theoretical representations.

De Morgan monoids are a class of algebras that are appropriate to R

in the sense that (i) the Lindenbaum algebra of R is one of them and (ii)
all R theorems are valid in them ((ii) gives soundness, and of course (i)
delivers completeness by way of the canonical valuation). In thinking about
de Morgan monoids it is essential that R be equipped with the sentential
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constant t. Also it is nice to think of fusion (◦) as a primitive connective,
with even perhaps → defined (A → B =df ¬(A ◦ ¬B)) but this is not
essential since in R (but not the weaker relevance logics) fusion can be
defined as A ◦B =df ¬(A→ ¬B).

A de Morgan monoid is a structure D = (D,∧,∨,¬, ◦, e) where

(I) (D,∧,∨,¬) is a de Morgan lattice,

(II) (D, ◦, e) is an Abelian monoid, i.e. ◦ is a commutative, associative
binary operation on D with e its identity, i.e. e ∈ D and e ◦ a = a for
all a ∈ D,

(III) the monoid is ordered by the lattice, i.e. a ◦ (b ∨ c) = (a ◦ b) ∨ (a ◦ c),

(IV) ◦ is upper semi-idempotent (‘square increasing’), i.e. a ≤ a ◦ a,

(V) a ◦ b ≤ c iff a ◦ ¬c ≤ ¬b (Antilogism).

De Morgan monoids were first studied in [Dunn, 1966] (although [Meyer, 1966]
already had isolated some of the key structural features of fusion that they
abstract). They also were described in [Meyer et al., 1974] and used in
showing γ admissible. Similar structures were investigated quite indepen-
dently by Maksimova [1967, 1971].

The key trick in relating de Morgan monoids to R is that they are resid-
uated, i.e. there is a ‘residual’ operation → so that

(VI) a ◦ b ≤ c iff a ≤ b→ c.

Indeed this operation turns out to be ¬(b ◦¬c) (with the weaker systems
or with positive R it is important to postulate this law of the residual).
Thus

(1) a ◦ b ≤ c⇔ b ◦ a ≤ c Commutativity
(2) a ◦ b ≤ c⇔ b ◦ ¬a 1, (V)
(3) a ◦ b ≤ c⇔ a ≤ ¬(b ◦ ¬c) 2, de Morgan lattice.

As an illustration of the power of (VI) we show how the algebraic analogue
of the Prefixing axiom follows from Associativity. First note that one can
get from (III) the law of

(Monotony) a ≤ b⇒ c ◦ a ≤ c ◦ b.

Now getting down to Prefixing:

1. a→ b ≤ a→ b

2. (a→ b) ◦ a ≤ b 1, (VI)
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3. (c→ a) ◦ c ≤ a 2, Substitution

4. (a→ b) ◦ ((c→ a) ◦ c) ≤ b 2,3, Monotony

5. ((a→ b) ◦ (c→ a)) ◦ c ≤ b 4, Associatively

6. (a→ b) ◦ (c→ a) ≤ c→ b 5, (VI)

7. a→ b ≤ ((c→ a)→ (c→ b)) 6, (VI).

Incidentally, something better be said at this point about how validity
in de Morgan monoids is defined. Unlike the case with Rfde, there are
theorems which are of the form A→ B, e.g. A∨¬A. We need some way of
defining validity which is broader than insisting that always v(A) ≤ v(B).
The identity e interprets the sentential constant t. By virtue of the R

axiom A↔ (t→ A) characterising t, it makes sense to count all de Morgan
monoid elements a such that e ≤ a as ‘designated’, and to define A as
valid iff v(A) ≥ e for all valuations in all de Morgan monoids. We have the
following law

a ≤ b⇔ e ≤ a→ b,

which follows immediately from (VI) and the fact that e is the identity
element. This means that (7) just above can be transformed into

e ≤ (a→ b)→ ((c→ a)→ (c→ b))

validating prefixing as promised.
Other axioms of R can be validated by similar moves. Commutativity

validates Assertion, that e is the identity validates self-implication, square-
increasingness validates Contraction, antilogism validates Contraposition,
and the other axioms fall out of de Morgan lattice properties with lattice
ordering and the residual law pitching in.

We shall not here investigate the ‘converse’ questions about how the
fusion connective in R is associative, etc. (that the Lindenbaum alge-
bra of R is indeed a de Morgan monoid (cf. Dunn’s Section 28.2.2 of
[Anderson and Belnap, 1975])), but the proof is by ‘fiddling’ with contra-
position being the key move.

Not as much is known about the algebraic properties of de Morgan
monoids as one would like. Getting technical for a moment and using unex-
plained but standard terminology from universal algebra, it is known that de
Morgan monoids are equationally definable (replace (V) with a◦¬(a◦¬b) ≤
b, which can be replaced by the equation (a ◦ ¬(a ◦ ¬b)) ∨ b = b). So
by a theorem of Birkhoff the class of de Morgan monoids is closed under
sub-algebras, homomorphic images, and subdirect products. Further, given
a de Morgan monoid D with a prime filter P with e ∈ P , the relation
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a ≈ b ⇔ (a → b) ∧ (b → a) ∈ P is a congruence, and the quotient algebra
D/≈ is subdirectly irreducible, and every de Morgan monoid is a subdirect
product of such. It would be nice to have some independent interesting
characterisation of the subdirectly irreducibles.

One significant recent result about the algebra of R has been provided
by John Slaney. He has shown that there are exactly 3088 elements in the
free De Morgan monoid generated by the identity e. Or equivalently, in
the language of R including the constant t, there are exactly 3088 non-
equivalent formulae free of propositional variables. The proof technique is
quite subtle, as generating a large algebra of 3088 elements is not feasible,
even with computer assistance. Instead, Slaney attacked the problem using
a “divide and conquer” technique [Slaney, 1985]. Since R contains all for-
mulae of the form A ∨ ¬A, for any A, whenever L is a logic extending R,
L = (L + A)∩ (L +¬A), where L + A is the result of adding A as an axiom
to L and closing under modus ponens and adjunction. Given this simple
result, we can proceed as follows. R is (R+f → t)∩(R+¬(f → t)). Now it
is not difficult to show that the algebra of R+ (f → t) generated by t is the
two element boolean algebra. Then you can restrict your attention to the
algebra generated by t in the logic R + ¬(f → t). If this has some charac-
teristic algebra, then you can be sure that the elements freely generated by
t in R are bounded above by the number of elements in the direct product
of the two algebras. To get the characteristic algebra of R + ¬(f → t),
Slaney goes on to divide and conquer again. He ends up considering six
matrices, characterising six different extensions of R. This would give him
an upper bound on the number of constants (the matrices were size 2, 4,
6, 10, 10 and 14, so the bound was their product, 67200, well above 3088).
Then you have to consider how many of these elements are generated by the
identity in the direct product algebra. A reasonably direct argument shows
that there are exactly 3088 elements generated in this way, so the result is
proved.

3.6 The Operational Semantics (Urquhart)

This set-theoretical semantics is based upon an idea that occurred indepen-
dently to Urquhart and Routley in the very late 1960s and early 70s. We
shall discuss Routley’s contribution (as perfected by Meyer) in the next sec-
tion and also just mention some related independent work of [Fine, 1974].
Here we concentrate upon the version of Urquhart [1972c] (cf. also Urquhart
[1972b, 1972a, 1972d]).

Common to all the versions is the idea that one has some set K whose
elements are ‘pieces of information’, and that there is a binary operation ◦
on K that combines pieces of information. Also there is an ‘empty piece
of information’ 0 ∈ K. We shall write x � A to mean intuitively ‘A holds
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according to the piece of information x’. The whole point of the semantics
is disclosed in the valuational clause

(→) x � A→ B iff ∀y ∈ K (if y � A, then x ◦ y � B).

The idea of the clause from left-to-right is immediately clear: if A → B
is given by the information x, then if A is given by y, then the combined
piece of information x ◦ y ought to give B (by modus ponens). The idea
of the clause from right-to-left is to say that if this happens for all pieces
of information y, this can only be because x gives us the information that
A→ B.

Perhaps saying the whole point of the semantics is given in the clause (→)
along is an exaggeration. There are at least two quick surprises. The first
is that we do not require (or want) a certain condition analogised from a
condition required by Kripke’s (relational) semantics for intuitionistic logic:

(The Hereditary Condition) If x � A, then x ◦ y � A.

This would yield that if x � A, then x � B → A, i.e. if y � B, ten
x ◦ y � A. This would quickly involve us in irrelevance.

The other surprise is related to the failure of the Hereditary Condition:
Validity cannot be defined as a formula’s holding at all pieces of information
in all models, since even A → A would not then turn out to be valid.
Thus x � A → A requires that if y � A then x ◦ y � A. But this last
is just a commuted form of the rejected Hereditary Condition, and there
is no more reason to think it holds. We shall see in a moment that the
appropriate definition of validity is to require that 0 � A for the empty
piece of information in all models.

Enough talk of what properties ◦ does not have! What property does it
have? We have just been flirting with one of them. Clearly 0 � A → A
requires that if x � A then 0 ◦ x � A, and how more naturally would that
be obtained than requiring that 0 be a (left) identity?

0 ◦ x = x. (Identity)

This then seems the minimal algebraic condition on a model. Urquhart
in fact requires others, all naturally motivated by the idea that ◦ is the
‘union’ of pieces of information.

x ◦ y = y ◦ x (Commutativity)

x ◦ (y ◦ z) = (x ◦ y) ◦ z (Associativity)

x ◦ x = x. (Idempotence)
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These conditions combined may be expressed by saying that (K, ◦, 0)
is a ‘(join) semi-lattice with least element 0’, and accordingly Urquhart’s
semantics is often referred to as the ‘semi-lattice semantics’. It is well-known
that every semi-lattice is isomorphic to a collection of sets with union as ◦
and the empty set as 0 (map x to {y : x ◦ y = y} so that henceforward ◦
will be denoted by ∪.

Each of the conditions above of course corresponds to an axiom of R→

when it is nicely axiomatised. Thus commutativity plays a natural role in
verifying the validity of assertion. The following use of natural deduction
in the metalanguage makes this point nicely (we write ‘A, x’ rather than
x � A for a notational analogy):

1. A, x Hypothesis
2. A→ B, z Hypothesis
3. B, x ∪ z 1, 2, (→)
4. B, z ∪ x 3, Comm.
5. (A→ B)→ B, x 2, 4(→)
6. (A→ B)→ B, 0 ∪ x 5, Identity
7. A→ ((A→ B)→ B), 0.

The reader may find it amusing to write out an analogous pair of proofs
for Prefixing, seeing how Associativity of ∪ enters in, and for Contraction
watching the Idempotence.24

The game has now been given away. There is some fiddling to be sure in
proving a completeness theorem for R→ re the semi-lattice semantics, but
basically the idea is that the semi-lattice semantics is just the system FR→

‘written in the metalanguage’.

There is not a problem in extending the semi-lattice semantics so as to
accommodate conjunction. The clause

x � A ∧ B iff x � A and x � B (∧)

does nicely. Somewhat strangely, the ‘dual’ clause

x � A ∨ B iff x � A of x � B (∨)

causes trouble. It is analogous to having the rule of ∨-Elimination NR

24Though unfortunately verification of this last does not depend purely on Idempo-
tence, but rather on (xy)y = xy, which of course is equivalent to Idempotence given
Associativity and Identity. The verification of the formula A ∧ (A → B) → B ‘exactly’
uses Idempotence, but of course this is hardly a formula of the implicational fragment.



68 J. MICHAEL DUNN AND GREG RESTALL

read:
A ∨ B, x

A, x Hyp.
...

c, x ∪ y
B, x Hyp.

...
C, x ∪ y
C, x ∪ y.

With this rule we can prove

(]) (A→ B ∨ C) ∧ (B → C)→ (A→ C),

which is not a theorem of R (see [Urquhart, 1972c]—the observation is
Meyer’s and Dunn’s.)25 And of course one can analogously verify that it is
valid in the semi-lattice semantics.

Note that the condition (∨) is not nearly as intuitive as the condition
(∧). The condition (∧) is plausible for any piece of information x, at least
if the relation x � c does not require that C be explicitly contained in x.
On the other hand the condition (∨) is much less than natural. Does not it
happen all the time that a piece of information x determines A∨B to hold,
without saying which? Is not this one of the whole points of disjunctions?
Pieces of information x that satisfy (∨) might be called ‘prime’ (in analogy
with this epithet applied to theories of Section 2.4), and they have a kind of
completeness or effeminateness that is rare in ordinary pieces of information.
This by itself counts as no criticism of the semantics, since it is quite usual
in semantical treatments to work with such idealised notions.

The condition (∨) is not really as ‘dual’ to the condition (∧) as one might
think. Thus the formula

(]d) (B ∧ C → A) ∧ (C → B)→ (C → A),

which is the dual of (]) is easily seen not to be valid in the semantics. This
seems to be connected with another feature (problem?) of the semantics, to
wit, no one has ever figured out how to add a natural semantical treatment
of classical negation to the semantics (although it is straightforward to add a
species of constructive negation—see [Urquhart, 1972c]).26 The point of the

25It would be with C → C as an additional conjunct in the antecedent.
26Charlewood and Daniels have investigated a combination of the semi-lattice seman-

tics for the positive connectives and a four-valued treatment of negation in the style of
[Dunn, 1976a]. they avoid the problem just described by in effect building into their
definition of a model that it must satisfy classical contraposition. This does not seem to
be natural.
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connection is that (]d) would follow from (]) given classical contraposition
principles, and yet the first is valid and the second one invalid in the positive
semantics. So something about the positive semantics would have to be
changed as well to accommodate negation.

The semi-lattice semantics has been extensively investigated in Charlewood
[1978, 1981]. He fits it out with (two) natural deduction systems one with
subscripts and one without. This last is in fact the (positive) system of
Prawitz [1965], which Prawitz wrongly conjectured to be the same as Ander-
son and Belnap’s. Charlewood proves normalisation theorems (something
that was anticipated by Prawitz for his system—incidentally the problem
of normalisation for the Anderson–Belnap R seems still open). Inciden-
tally, one advantage of these natural deduction systems is that, unlike the
Anderson–Belnap one for their system R (cf. Section 1.5), they allow for a
proof of distribution.

Charlewood also carries out in detail the engineering needed to implement
K. Fine’s axiomatisation of the semi-lattice semantics. What is needed is
to add to the Anderson–Belnap’s R+ the following rule:

R1: From B0∧((A1∧q1, . . . , qn∧An)→ X)→ ((B1∧q1, . . . , Bn∧qn)→ E)
for X = B, C, and n ≥ 0 infer the same thing with B∨C put in place of
the displayed X , provided that he qi are distinct and occur only where
shown.

We forbear taking cheap shots at such an ungainly rule, the true elegance
of which is hidden in the details of the completeness proof that we shall not
be looking into. Obviously Anderson and Belnap’s R is to be preferred
when the issue is simplicity of Hilbert-style axiomatisations.27

3.7 The Relational Semantics (Routley and Meyer)

As was indicated in the last section, Routley too had the basic idea of the
operational semantics at about the same time as Urquhart. Priority would
be very hard to assess. At any rate Dunn first got details concerning both
their work in early 1971, although J. Garson told him of Urquhart’s work
in December of 1970 and he has seen references made to a typescript of
Routley’s with a 1970 date on it (in [Charlewood, 1978]).

Meyer and Dunn were colleagues at the time, and Routley sent Meyer
a somewhat incomplete draft of his ideas in early 1971. This was a coura-
geous and open communication in response to our keen interest in the topic
(instead he might have sat on it until it was perfected). The draft favoured
the operational semantics, indeed the semi-lattice semantics, and was not

27However, the semi-lattice semantics has been taken up and generalised in the field of
substructural logics in the work of [Došen, 1988, Došen, 1989] and [Wansing, 1993].
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clear that this was not the way to go to get Anderson and Belnap’s R. But
the draft started with a more general point of view suggesting the use of a
3-placed accessibility relation Rxyz (of course a 2-placed operation like ∪ is
a 3-placed relation, but not always conversely), with the following valuation
clause for →:

(→) x � A→ B iff ∀y, z ∈ K (if Rxyz and y � A, then z � B).

Forgetting negation for the moment, the clauses for ∧ and ∨ are ‘truth
functional’, just as for the operational semantics.

Meyer, having observed with Dunn the lack of fit between the semi-
lattice semantics and R, was all primed to make important contributions to
Routley’s suggestion. In particular he saw that the more general 3-placed
relation approach could be made to work for all of R. In interpreting Rxyz
perhaps the best reading is to say that the combination of the pieces of
information x and y (not necessarily the union) is a piece of information
in z (in bastard symbols, x ◦ y ≤ z). Routley himself called the x, y, etc.
‘set-ups’, and conceived of them as being something like possible worlds
except that they were allowed to be inconsistent and incomplete (but always
prime). On this reading Rxyz can be regarded as saying that x and y are
compatible according to z, or some such thing.

Before going on we want to advertise some work that we are not going to
discuss in any detail at all because of space limitations. The work of Fine
[1974] independently covers some of the same ground as the Routley-Meyer
papers, with great virtuosity making clear how to vary the central ideas
for various purposes. The book of Gabbay [1976, see chapter 15] is also
deserving of mention.

We now set out in more formal detail a version of the Routley–Meyer
semantics for R+ (negation will be reserved for the next section). The
techniques are novel and the completeness proof quite complicated, so we
shall be reasonably explicit about details. The presentation here is very
much indebted to work (some unpublished) of Routley, Meyer and Belnap.

By an (R+) frame (or model structure) is meant a structure (K, R, 0),
where K is a non-empty set (the elements of which are called set-ups), R
is a 3-placed relation on K, 0 ∈ K, all subject to some conditions we shall
state after a few definitions. We define for a, b ∈ K, a ≤ b (Routley and
Meyer used >) iff R0ab, and R2abcd iff ∃x (Rabx and Rxcd). We also write
this last as R2(ab)cd and distinguish it from R2a(bc)d =df ∃x(Raxd∧Rbcx).
The variables a, b, etc. will be understood as ranging over the elements of
some K fixed by the content of discussion.

Transcribing the conditions on the semi-lattice semantics as closely as we
can into this framework we get the requirements

1. (Identity) R0aa,
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2. (Commutativity) Rabc⇒ Rbac,

3. (Associativity) R2(ab)cd⇒ R2a(bc)d,28

4. (Idempotence) Raaa.

It should be remarked that these conditions fail to pick up the whole
strength of the corresponding semi-lattice conditions. Thus, e.g. Identity
here only picks up 0·a ≤ a and not conversely, and similarly for Idempotence
(also of course Commutativity and Associativity do not require any identity,
but this is a slightly different point). We need for technical reasons one more
condition:

5. (Monotony) Rabc and a′ ≤ a⇒ Ra′bc.

By a model we mean a structure M = (K, R, 0, �), where (K, R, 0) is a
frame and � is a relation from K to sentences of R+ satisfying the following
conditions:

(1) (Atomic Hereditary Condition). For a propositional variable p, if a � p
and a ≤ b, then b � p.

(2) (Valuational Clauses). For formulas A, B

(→) a � A→ B iff ∀b, c ∈ K (if Rabc and b � A, then c � B);

(∧) a � A ∧ B iff a � A and a � B;

(∨) a � A ∨ B iff a � or a � B.

We shall say that A is verified on M if 0 � A, and that A entails B on
M if ∀a ∈ K (if a � A, then a � B). We say that A is valid if A is verified
on all models.

It is easy to prove by an induction on A, the following (note how Monotony
enters in):

Hereditary Condition. For an arbitrary formula A, if a � A and a ≤ b,
then b � A.

Verification Lemma. If in a given model (K, R, 0, �)A entails B in the
sense that for every a ∈ K, a � A only if a � B, then A → B is verified in
the model, i.e. 0 � A→ B.

Proof. suppose that R0ab and a � A. By the hypothesis of the Lemma,
a � B, and by the Hereditary Condition, b � B, as is required for 0 � A→
B. �

28In the original equivalent conditions of Routley and Meyer [1973] this was instead
‘Pasch’s Law’: R2abcd ⇒ R2acbd. Also Monotony (condition (5) below) was misprinted
there.
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We are now in a position to prove the

Soundness Theorem. If `R A, then A is valid.

Proof. Most of this will be left to the reader. We first show that the axioms
of R+ are valid. Since they are all of the form A → B we can simplify
matters a little by using the Verification Lemma. As an illustration we
verify Assertion (the reader may wish to compare this to the corresponding
verification vis à vis the semi-lattice semantics of the last section).

To show A → [(A → B) → B] is valid, it suffices by the Verification
Lemma to assume a � A and show a � A → B → B. For this last we
assume Rabc and b � A → B, and show c � B. By Commutativity, Rabc.
By (→) since we have b � A→ B and a � A, we get c � B as desired.

The verification of the implicational axioms of Self-Implication and Pre-
fixing are equally routine, falling right out of the Verification Lemma and
Associativity for the relation R. Unfortunately the verification of Contrac-
tion is a bit contrived (cf. note 24 above), so we give it here.

To verify Contraction, we assume that (1) a � A → .A → B and show
a � A→ B. To show this last we assume that (2) Rabc and (3) b � A, and
show c � B. From (2) we get, by Commutativity, Rbac. But Rbbb holds by
Idempotence. so we have R2(bb)ac. By Associativity we get R2b(ba)c, i.e.
for some x, both (4) Rbxc and (5) Rbax. by Commutativity, from (5) we
get Rabx. Using (→), we obtain from this, (1), and(3) hat (6) x � A→ B.
by Commutativity from (4) we get Rxbc, and from this, (6), and (3) we at
last get the desired c � B.

Verification of the conjunction and disjunction axioms is routine and is
safely left to the reader.

It only remains to be shown then that the rules modus ponens and ad-
junction preserve validity. Actually something stronger holds. It is easy to
se that for any a ∈ K (not just 0), if a � A → B and a � A, then a � B
(by virtue of Raaa), and of course it follows immediately from (∧) that if
a � A and a � B, then a � A ∧ B. �

We next go about the business of establishing the

Completeness Theorem. If A is valid, then �R+ A.

The main idea of the proof is similar to that of the by now well-known
Henkin-style completeness proofs for modal logic. We suppose that no �R+

A and construct a so-called ‘canonical model’, the set-us of which are certain
prime theories (playing the role of the maximal theories of modal logic).
The base set-up 0 is constructed as a regular theory (for the terminology
‘regular’, ‘prime’, etc. consult Section 2.4; of course everything is relativised
to R+). From this point on for simplicity we shall assume that we are
dealing with R+ outfitted with the optional extra fusion connective ◦ and
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the propositional constant t (recall these can be conservatively added — cf.
Section 1.3). We then define Rabc to hold precisely when for all formulas
A and B, whenever A ∈ a and B ∈ b, then A ◦B ∈ c.29

Let us look now at the details. Pick 0 as some prime regular theory T
with A 6∈ T . We can derive that at least one such exists using the Belnap
Extension Lemma (it was stated in Section 2.5 for RQ, but it clearly holds
for R+ as well). thus set ∆ = R+ and θ = {A}.

Define K = set of prime theories,30 and define the accessibility relation
R canonically as above.

THEOREM 1 The canonically defined structure (K, 0, R) is an R+ frame.

LEMMA 2 The relation R defined canonically above satisfies Identity, Com-
mutativity, Idempotence, and Associativity.

Proof.

ad Identity. We need to show that R0aa, i.e. if X ∈ 0 and A ∈ a, then
X ◦A ∈ a. By virtue of the R -theorem A→ t ◦A, we have t ◦A ∈ a. But
using the R-theorem X → .t → x, we have t → X ∈ 0. By Monotony we
have X ◦A ∈ a as desired.

ad Commutativity. Suppose Rabc. We need show Rbac, i.e. if B ∈ b and
A ∈ a, then B ◦A ∈ c. From Rabc, it follows that A ◦B ∈ c. But by virtue
of the R-theorem A ◦B → B ◦A (commutativity of ◦) we have B ◦A ∈ C,
as desired.

ad Idempotence. We need show Raaa, i.e. if A ∈ a and B ∈ a, then
A ◦B ∈ a. This follows from the R-theorem A ∧B → A ◦B, which follows
ultimately from the square increasingness of ◦, (X → X ◦X), as the proof
sketch below makes clear.

1. A ∧ B → A Axiom

2. A ∧ B → B Axiom

3. (A ∧ B) ◦ (A ∧ B)→ A ◦B 1, 2, Monotony

4. A ∧ B → A ◦B 3, square increasingness

29The use of ◦ and t is a luxury to make things prettier at least at the level of descrip-
tion. Thus, e.g. as we shall see, the associativity of R follows from the associativity of
◦, and other mnemonically pleasant things happen. We could avoid its use by defining
Rabc to hold whenever if A ∈ a and A → B ∈ b, then B ∈ c. Incidentally, the valuational
clause for fusion is : x � A ◦ B iff for some a, b such that Rabx, a � A and b � B. The
valuational clause for t is x � t iff 0 ≤ x.

30One actually has a choice here. We have required of theories that they be closed
under implications provable in 0, i.e. require of T that whenever A ∈ T and A → B ∈ 0,
then B ∈ T . The latter is a stronger requirement and leads to the ‘smaller’ reduced
models of [Routley et al., 1982], which are useful for various purposes.
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ad Associativity. This is by far the least trivial property. Let us then
assume that R2(ab)cd, i.e. ∃x(Rabx and Rxcd). We need then show that
there is a prime theory y such that Rayd and Rbcy, i.e. R2a(bc)d.

Set y0 = {Y : ∃B ∈ b, C ∈ c :`R B◦C → Y }. (This is sometimes referred
to as b ◦ c). Clearly the definition of y0 assures that Rbcy0.

Observe that y0 is a theory.31 Thus it is clear that y0 is closed under
provable R-implication, since this is just transitivity. We show it is also
closed under adjunction. Thus suppose for some B, B′ ∈ b, C, C ′ ∈ c, �R

B ◦ C → Y and `R B′ ◦ C ′ → Y ′. Then `R (B ◦ C) ∧ (B′ ◦ C ′) →
Y ∧ Y ′ using easy properties of conjunction. But we have the R-theorem
(B ∧B′) ◦ (C ∧C ′)→ (B ◦C) ∧ (B′ ◦C ′) (which follows basically from the
one-way distribution of ◦ over ∧, X ◦ (Y ∧ Z) → (X ◦ Y ) ∧ (X ◦ Z), which
follows basically from Monotony, Y1 → Y2 → X ◦ Y1 → X ◦ Y2, which is
easy). So by transitivity we get `R (B ∧ B′) ◦ (C ∧ C ′) → Y ∧ Y ′, from
which it follows that Y ∧ Y ′ ∈ y0 as promised (B ∧ B′ ∈ b, C ∧ C ′ ∈ c of
course, since b, c are closed under adjunction).

We next verify that Ray0d. Suppose that A ∈ a and Y ∈ y0. Then
for some B ∈ b, C ∈ c,`R B ◦ C → Y . Since Rabx, A ◦ B ∈ x. And
since Rxcd(A ◦ B) ◦ C ∈ d. By the associativity of ◦ (since d is a theory),
then A ◦ (B ◦ C) ∈ d. but by Monotony, since `R B ◦ C → Y , we have
`R A ◦ (B ◦ C)→ A ◦ Y . Hence A ◦ Y ∈ d, as needed.

The reader is excused if he has lost the thread a bit and thinks that we
are now finished verifying the associativity of R. We wanted some prime
theory y which fills in the blanks

1. Ra d and

2. Rbc ,

and we have just finished verifying that y0 is a theory that does fill in the
blanks. The kicker is that y0 need not be prime. So we work next at
pumping up y0 to make it prime while continuing to fill in the blanks.

It clearly suffices to prove

The Squeeze Lemma. Let a0 and y0 be theories that need not be prime,
and let d be a prime theory. If Ra0y0d, then there exists a prime theory y
such that (i) y0 ⊆ y and (ii) Ra0yd.

This can be accomplished by a Lindenbaum-style construction like that
of Section 2.3 (or alternatively Zorn’s Lemma may be used as in Routley

31The presentation of Routley–Meyer [1973] is more elegant than ours, developing as
they do properties of what they call the calculus of ‘intensional R-theories’, showing that
it is a partially ordered (under inclusion) commutative monoid (◦ as defined above) with
identity 0. Further ◦ is monotonous with respect to ≤, i.e. if a ≤ b then c ◦ a ≤ c ◦ b, and
◦ is square increasing, i.e. a ≤ a ◦ a. Then defining Rabc to mean a ◦ b ≤ c, the requisite
properties of R fall right out.
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and Meyer [1973]). The idea is to define y as the union of a sequence
of sets of formulas yn, where (relative to some fixed enumeration of the
formulas) yn+1 is defined inductively as yn ∪ {An+1} if Ra(yn ∪ {An+1})d,
and otherwise yn+1 is just yn.

But it is instructive to crank the existence of the given y out of the Belnap
Extension Lemma for R.

Thus set ∆ = y0 and θ = {A : ∃B(A → B) ∈ a and B 6∈ d}. We need
check that (∆, θ) is exclusive.

We observe first that θ is closed under disjunction. Thus suppose A1, A2 ∈
θ. Then for some B1, B)2, A1 → B1, A2 → B2 ∈ a, and yet B1, B2 6∈ d.
Then (since d is prime) B1 ∨ B2 6∈ d. but since a is a theory, then
A1 ∨ A2 → B1 ∨ B2 by an appropriate theorem of R in the proximity
of the disjunction axioms. So A1 ∨ A2 ∈ θ as desired. Since ∆ is closed
dually under adjunction (that was the point of observing above that y0 is a
theory), this means that if the pair (∆, θ) fails to be exclusive, then for some
X ∈ ∆, A ∈ θ,`R X → A. So for some B, A→ B ∈ a and B 6∈ d. But since
a is a theory, by transitivity we derive that X → B ∈ a. But since Raxd
and X ∈ x, we get (X → B) ◦X ∈ d. But since `R X ◦ (X → B)→ B, we
have B ∈ d, contrary to the choice of B.

Now that we know (∆, Θ) is an exclusive pair we apply the Belnap Ex-
tension Lemma to get a pair (y, y′) with y0 = ∆ ⊆ y and y a prime theory,
completing the proof of the Squeeze Lemma, which actually does complete
the proof that the relation R is Associativity.

ad Monotony. (Yes, we still have something left to do.) Let us suppose
that R0a′a and Rabc, and show Ra′bc. Note that it follows from R0a′a
that a′ ≤ a,32 from which it follows at once from Rabc and Ra′bc. Thus
if X ∈ a′ then since X → X ∈ 0, then (X → X) ◦ X ∈ a. But since
`R+ (X → X) ◦X → X , then X ∈ a.

Having now finally verified that the canonical (K, 0, R) has all the prop-
erties of an R+-frame, we need now to define an appropriate relation � on
it. The natural definition is a � A iff A ∈ a, but we need now to verify that
this has the properties (1) and (2) required of � above.

Theorem 2. The canonically defined (K, 0, R, �) is indeed an R-model.

Proof. ad (1) (the Hereditary Condition). Suppose a ≤ b, i.e. R0ab. We
show that a ≤ b, from which the Hereditary Condition immediately follows.
Suppose then that A ∈ a. Since t ∈ 0, t ◦ A ∈ b. But via the R-theorem
t ◦A→ A, we have A ∈ b as desired.

ad (2) (the valuation of clauses). The clauses (∧) and (∨) are more or
less immediate (primeness is of course needed for half of (∨)). The clause

32In the ‘reduced models (cf. note 46) one can show that R0a′a iff a′ ≤ a.



76 J. MICHAEL DUNN AND GREG RESTALL

of interest is (→). Applying the canonical definition of �, this amounts to

(→c) A→ B ∈ a iff ∀b, c(if Rabc and A ∈ b, then B ∈ c).

Left-to-right is argued as follows. Suppose A → B ∈ a, Rabc, A ∈ b,
and show B ∈ c. Rabc of course means canonically that whenever X ∈ a
and Y ∈ b, then X ◦ Y ∈ c. Setting X = A → B and Y = A, we get
A ◦ (A→ B)→ C. Then using the R+- theorem

A ◦ (A→ B)→ B, we obtain B ∈ c.

Right-to-left is harder, and in fact involves the third (and last) application
of the Belnap Extension Lemma in the proof of Completeness. Thus suppose
contrapositively that A → B 6∈ a. We need to construct prime theories b
and c, with A ∈ b and B 6∈ c. We let ∆b = Th({A}) and set ∆c = a ◦∆b,
i.e. {Z : ∃X ∈ a, ∃Y ∈ ∆b `R+ X ◦Y → Z}. This is the same as {Z : ∃X ∈
a `R+ X ◦A→ Z}. We set θc = {B}. Clearly (∆c, θc) is an exclusive pair,
for otherwise `R+ X ◦A→ B, i.e. `R+ X → (A→ B) for some X ∈ a, and
so A → B ∈ a contrary to our supposition. We apply Belnap’s Extension
Lemma to get an exclusive pair (c, c′) with ∆c ⊆ c and c prime theory. Note
that by definition of ∆b and ∆c, Ra∆b∆c, and so Ra∆bc. We are now in a
position to apply the Squeeze Lemma getting a prime theory b ⊇ ∆b such
that Rabc. Clearly A ∈ b, but also B 6∈ c since B ∈ θc ⊆ c′ (c and c′ are
exclusive).

This at last completes the proof of the Completeness Theorem for R+.
�

Remark. It is fashionable these days to always prove strong completeness.
This could have been done. Thus define A to be a logical consequence of
a set of formulas Γ iff for every R+-model M , if 0 � B for every B ∈ Γ,
then 0 � A. This is a kind of classical notion and should not be confused
with some kind of relevant consequence. Thus, e.g. where B is a theorem
of R+, since always 0 � B, B will be a logical consequence of any set Γ.
Define B to be deducible from Γ (again in a neo-classical sense) to mean
B ∈ Th(Γ ∪R+). Appropriate modifications of the work above will show
that logical consequence is equivalent to deducibility.

3.8 Adding Negation to R+

We now discuss the Routley–Meyer semantics for the whole system R.
The idea is simply to add the Routley’s treatment of negation using the
∗-operator (discussed in Section 3.4). (This is not difficult and there is very
little reason to segregate it off into this separate section, except that we
thought that the treatment of R+ was complicated enough.)
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Thus an R-frame is a structure, (K, R, 0, ∗) where (K, R, 0) is an R+-
frame and K is closed under the unary operation ∗ satisfying:

(Period two) A∗∗ = a,
(Inversion) Rabc⇒ Rac∗b∗

For an R-model the valuational clauses for the positive connectives are as
for an R-model, and we of course add

(¬) a � ¬A iff a∗ 6� A.

The soundness and completeness results are relatively easy modifications
of those for R+. That ∗ is of period two naturally is used n the verification
of Double Negation and Inversion is central to the verification of Contra-
position. For completeness, a∗ is defined canonically as {A : ¬A 6∈ a} (cf.
the definition of the analogue g[P ] in the proof of Bia lynicki–Birula and
Rasiowa’s representation of de Morgan lattices in Section 3.4), and one of
course has to show that a∗ is a prime theory when a is. One also has to show
that canonical ∗ is of period two and satisfies (Inversion), and that canonical
� satisfies (¬) above, i.e. A ∈ a ⇔ ¬A 6∈ a∗, i.e. ¬A 6∈ {B : ¬B 6∈ a}, i.e.
¬¬A ∈ a, which of course just uses Double Negation.

It is worth remarking that since the canonical 0 is a prime regular theory,
then since `R A ∨ ¬A, then 0 is complete (but not necessarily consistent—
this is relevant to the development in Section 3.9). For your garden variety
Routley–Meyer model (not necessarily canonical) notice also that 0 � A or
0 � ¬A. This follows ultimately from 0∗ ≤ 0, i.e. R00∗0, proven below.

1. R0∗0∗0∗

2. R0∗00 1, (Inversion), (Period two)

3. R00∗0 2, (Commutation).

Now 0∗ ≤ 0 means by the Hereditary Condition that if 0 � A then 0∗ � A,
i.e. 0 � ¬A as desired.

It should be said that although either the four-valued treatment or the
∗-operator treatment of negation work equally well for first-degree relevant
implications (at least from a technical point of view), the ∗-operator treat-
ment seems to win hands down in the context of all of R. Meyer [1979a]
has succeeded in giving a four-valued treatment of all of R, but at the price
of great technical complexity (e.g. the accessibility relation has to be made
four-valued as well, and that is just for starters). Further, as Meyer points
out, one’s models still have to be closed under ∗, so it still can be said to
sneak in the back door.
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3.9 Routley-Meyer Semantics for E and other Neighbours of R

Once one sets down a set of conditions on an accessibility relation, they can
be played with n various ways so as to produce semantics for a wide variety
of systems as the experience with modal logic has taught us. Also other
features of the frames can be generalised.

We can here only give the flavour of a whole range of possible and actual
results. In all the results below � will satisfy the same conditions as for
R+ (or R ) models (as appropriate). To begin with we follow Routley and
Meyer [1973] with the description of a series of conditions on positive frames
and corresponding axioms for propositional logic. They begin by requiring
of a B+-frame (K, R, 0)

B1. a ≤ a

B2. a ≤ b and b ≤ x⇒ a ≤ c

B3. a′ ≤ a and Rabc⇒ Ra′bc.

B1–B2 of course say that ≤ is a quasi-order, and B3 says something like
that it is monotone.

‘B’ appears to be for ‘Basic’, for they regard the above postulates as a
natural minimal set on their approach.33 Gabbay [1976] investigates even
weaker logics where no conditions at all are placed on the frame, but these
have no theorems and are characterised only by rules of deducibility (un-
less Boolean negation and/or the Boolean material conditional is present,
options which he does explore).

The sense in which the above postulates are minimal goes something like
this. B3 is needed in proving the Hereditary Condition for implications,
and the Hereditary Condition is needed in turn for verifying 0 � A →
A (indeed anything) so we have at least some minimal theorems. The
Hereditary Condition is used in showing the equivalence of the verification
of an implication in a model and entailment in that mode, i.e. 0 � A → B
iff ∀x ∈ K(x � A ⇒ x � B) (cf. Section 3.7 to see how these conditions
were used to establish these facts about R+-models). What about B2? We
think it is just a ‘freebie’. It seems to play no role in verifying axioms or
rules, but the completeness proof can be made to yield canonical (‘reduced’)
models (cf. note 3.7) that satisfy it, so why not have it? This seems to be
what Routley et. al. [1982] say. It appears that B1 is even more a freebie.

It may be shown that A is a theorem of the system B+ (formulated in
Section 1.3) iff A is valid in all B+ models.

33However, some notational confusion is possible, with Fine’s use of ‘B’ as another
basic relevance logic differing slightly from Routley and Meyer’s usage [Fine, 1974]. For
Fine, B includes the law of the excluded middle, and for Routley and Meyer, it does not.
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Routley and Meyer establish the following correspondence between con-
ditions on the accessibility relation R and axioms:

(1) Raaa A ∧ (A→ B)→ B
(2) Rabc⇒ R2a(ab)c (A→ B) ∧ (B → C)→ (A→ C)
(3) R2abcd⇒ R2a(bc)d A→ B → ([B → C]→ [A→ C])
(4) R2abcd⇒ R2b(ac)d A→ B → ([C → A]→ [C → B])
(5) Rabc⇒ R2abbc (A→ [A→ B])→ (A→ B)
(6) Ra0a ([A→ A]→ B)→ B
(7) Rabc⇒ Rbac A→ ([A→ B]→ B)
(8) 0 ≤ a A→ (B → B)
(9) Rabc⇒ b ≤ c A→ (B → A).

Routley and Meyer connect these conditions on accessibility relations to
axioms extending the basic logic B. The correspondence is more perspicu-
ous when you consider the structural rules corresponding to each axiom or
condition. We can express these as conditions on fusion:

(1) Raaa A ` A ◦A
(2) Rabc⇒ R2a(ab)c A ◦B ` A ◦ (A ◦B)
(3) R2abcd⇒ R2a(bc)d (A ◦B) ◦ C ` A ◦ (B ◦ C)
(4) R2abcd⇒ R2b(ac)d (A ◦B) ◦ C ` B ◦ (A ◦ C)
(5) Rabc⇒ R2abbc A ◦B ` (A ◦B) ◦B
(6) Ra0a A ◦ t ` A
(7) Rabc⇒ Rbac A ◦B ` B ◦A
(8) 0 ≤ a B ◦A ` B (or A ` t)
(9) Rabc⇒ b ≤ c A ◦B ` B.

General recipes for translating between structural rules and conditions
on accessibility relations are to be found in Restall [1998, 2000].

If one wants to add to B+ any of the axioms on the right to get a sentential
logic X, one merely adds the corresponding conditions to those for a B+

model to get the appropriate notion of an X-model, with a resultant sound
and complete semantics.

Some logics of particular interest arising in this way are (nomenclature as
in [Anderson and Belnap, 1975]) (note well that T has nothing to do with
Feys’ t of modal logic fame):

TW+ : B+ + (3, 4)
T+ : TW+ + (5)
E+ : T+ + (6)
R+ : E+ + (7)
H+ : R+ + (8)
S4+ : E+ + (8).

These are far from the most elegant formulations from a postulational
point of view, being highly redundant (in particular the Prefixing and Suf-
fixing rules of B+ are supplanted already in TW+ by the corresponding
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axioms. further the rule of Necessitation (A ` (A→ A)→ A) is also redun-
dant already in TW+ (this is not so obvious—proof is by browsing through
[Anderson and Belnap, 1975]).

What minimal conditions should be imposed on the ∗-operator when it is
added to a B+-frame so as to give a B-frame? Routley et. al. [1982] choose

B4. a∗∗ = a, and

B5. a ≤ b⇒ b∗ ≤ a∗.

The minimality of B5 can be defended in terms of its being needed for
showing that negations satisfy the Hereditary Condition. B4 would seem to
have little place in a minimal system except for the fact that the dominant
trend in relevance logic has been to keep classical double negation.34

One can get semantics for the full systems TW, T, etc. simply by adding
the appropriate postulates to the conditions on a B-model.

We could go on, but will instead refer the reader to Routley et al. [1982],
Fine [1974] and Gabbay [1976] for a variety of variations producing systems
in the neighbourhood of R.

Some find the conditions on the “base point” 0 on frames rather puz-
zling or unintuitive. Why should the basic conditions on frames include
conditions such as the fact that a ≤ b defined as R0ab generate a partial
order? Some recent work by Priest and Sylvan and extended by Restall
has shown that these conditions can be done away with and the frames
given an interpretation rather reminiscent of that of non-normal modal log-
ics [Priest and Sylvan, 1992, Restall, 1993]. The idea is as follows. We have
two sorts of set-ups in a frame — normal ones and non-normal ones. Then
we split the treatment of implication along this division. Normal points are
given an S5-like interpretation.

• x � A→ B iff for every y if y � A then y � B

and non-normal points are given the condition which appeals to the ternary
relation R

• x � A→ B iff for every y and z where Rxyz if y � A then z � B

The other connectives are treated in just the same way as in the original
relational semantics. To prove soundness and completeness for this seman-
tics, it is simplest to go through the original semantics — for it is not too
difficult to show that this account is merely a notational variant, where we
have set Rxyz iff y = z when x is a normal set-up. This satisfies all of
the conditions in the original semantics, for we have set a ≤ b to be simply
a = b.

We turn now to one such system RM deserving of special treatment.

34In fact, B5 is too strong for a purely minimal logic of negation. See Section 5.1 for
more discussion on this.
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3.10 Algebraic and Set-theoretical Semantics for RM

RM has been described by Meyer as ‘the laboratory of relevance logic’. It
plays a role somewhat like S5 among modal logics, being a place where
conjectures can be tested relatively easily (e.g. the admissibility of γ was
first shown for RM). This then could be a very long section because RM is
by far the best understood of the Anderson–Belnap style systems. We shall
try to keep it short by being dogmatic. The interested reader can verify
the results claimed by consulting Meyer’s Section 29.3 and Section 29.4 of
[Anderson and Belnap, 1975] (see also [Dunn, 1970, Tokarz, 1980]).

In the first place the appropriate algebras for RM are the idempotent de
Morgan monoids (strengthening a ≤ a ◦ a to a = a ◦ a). The subdirectly
irreducible ones are all chains with de Morgan complement where a◦b = a∧b
if a ≤ ¬b, and a ◦ b = a ∨ b otherwise. The designated elements are all
elements a such that ¬a ≤ a, and of course these must have a greatest
lower bound to serve as the identity e. (This is just another description
with ◦ as primitive instead of → of the ‘Sugihara matrices’ described in the
publications cited above.) Meyer showed that if `RM A, then A is valid in
all the finite Sugihara matrices, establishing the finite model property for
RM.

Dunn showed that every extension of RM closed under substitution and
the rules of R has some finite Sugihara matrix as a characteristic matrix
(RM is ‘pretabular’). A similar result was shown by Scroggs to hold for the
modal logic S5, and researchers (particularly Maksimova) have obtained
results characterising all such pretabular extensions of S4 and of the intu-
itionistic logic. Curiously enough there are only finitely many, and it is an
interesting open problem to find some similar results for R. RM corresponds
to the super-system of the intuitionistic propositional calculus LC (indeed
LC can be translated into RM; see [Dunn and Meyer, 1971]). Much study
has been done of the ‘superintuitionistic’ calculi (with an emphasis on the
decision problem), and it would be good to see some of the ideas of this
carried over to the ‘super-relevant’ calculi. A small start was begun in
[Dunn, 1979a].

Routley and Meyer [1973] add the postulate

0 ≤ a or 0 ≤ a∗

to the requirement on an R-frame to get an RM-frame. Dunn [1979a]
instead adds the requirement

Rac⇒ a ≤ c or b ≤ c,

which neatly generalised to give a family of postulates yielding set-theoretical
semantics for a denumerable family of weakenings of RM which are alge-
braised by adding various weakenings of idempotence (an+1 = an). It is an
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open problem whether R itself is the intersection of this family and whether
they all have the finite model property (if so, R is decidable). Since R is
undecidable, one of these must be false. However, it is unknown at the time
of writing which one fails.

Proof Sketch

1. ¬X → (¬X → ¬X) Mingle Axiom, Subst.
2. X → (¬X → X) 1, Permutation and

Contraposition
3. (A ∨ ¬A) ∧ (B ∨ ¬B)→ 2, Subst.
¬((A ∨ ¬A) ∧ (B ∨ ¬B))→
((A ∨ ¬A) ∧ (B ∨ ¬B))

4. ¬(A ∨ ¬A) ∨ ¬(B ∨ ¬B)→ 3, MP, de M
(A ∨ ¬A) ∧ (B ∨ ¬B)

5. A ∧ ¬A→ B ∨ ¬B 4, ∨I,∧E, de M.

Kalman [1958] especially investigated de Morgan lattices with the prop-
erty a ∧ ¬a ≤ b ∨ ¬b. We will call these Kalman lattices. he showed that
every Kalman lattice is isomorphic to a subdirect product of the de Morgan
lattice 3. This implies a three- valued Homomorphism Separation Property
for Kalman lattices (which also can be proven by modifying the proof of its
four-valued analogue, noting that each ‘side’ of 4 is just a copy of 3). The
representation in terms of polarities uses polarities X = (X1, X2) where
X1 ∪X2 = U , i.e. X1 and X2 are exhaustive.

This means informally that X always receives at least one of the values
true and false. This leads to a semantics using ambivaluations into the
left-hand side of 4:

F = {f}.

B = {t, f}

T = {t}

s

s

s

This idea leads to a simpler Kripke-style semantics for RM using an or-
dinary binary accessibility relation instead of the Routley–Meyer ternary
one (actually this semantics antedates the Routley–Meyer one, the results
having been presented in [Dunn, 1969]—cf. [Dunn, 1976b] for a full presen-
tation. No details will be supplied here. This semantics has been generalised
to first-order RM with a constant domain semantics [Dunn, 1976c]). The
analogous question with Routley–Meyer semantics is has now been closed in
the negative in the work of [Fine, 1989], which we consider in Section 3.12.
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Meyer [1980] has used this ‘binary semantics’ to give a proof of an ap-
propriate Interpolation Lemma for RM. (Unfortunately, interpolation fails
for E and R [Urquhart, 1993].)

3.11 Spin Offs from the Routley–Meyer Semantics

The Routley–Meyer semantical techniques can be used to prove a variety of
results concerning the system R and related logics which were either more
complicated using other methods (usually algebraic or Gentzen methods), or
even impossible. Thus (cf. [Routley and Meyer, 1973]), it is possible to give
a variety of conservative extension results (being careful in constructing the
canonical model to use only connectives and sentential constant available
in the fragment being extended). Also it is possible to give a proof of the
admissibility of γ (see [Routley and Meyer, 1973]) that is easier than the
original algebraic proof (though not as easy as Meyer’s latest proof using
metavaluations—cf. Section 2.4). Admissibility of γ amounts to showing
that if A is refutable in a given R-model (K, R, 0, �) then A is refutable in
a normal R-model (K ′, R′, 0′, �′) (one where 0′∗ = 0′) gotten by adding a
new ‘zero’ and redefining R′ and �

′ in a certain way from R and �.
Perhaps the most interesting new property to emerge this way is ‘Halldén

completeness’, i.e. if `R A∨B and A and B share no propositional variables
in common, then `R A or `R B ([Routley and Meyer, 1973, Section 2.3]).

Another direction that the Routley–Meyer semantics has taken quickly
ends up in heresy: classical (Boolean) negation ∼ can be added to R with
horrible theorems resulting like A∧ ∼ A→ B, and yet R does not collapse
to classical logic. Indeed no new theorems emerge in the original vocabulary
of R. The idea is to take a normal R-model (K, R, 0, ∗, �) and turn it in for
a new R-model (K ′, R′, 0′, ∗′, �′) , whose 0′ is a new element K ′ = K∪{0′},
∗′ is like ∗ but with 0′∗′ = 0′, and R′ is like R with the additional features:

1. R′0′ab iff R; a0′b iff a = b,

2. R′ab0′ iff a = b∗.

Also �
′ is just like � but with 0′ � A if 0 � A.

The whole point of this exercise is to provide refuting R-models for all
non-R-theorems that have the property

a ≤ b (i.e. R0′ab) ⇒ a = b.

These are called ‘classical R-models’ (first studied in Meyer and Routley
[1973a, 1973b]) and upon them one can define

a � ∼A⇔ not a � A.
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One could not do this on ordinary R-models without things coming apart
at the seams, because in order to have the theorem ∼p → ∼p valid, one
would need the Hereditary Condition to hold for ∼ p, i.e. if a ≤ b, then if
a � ∼p then b � ∼p, i.e. if a � p then b � p. But one has no reason to
think that this is the case, since all one has is the converse coming from
the fact that the Hereditary condition holds for p. The inductive proof
the Hereditary condition breaks down in the presence of Boolean negation,
but of course with classical R-models the Hereditary Condition becomes
vacuous and there is no need for a proof.

This leads to certain technical simplicities, e.g. it is possible to give
Gödel–Lemmon style axiomatisations of relevance logics like the familiar
ones for modal logics, where one takes among one’s axioms all classical
tautologies (using ∼)—cf. [Meyer, 1974].

But it also leads to certain philosophical perplexities. For example, what
was all the fuss Anderson and Belnap made against contradictions implying
everything and disjunctive syllogism? Boolean negation trivially satisfies
them, so what is the interest in de Morgan negation failing to satisfy them.
Will the real negation please stand up?

A certain schism developed in relevance logic over just how Boolean nega-
tion should be regarded. See [Belnap and Dunn, 1981, Restall, 1999] for the
‘con’ side and [Meyer, 1978] for the ‘pro’ side.

Belnap and Dunn [1981] point out that although Meyer’s axiomatisations
of R with Boolean negation do not lead to any new theorems in the standard
vocabulary of R, they do lead to new derivable rules, e.g. A ∧ ¬A ` B and
¬A∧ (A∨B) ` B (note well that the negation here is de Morgan negation).
This can be seen quite readily if one recognises that the semantic correlate
of X ` Y is that 0 � X ⇒ 0 � Y in all classical R-models, and that since
all such are normal, ¬ behaves at 0 in these just like classical negation. We
both think this point counts against enriching R with Boolean negation,
but Meyer [1978, note 21] thinks otherwise.

3.12 Semantics for RQ

The question of how to extend these techniques to handle quantified rele-
vance logics was open for a long time. The first significant results were by
Routley, who showed that the obvious constant domain semantics were suffi-
cient to capture BQ, the natural first-order extension of B [Routley, 1980b].
However, extending the result to deal with systems involving transitivity
postulates in the semantics (such as Rabc ∧ Rcde ⇒ R2abde) proved diffi-
cult. To verify that the frame of prime theories on some constant domain
actually satisfies this condition (given that the logic satisfies a correspond-
ing condition, here the prefixing axiom) requires constructing a new prime
theory x such that Rabx and Rxde. And there seems to be no general way
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to show that such a theory can be constructed using the domain shared
by the other theories. This is not a problem for logics like BQ, in which
the frame conditions do not have conditions which, to be verified in the
completeness proof, require the construction of new theories.

Fine showed that this is not merely a problem with our proof techniques.
Logics like RQ, EQ, TQ and even TWQ are incomplete with respect
to the constant domain semantics on the frames for the propositional log-
ics [Fine, 1989]. He has given a technical argument for this, constructing a
formula in the language of RQ which is true in all constant domain models,
but which is not provable. The argument is too detailed to give here. It
consists of a simple part, which shows that the formula

(

(p→ ∃xEx) ∧ ∀x((p→ Fx) ∨ (Gx→ Hx))
)

→
(

∀x(Ex ∧ Fx→ q) ∧ ∀x((Ex → q) ∨Gx)→ ∃xHx ∨ (p→ q)
)

is valid in the constant domain semantics. This is merely a tedious verifica-
tion that there is no counterexample. The subtle part of his argument is the
construction of a countermodel. Clearly the countermodel cannot be a con-
stant domain frame. Instead, he constructs a frame with variable domains,
in which each of the axioms of RQ is valid (and in which the rules preserve
validity) but the offending formula fails. This is quite a tricky argument, for
variable domain semantics tend not to verify RQ’s analogue to the Barcan
formula

∀x(p→ Fx)→ (p→ ∀xFx)

But Fine constructs his example in such a way that this formula is valid,
despite the variable domains.

Despite this problem, Fine has found a semantics with respect to which
the logic RQ is sound and complete. This semantics rests on a different view
of the quantifiers. For Fine’s account, a statement of the form ∀xA(x) is true
at a set-up not only when A(c) is true for each individual c in the domain
of the set-up, but instead, when A(c) is true for an arbitrary individual c.
In symbols,

a � ∀xA(x) iff (∃a↑)(∃c ∈ Da↑ −Da)(a↑ � A(c)).

That is, for every set-up a there are expansions of the form a↑ where we add
new elements to the domain, but these are totally arbitrary. The frames
Fine defines are rather complex, needing not only the ↑ operator but also
a corresponding ↓ operator which cuts down the domain of a set-up, and
an across operator ← which identifies points in setups (→ (a, {c, d}) is the
minimal extension of the set-up a in which the individuals c and d are
identified. Instead of discussing the details of Fine’s semantics, we refer
the reader to his paper which introduced them [Fine, 1988]. Fine’s work
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has received some attention, from Mares, who considers options for the
semantics of identity [Mares, 1992]. However, it must be said that while
the semantic structure pins down the behaviour of RQ and related systems
exactly, it is not altogether clear whether the rich and complex structure
of Fine’s semantics is necessary to give a semantics for quantified relevance
logics.

Whatever one’s thoughts about the theoretical adequacy of Fine’s se-
mantics, they do raise some important issues for anyone who would give a
semantic structure for quantified relevance logics. There are a number of
issues to be faced and a number of options to be weighed up. One option
is to give complete primacy to the frames for the propositional logics, and
to use the constant domain semantics on these frames. The task then is to
axiomatise this extension. The task is also to give some interpretation of
what the points in these semantic structures might be. For if they are the-
ories (or prime theories) then the evaluation clauses for the quantifiers do
not make a great deal of sense without further explanation. No-one thinks
that a claim of the form ∃xA(x) can be a member of a theory only if there is
an object in the language of the theory which satisfies A according to that
theory. Nor are we so readily inclined to think that all theories need share
the same domain of quantification.

If, on the other hand, we take the set-ups in frames to be quite like (some
class of) theories, then we must face the issue of the relationships between
these theories. No doubt, if ∀xA(x) is in some theory, then A(c) will be in
that theory for any constant c in the language of the theory. However, the
converse need not be the case.

Anyway, it is clear that there is a lot of work to be done in the semantics
of relevance logics with quantifiers. One area which hasn’t been explored at
any depth, but which looks like it could bring some light is the semantics of
positive quantified relevance logics. Without the distribution of the univer-
sal quantifier over disjunction, these systems are subsystems of intuitionistic
logic.

4 THE DECISION PROBLEM

4.1 Background

When the original of this Handbook article was published back in 1985,
without a doubt the outstanding open problem in relevance logics was the
question as to whether there exists a decision procedure for determining
whether formulas are theorems of the system E or R. Anderson [1963] listed
it second among his now historic open problems (the first was the admissi-
bility of Ackermann’s rule γ discussed in Section 2). Through the work of
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Urquhart [1984], we now know that there is no such decision procedure.
Harrop [1965] lends interest to the decision problem with his remark that

‘all “philosophically interesting” propositional calculi for which the decision
problem has been solved have been found to be decidable . . . ’.35 We now
have a very good counterexample to Harrop’s claim.

In this section we shall examine Urquhart’s proof, but before we get there
we shall also consider various fragments and subsystems of R for which there
are decision procedures. R will be our paradigm throughout this discussion,
though we will make clear how things apply to related systems.

4.2 Zero-degree Formulas

These are formulas containing only ∧,∨, and ¬. As was explained in Sec-
tion 1.7, the zero-degree theorems of R (or E) are precisely the same as
those of the classical propositional calculus, so of course the usual two val-
ued truth tables yield a decision procedure.

4.3 First-degree Entailments

Two different (though related) ‘syntactical’ decision procedures were de-
scribed for these in Section 1.7 (the method of ‘tautological entailments’
and the method of ‘coupled trees’). A ‘semantical’ decision procedure us-
ing a certain four element matrix 4 is described in Section 3.3. The story
thus told leaves out the historically (and otherwise) very important role of a
certain eight element matrix M0 (cf. [Anderson and Belnap, 1975, Section
22.1.3]). This matrix is essential for the study of first-degree formulas and
higher (see Section 4.4 below), in so much as it is impossible to define an
implication operation on 4 and pick out a proper subset of designated ele-
ments so as to satisfy the axioms of E (a fortiori R). Indeed M0 was used
in [Anderson and Belnap Jr., 1962b] and [Belnap, 1960b] to isolate the first-
degree entailments of R, and the formulation of Section 1.7 presupposes this
use.

4.4 First-degree Formulas

These are ‘truth functions’ of first-degree entailments and/or formulas con-
taining no → at all (the ‘zero-degree formulas’). Belnap [1967a] gave a
decision procedure using certain finite ‘products’ of M0. No one such prod-
uct is characteristic for Dfdf, but every non-theorem of Efdf is refutable
in some such products Mn

0 (where n may in fact be computed as the
largest number of first-degree entailments occurring in a disjunction once

35He continues somewhat more technically ‘. . . and none is known for which it has been
proved that it does not possess the finite model property with recursive bound.’
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the candidate theorem has been put in conjunctive normal form). Hence
Efdf has the finite model property which suffices of course for decidability
(cf. [Harrop, 1965]). This is frankly one of the most difficult proofs to fol-
low in the whole literature of relevance logics. A sketch may be found in
[Anderson and Belnap, 1975, Section 19].

4.5 ‘Career Induction’

This is what Belnap has labelled the approach, exemplified in Sections 4.1–
4.3 above of extending the positive solution to the decision problem ‘a degree
at a time’. The last published word on the Belnap approach is to be found
in his [1967b] where he examines entailments between conjunctions of first-
degree entailments and first degree entailments.

Meyer [1979c], by an amazingly general and simple proof, shows that a
positive answer to the decision problem for ‘second-degree formulas’ (no →
within the scope of an arrow within the scope of an →) is equivalent to
finding a decision procedure for all of R.

4.6 Implication Fragment

We now start another tack. Rather than looking at fragments of the whole
system R delimited by complexity of formulas, we instead consider frag-
ments delimited by the connectives which they contain. The earliest result
of this kind is due to [Kripke, 1959b], who gave a Gentzen system for the
implicational fragments of E and R, and showed them decidable. We shall
here examine the implicational fragment of R (R→) in some detail as a
kind of paradigm for this style of argument.36

The appropriate Gentzen calculus37 LR→ is the same as that given by
Gentzen [1934] except for two trivial differences and one profound difference.
The first trivial difference is the obvious one that we take only the opera-
tional rules for implication, and the second trivial difference consequent on
this (with negation it would have to be otherwise) is that we can restrict our
sequents to those with a single formula in the consequent. The profound
difference is that we drop the structural rule variously called ‘thinning’ or
‘weakening’. This leaves:

Axioms.

A ` A.

36Actually this and various other results discussed below using Gentzen calculi presup-
poses ‘separation theorems’ due to Meyer, showing, e.g. as is relevant to this case, that
all of the theorems containing only → are provable from the axioms containing only →.

37We do not follow Anderson and Belnap [1975] in calling Gentzen systems ‘consecution
calculi’, much as their usage has to recommend it.
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Structural Rules.

Permutation
α, A, B, β,` C

α, B, A, β,` C
Contraction

α, a, A ` B

α, A ` B

Operational Rules.

(`→)
α, A ` B

α ` A→ B
(→`)

α ` A β, B ` C
.

α, β, A→ B ` C

It is easy to see why thinning would be a disaster for relevant implication.
Thus:

A ` A
Thinning

A, B ` A
(`→)

A ` B → A
(`→)

` A→ (B → A)

It is desirable to prove ‘The Elimination Theorem’, which says that the
following rule would be redundant (could be eliminated).

(Cut)
α ` A β, A ` B

.
α, β ` B

This is needed to show the equivalence of LR→ to its usual Hilbert-style
(axiomatic system ‘HR→’ R→ one of the formulations of Section 1.3). We
will not pause on details here, but the principal question regarding the
equivalence is whether modus ponens (The sole rule for HR→) is admissible
in the sense that whenever ` A and ` A → B are both derivable in LR→,
so is ` B (let α and β be empty).

The strategy of the proof of the Elimination Theorem can essentially
be that of Gentzen with one important but essentially minor modification.
Thus, Gentzen actually proved something stronger than Cut elimination,
namely,

(Mix)
α ` A β ` B

,
α, [β −A] ` B

where [β −A] is the result of deleting all occurrences of A from β. This is
useful in the induction, but sometimes it takes out too many occurrences of
A. In Gentzen’s framework these could always be thinned back in, but of
course this is not available with LR→. We thus instead generalise Cut to
the rule

(Fusion)
α ` A β ` B

,
α, (β − A) ` B
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where β contains some occurrences of A and (β−A) is the result of deleting
as many of those occurrences as one wishes (but at least one).

The main strategy of the decision procedure for LR→ is to limit appli-
cations of the contraction rule so as to prevent a proof search from running
on forever in the following manner: ‘Is p ` q derivable? Well it is if p, p ` q
is derivable. Is p, p ` q derivable? Well it is if p, p, p ` q is, etc.’.

We need one simple notion before strategy can be achieved. We shall
say that the sequent of α′ ` A is a contraction of sequent α ` A just in
case α′ ` A can be derived from α ` A by (repeated) applications of the
rules Contraction and Permutation (with respect to this last it is helpful
not even to distinguish two sequents that are mere permutations of one
another). The idea that we now want to put in effect is to drop the rule
Contraction, replacing it by building into the operational rules a limited
amount of contraction (in the generalised sense just explained).

More precisely, the idea is to allow a contraction of the conclusion of an
operational rule only in so far as the same result could not be obtained by
first contracting the premises. A little thought shows that this means no
change for the rule (`→), and that the following will suffice for

(→`′)
α ` A β, B ` C

[α, β, A→ B] ` C

where [α, β, A→ B] is any contraction of α, β, A→ B such that :

1. A→ B occurs only 0, 1, or 2 times fewer than in α, β, A→ B;

2. Any formula other than A→ B occurs only 0 or 1 time fewer.

It is clear that after modifying LR→ by building some limited contraction
into (→`) in the manner just discussed, the following is provable by an
induction on length of derivations:

Curry’s Lemma.38 If a sequent Γ′ is a contraction of a sequent Γ and Γ
has a derivation of length n, then Γ′ has a derivation of length ≤ n.

38This is named (following [Anderson and Belnap, 1975]) after an analogous lemma in
[Curry, 1950] in relation to classical (and intuitionistic) Gentzen systems. There, with
free thinning available, Curry proves his lemma with (→`) (in its singular version) stated
as:

Γ, A → B ` A Γ, A → B, B ` C
.

Γ, A → B ` C

This in effect requires the maximum contraction permitted in our statement of (→`)
above, but this is ok since items contracted ‘too much’ can always be thinned back in.
Incidentally, our statement of (→`) also differs somewhat from the statement of Anderson
and Belnap [1975] or Belnap and Wallace [1961], in that we build in just the minimal
amount of contraction needed to do the job.
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Clearly this lemma shows that the modification of LR→ leaves the same
sequents derivable (since the lemma says the effect of contraction is re-
tained). So henceforth we shall by LR→ always mean the modified version.

Besides the use just adverted to, Curry’s Lemma clearly shows that every
derivable sequent has an irredundant derivation in the following sense: one
containing no branch with a sequent Γ′ below a sequent Γ of which it is a
contraction.

We are finally ready to begin explicit talk about the decision procedure.
Given a sequent Γ, one begins the test for derivability as follows (building
a ‘complete proof search tree’): one places above Γ all possible premises
or pairs of premises from which Γ follows by one of the rules. Note well
that even with the little bit of contraction built into (→`) this will still be
only a finite number of sequents. Incidentally, one draws lines from those
premises to Γ. One continues in this way getting a tree. It is reasonably
clear that if a derivation exists at all, then it will be formed as a subtree
of this ‘complete proof search there’, by the paragraph just above, the is
complete proof search tree can be constructed to be irredundant. But the
problem is that the complete proof search tree may be infinite, which would
tend to louse up the decision procedure. There is a well-known lemma which
begins to come to the rescue:

König’s Lemma. A tree is finite iff both (1) there are only finitely many
points connected directly by lines to a given point (‘finite fork property’) and
(2) each branch is finite (‘finite branch property’).

By the ‘note well’ in the paragraph above, we have (1). The question
remaining then is (2), and this is where an extremely ingenious lemma of
Kripke’s plays a role. To state it we first need a notion from Kleene. Two
sequents α ` A and α′ ` A are cognate just when exactly the same formulas
(not counting multiplicity) occur in α as in α′. Thus, e.g. all of the following
are cognate to each other:

(1) X, Y ` A

(2) X, X, Y ` A

(3) X, Y, Y ` A

(4) X, X, Y, Y ` A

(5) X, X, X, Y, Y ` A.

We call the class of all sequents cognate to a given sequent a cognation class.

Kripke’s Lemma. Suppose a sequence of cognate sequents Γ0, Γ1, . . . , is
irredundant in the sense that for no Γi, Γj with i < j, is Γi a contraction
of Γj . Then the sequence is finite.
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We postpone elaboration of Kripke’s Lemma until we see what use it is
to the decision procedure. First we remark an obvious property of LR→

that is typical of Gentzen systems (that lack Cut as a primitive rule):

Subformula Property. If Γ is a derivable sequent of LR→, then any
formula occurring in any sequent in the derivation is a subformula of some
formula occurring in Γ.

This means that the number of cognation classes occurring in any deriva-
tion (and hence in each branch) is finite. But Kripke’s Lemma further shows
that only a finite number of members of each cognation class occur in a
branch (this is because we have constructed the complete proof search tree
to be irredundant). So every branch is finite, and so both conditions of
König’s lemma hold. Hence the complete proof search tree is finite and so
there is a decision procedure.

Γ0

1

2

3

4

5

6

7

2 3 4 5 6 7

Figure 1. Sequents in the Plane

Returning now to Kripke’s Lemma, we shall not present a proof (for
which see [Belnap Jr. and Wallace, 1961] or [Anderson and Belnap, 1975]).
Instead we describe how it can be geometrically visualised. For simplicity
we consider sequents cognate to X, Y ` A ((1), (2), (3), etc. above). Each
such sequent can be represented as a point in the upper right-hand quadrant
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of the co-ordinate plane (where origin is labelled with 1 rather than 0 since
(1) is the minimal sequent in the cognation class). See Figure 1. Thus, e.g.
(5) gets represented as ‘3 X units’ and ‘2 Y units’.

Now given any sequent, say

(Γ0) X, X, X, Y, Y ` A

as a starting point one might try to build an irredundant sequence by first
building up the number of Y ’s tremendously (for purposes of keeping on the
page we let this be to six rather than say a million). But in so doing one
has to reduce the number of X ’s (say, to be strategic, by one). The graph
now looks like 2 for the first two members of the sequence Γ0, Γ1.

Γ0

Γ1

1

2

3

4

5

6

7

2 3 4 5 6 7

Figure 2. Descending Regions

The purpose of the intersecting lines at each point is to mark off areas
(shaded in the diagram) into which no further points of the sequence may
be placed. Thus if Γ2 were placed as indicated at the point (6, 5), it would
reduce to Γ0. What this means is that each new point must march either
one unit closer to the X axis or one unit closer to the Y axis. Clearly after a
finite number of points one or the other of the two axes must be ‘bumped’,
and then after a short while the other must be bumped as well. When
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this happens there is no space left to play without the sequence becoming
redundant.

The generalisation to the case of n formulas in the antecedent to Eu-
clidean n-space is clear (this is with n finite—with n infinite no axis need
ever be bumped).

Incidentally, Kripke’s Lemma (as Meyer discovered) is equivalent to a
theorem of Dickson about prime numbers: Let M be a set of natural num-
bers all of which are composed out of the first m primes. Then every n ∈M
is of the form P n1

1 · P
n2

2 · . . . P
nk

k , and hence (by unique decomposition) can
be regarded as a sequence of the Pi’s in which each Pi is repeated ni times.
Divisibility corresponds then to contraction (at least neglecting the case
ni = 0). Dickson’s theorem says that if no member of M has a proper
divisor in M , then M is finite.

Before going on to consider how the addition of connectives changes the
complexity, let us call the reader’s attention to a major open problem: It is
still unknown whether the implication fragment of T is decidable.

4.7 Implication–Negation Fragment

The idea of LR¬
→ is to accommodate the classical negation principles pre-

senting R in the same way that Gentzen [1934] accommodated them for
classical logic: provide multiple right-hand sides for the sequents. this
means that a sequent is of the form α ` β, where α and β are (possible
empty) finite sequences of formulas. One adds structural rules for Permuta-
tion and Contraction on the right-hand side, reformulates (`→) and (→`)
as follows

(`→)
α, A ` B, β

α ` A→ B, β
(→`)

α ` A, γ β, B ` δ
,

α, β, A→ B ` γ, δ

and adds ‘flip and flop’ rules for negation:

(` ¬)
α, A ` β

α ` ¬A, β
(¬ `)

α ` A, β
.

α,¬A ` β

LE¬
→ is the same except that in the rule (`→)β must be empty and α

must consist only of formulas whose main connective is →. The decision
procedure for LE¬

→ was worked out by Belnap and Wallace [1961] along
basically the lines of the argument of Kripke just reported in the last section,
and is clearly reported in [Anderson and Belnap, 1975, Section 13]. the
modification to LR¬

→ is straightforward (indeed LR¬
→ is easier because one

need not prove the theorem of p. 128 of [Anderson and Belnap, 1975], and
so one can avoid all the apparatus there of ‘squeezes’). McRobbie and
Belnap [1979] have provided a nice reformulation of LR¬

→ in an analytic
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tableau style, and Meyer has extended this to give analytic tableau for
linear logic and other systems in the vicinity of R [Meyer et al., 1995].

4.8 Implication–Conjunction Fragment, and R Without Distri-
bution

This work is to be found in [Meyer, 1966]. The idea is to add to LR→ the
Gentzen rules:

(∧ `)
α, A ` C

α, A ∧ B ` C

α, β ` C

α, A ∧ B ` C
(` ∧)

α ` A α ` B
.

α ` A ∧B

Again the argument for decidability is a simple modification of Kripke’s.

Note that it is important that the rule (∧ `) is stated in two parts, and
not as one ‘Ketonen form’ rule:

(K∧ `)
α, A, B ` C

.
α, A ∧ B ` C

The reason is that without thinning it is impossible to derive the rule(s)
(∧ `) from (K∧ `).

Early on it was recognised that the distribution axiom

A ∧ (B ∨ C)→ (A ∨ B) ∨ C

was difficult to derive from Gentzen-style rules for E and R. Thus Anderson
[1963] saw this as the sticking point for developing Gentzen formulations,
and Belnap [1960b, page 72]) says with respect to LE→ that ‘the standard
rules for conjunction and disjunction could be added . . . the Elimination
Theorem (suitably modified) remaining provable. However, [since distribu-
tion would not be derivable], the game does not seem worth the candle’.
Meyer [1966] carried out such an addition to LR¬

→, getting a system he
called LR−, whose Hilbert-style version is precisely R without the distri-
bution axiom. He showed using a Kripke-style argument that this system
is decidable. This system is now called LR, for “lattice R”.

Meyer [1966] also showed how LR can be translated into R→,∧ rather
simply. Given a formula A in the language of LR+, let V be the set of
variables in A, and let two atomic propositions pt and pf not in V . Set ¬A
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for the moment to be A→ pf , to define a translation A′ of A as follows.

p′ = p

t′ = pt

(A→ B)′ = A′ → B′

(A ∧ B)′ = A′ ∧ B′

(A ∨ B)′ = ¬(¬A′ ∧ ¬B′)

(A ◦B)′ = ¬(A′ → ¬B′)

then setting t(A) =
∧

{pt → (p → p) : p ∈ V ∪ {pt, pf}} and f(A) =
∧

{¬¬p→ p : p ∈ V ∪ {pt, pf}}, we get the following theorem:

Translation Theorem (Meyer). If A is a formula in LR+ then A is
provable in LR+ if and only if (t(A)∧f(A)∧pt)→ A′ is provable in R→,∧.

The proof is given in detail in [Urquhart, 1997], and we will not present it
here.

Some recent work of Alasdair Urquhart has shown that although R→,∧

is decidable, it is only just decidable [Urquhart, 1990, Urquhart, 1997].

More formally, Urquhart has shown that given any particular formula in
the language of R→,∧, there is no primitive recursive bound on either the
time or the space taken by a computation of whether or not that formula
is a theorem. Presenting the proof here would take us too far away from
the logic to be worthwhile, however we can give the reader the kernel of the
idea behind Urquhart’s result.

Urquhart follows work of [Lincoln et al., 1992] by using a propositional
logic to encode the behaviour of a branching counter machines. A counter
machine has a finite number of registers (say, ri for suitable i) which each
hold one non-negative integer, and some finite set of possible states (say,
qj for suitable j). Machines are coded with a list of instructions, which
enable you to increment or decrement registers, and test for registers’ being
zero. A branching counter machine dispenses with the test instructions and
allows instead for machines to take multiple execution paths, by way of
forking instructions. The instruction qi + rjqk means “when in qi, add 1 to
register rj and enter stage qk,” and qi− rjqk means “when in qi, subtract 1
to register rj (if it is non-empty) and enter stage qk,” and qifqjqk is “when
in qi, fork into two paths, one taking state qj and the other taking qk.”

A machine configuration is a state, together with the values of each reg-
ister. Urquhart uses the logic LR to simulate the behaviour of a machine.
For each register ri, choose a distinct variable Ri, for each state qj choose
a distinct variable Qj . The configuration 〈qi; n1, . . . , nl〉, where ni is the
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value of ri is the formula

Qi ◦Rn1

1 ◦ · · · ◦Rnl

l

and the instructions are modelled by sequents in the Gentzen system, as
follows:

Instruction Sequent
qi + rjqk Qi ` Qk ◦Rj

qi − rjqk Qi, Rj ` Qk

qifqjqk Qi ` Qj ∨Qk

Given a machine program (a set of instructions) we can consider what is
provable from the sequents which code up those instructions. This set of
sequents we can call the theory of the machine. Qi ◦ Rn1

1 ◦ · · · ◦ Rnl

l `
Qj ◦ Rm1

1 ◦ · · · ◦ Rml

l is intended to mean that from state configuration
〈qi; n1, . . . , nl〉 all paths will go through configuration 〈qj ; m1, . . . , ml〉 after
some number of steps.

A branching counter machine accepts an initial configuration if when run
on that configuration, all branches terminate at the final state qf , with all
registers taking the value zero. The corresponding condition in LR will be
the provability of

Qi ◦Rn1

1 ◦ · · · ◦Rnl

l ` Qm

This will nearly do to simulate branching counter machines, except for the
fact that in LR we have A ` A ◦ A. This means that each of our registers
can be incremented as much as you like, provided that they are non-zero to
start with. This means that each of our machines need to be equipped with
every instruction of the form qi>0 + rjqi, meaning “if in state qi, add 1 to
rj , provided that it is already nonzero, and remain in state qi.”

Given these definitions, Urquhart is able to prove that a configuration
is accepted in branching counter machine, if and only if the corresponding
sequent is provable from the theory of that machine. But this is equivalent
to a formula

∧

Theory(M) ∧ t→ (Q1 → Qm)

in the language of LR. It is then a short step to our complexity result,
given the fact that there is no primitive recursive bound on determining
acceptability for these machines. Once this is done, the translation of LR

into R→∧ gives us our complexity result.
It is still unknown if R→ has similar complexity or whether it is a more

tractable system.
Despite this complexity result, Kripke’s algorithm can be implemented

with quite some success. The theorem prover Kripke, written by McRobbie,
Thistlewaite and Meyer, implements Kripke’s decision procedure, together
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with some quite intelligent proof-search pruning, by means of finite mod-
els. If a branch is satisfiable in RM3, for example, there is no need to
extend it to give a contradiction. This implementation works in many cases
[Thistlewaite et al., 1988]. Clearly, work must be done to see whether the
horrific complexity of this problem in general can be transferred to results
about average case complexity.

Finally, before moving to add distribution, we should mention that Linear
Logic (see Section 5.5) also lacks distribution, and the techniques used in
the theorem prover Kripke have application in that field also.

4.9 Positive R

In this section we will examine extensions of the Gentzen technique to cover
all of positive relevance logic. We know (see Section 4.12) that this will
not provide decidability. However, they provide another angle on R and
cousins. Dunn and Minc independently developed a Gentzen-style calcu-
lus (with some novel features) for R without negation (LR+).39 Belnap
[1960b] had already suggested the idea of a Gentzen system in which an-
tecedents were sequences of sequences of formulas, rather than just the
usual sequences of formulas (in this section ‘sequence’ always means fi-
nite sequence). The problem was that the Elimination Theorem was not
provable. LR+ goes a step ‘or two’ further, allowing an antecedent of a
sequent instead to be a sequence of sequence of . . . sequences of formulas.
More formally, we somehow distinguish two kinds of sequences, ‘intensional
sequences’ and ‘extensional sequences’ (say prefix them with an ‘I ’ or an
‘E’). an antecedent can then be an intensional sequence of formulas, an
extensional sequence of the last mentioned, etc. or the same thing but with
‘intensional’ and ‘extensional’ interchanged. (We do not allow things to ‘pile
up’, with, e.g. intensional sequences of intensional sequences—there must
be alternation).40 Extensional sequences are to be interpreted using ordi-
nary ‘extensional’ conjunction ∧, whereas intensional sequences are to be
interpreted using ‘intensional conjunction’ ◦, which may be defined in the
full system R as A◦B = ¬(A→ ¬B), but here it is taken as primitive—see
below).

39Dunn’s result was presented by title at a meeting of the Association for Sym-
bolic Logic, December, 1969 (see [Dunn, 1974]), and the full account is to be found
in [Anderson and Belnap, 1975, Section 28.5]). Minc [1972, earliest presentation said to
there to be February 24] obtained essentially the same results (but for the system with a
necessity operator). See also [Belnap Jr. et al., 1980].

40This differs from the presentation of [Anderson and Belnap, 1975] which allows such
‘pile ups’, and then adds additional structural rules to eliminate them. Belnap felt this
was a clearer, more explicit way of handling things and he is undoubtedly right, but
Dunn has not been able to read his own section since he rewrote it, and so return to the
simpler, more sloppy form here.



RELEVANCE LOGIC 99

We state the rules, using commas for extensional sequences, semicolons
for intentional sequences, and asterisks ambiguously for either; we also em-
ploy an obvious substitution notation.41

Permutation
α[β ∗ γ] ` A

α[γ ∗ β] ` A
Contraction

α[β ∗ β] ` A

α[β] ` A

Thinning
α[β] ` A

,
α[β, γ] ` A

provided β is non-empty.

α; A ` B
(`→)

α ` A→ B

α ` A β[B] ` C
(→`)

β[α; A→ B] ` C

α ` A α ` B
(` ∧)

α ` A ∧ B

α[A, B] ` C
(∧ `)

α[A ∧ B] ` C

α ` A
(` ∨)

α ` A ∨ B

α ` B
(` ∨)

α ` A ∨ B

α[a] ` C α[B] ` C
(∨ `)

α[A ∨ B] ` C

α ` A β ` B
(` ◦)

α; β ` A ◦B

α[a; B] ` C
(◦ `)

α ◦B] ` C

For technical reasons (see below) we add the sentential constant t with the
axiom ` t and the rule:

α[B] ` A
(t `)

α[β; t] ` A

The point of the two kind of sequences can now be made clear. Let us
examine the classically (and intuitionistically) valid derivation:

(1) A ` A Axiom
(2) A, B ` A Thinning
(3) A ` B → A (`→).

It is indifferent whether (2) is interpreted as

(2∧) (A ∧ B)→ A, or
(2→) A→ (B → A),

41With the understanding that substitutions do not produce ‘pile ups’. Thus, e.g. a
‘substitution’ of an intensional sequence for an item in an intensional sequence does not
produce an intensional sequence with an element that is an intensional sequence formed
by juxtaposition. Again this differs from the presentation of [Anderson and Belnap, 1975,
cf. note 28].
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because of the principles of exportation and importation. In LR+ however
we may regard (2) as ambiguous between

(2, ) A, B ` A (extensional), and
(2; ) A; B ` A (intensional).

(2,) continues to be interpreted as (2∧), but (2;) is interpreted as

(2◦) (A ◦B)→ A.

Now in R, exportation holds for ◦ but not for ∧ (importation holds for
both). Thus the move from (2;) to (3) is valid, but not from (2,) to (3). On
the other hand, in R, the inference from A → C to (A ∧ B) → C is valid,
whereas the inference to (A ◦ B) → C is not. Thus the move from (1) to
(2,) is valid, but not the move from (1) to (2;). the whole point of LR+ is
to allow some thinning, but only in extensional sequences.

This allows the usual classical derivation of the distribution axiom to go
through, since clearly

A ∧ (B ∨ C) ` (A ∧B) ∨ C

can be derived with no need of any but the usual extensional sequence. The
following sketch of a derivation of distribution in the consequent is even
more illustrative of the powers of LR+ (permutations are left implicit; also
the top half is left to the reader);

X ` X

X ` X

A, B ` (A ∧ B) ∨ C A, C ` (A ∧ B) ∨ C
(∨ `)

A, B ∨ C ` (A ∧ B) ∨ C
(→`)

A, (X ; X → B ∨ C) ` (A ∧ B) ∨ C
(→`)

(X ; X → A), (X ; X → A, X → B ∨ C) ` (A ∧ B) ∨ C

X → A, X → B ∨ C; X ` (A ∧ B) ∨ C

(X → A) ∧ (X → B ∨ C); X ` (A ∧ B) ∨ C

` (X → A) ∧ (X → B ∨ C)→ [X → (A ∧ B) ∨ C]

LR+ is equivalent to R+ in the sense that for any negation-free sentence A
of R,` A is derivable in LR+ iff A is a theorem of R. The proofs of both
halves of the equivalence are complicated by technical details. Right-to-left
(the interpretation theorem) requires the addition of intensional conjunction
as primitive, and then a lemma, due to R. K. Meyer, to the effect that
this is harmless (a conservative extension). Left-to-right (the Elimination
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Theorem) is what requires the addition of the constant true sentence t. This
is because the ‘Cut’ rule is stated as:

α ` A β(A) ` B
,

β(α) ` B

where β(α) is the result of replacing arbitrarily many occurrences of A in
β(A) by α if α is non-empty, and otherwise by t.42 Without this emendation
of the Cut rule one could derive B ` A whenever ` A is derivable (for
arbitrary B, relevant or not) as follows

` A

A ` A
Thinning

A, B ` A
Cut

B ` A

Discussing decidability a bit, one problem seems to be that Kripke’s
Lemma (appropriately modified) is just plain false. The following is a se-
quence of cognate sequents in just the two propositional variables X and Y
which is irredundant in the sense that structural rules will not get you from
a later member to an earlier member:

X ; Y ` X (X ; Y ), X ` X ((X ; Y ), X); Y ` X . . . 43

4.10 Systems Without Contraction

Gentzen systems without the contraction rule tend to be more amenable to
decision procedures than those with it. Clearly, all of the work in Kripke’s
Lemma is in keeping contraction under control. So it comes as no surprise
that if we consider systems without contraction for intensional structure, de-
cision procedures are forthcoming. If we remove the contraction rule from
LR we get the system which has been known as LRW (R without W with-
out distribution), and which is equivalent to the additive and multiplicative
fragment of Girard’s linear logic [Girard, 1987]. It is well known that this

42Considerations about the eliminability of occurrences of t are then needed to show
the admissibility of modus ponens. This was at least the plan of [Dunn, 1974]. A differ-
ent plan is to be found in [Anderson and Belnap, 1975, Section 28.5], where things are
arranged so that sequents are never allowed to have empty left-hand sides (they have t

there instead).
43Further, this is not just caused by a paucity of structural rules. Interpreting the

sequents of formulas of R+ (∧ for comma, ◦ for semicolon, → for `) no later formula
provably implies an earlier formula. Incidentally, one does need at least two variables (cf.
R. K. Meyer [1970b]).
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system is decidable. In the Gentzen system, define the complexity of a se-
quent to be the number of connectives and commas which appear in it. It
is trivial to show that complexity never increases in a proof and that as a
result, from any given sequent there are only a finite number of sequents
which could appear in a proof of the original sequent (if there is one). This
gives rise to a simple decision procedure for the logic. (Once the work has
already been done in showing that Cut is eliminable.)

If we add the extensional structure which appears in the proof theories
of traditional relevance logics then the situation becomes more difficult.
However, work by Giambrone has shown that the Gentzen systems for pos-
itive relevance logics without contraction do in fact yield decision proce-
dures [Giambrone, 1985]. In these systems we do have extensional contrac-
tion, so such a simple minded measure of complexity as we had before will
not yield a result. In the rest of this section we will sketch Giambrone’s
ideas, and consider some more recent extensions of them to include nega-
tion. For details, the reader should consult his paper. The results are also
in the second volume of Entailment [Anderson et al., 1992].

Two sequents are equivalent just when you can get from one to the other
by means of the invertible structural rules (intensional commutativity, ex-
tensional commutativity, and so on). A sequent is super-reduced if no equiv-
alent sequent can be the premise of a rule of extensional contraction. A
sequent is reduced if for any equivalent sequents which are the premise of a
rule of extensional contraction, the conclusion of that rule is super-reduced.
So, intuitively, a super-reduced sequent has no duplication in it, and a re-
duced sequent can have one part of it ‘duplicated’, but no more. Clearly any
sequent is equivalent to a super-reduced sequent. The crucial lemma is that
any super-reduced sequent has a proof in which every sequent appearing is
reduced. This is clear, for given any proof you can transform it into one in
which every sequent is reduced without too much fuss.

As a result, we have gained as much control over extensional contraction
as we need. Giambrone is able to show that only finitely many reduced
sequent can appear in the proof of a given sequent, and as a result, the
size of the proof-search tree is bounded, and we have decidability. This
technique does not work for intensional contraction, as we do not have the
result that every sequent is equivalent to an intensionally super-reduced
sequent, in the absence of the mingle rule. While A ∧ A ` B is equivalent
to A ` B, we do not have the equivalence of A ◦A ` B and A ` B, without
mingle.

These methods can be extended to deal with negation. Brady [1991]
constructs out of signed formulae TA and FA instead of formulae alone,
and this is enough to include negation without spoiling the decidability
property. Restall [1998] uses the techniques of Belnap’s Display Logic (see
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Section 5.2) to provide an alternate way of modelling negation in sequent
systems. These techniques show that the decidability of systems without
intensional contraction are decidable, to a large extent independently of the
other properties of the intensional structure.

4.11 Various Methods Used to Attack the Decision Problem

Decision procedures can basically be subdivided into two types: syntactic
(proof-theoretic) and semantic (model-theoretical). A paradigm of the first
type would be the use of Gentzen systems, and a paradigm of the second
would be the development of the finite model property. It seems fair to say,
looking over the previous sections, that syntactic methods have dominated
the scene when nested implications have been afoot, and that semantical
methods have dominated when the issue has been first-degree implications
and first-degree formulas.44

There are two well-known model-theoretic decision procedures used for
such non-classical logics as the intuitionistic and modal logics. One is due
to McKinsey and Tarski and is appropriate to algebraic models (matrices)
(cf. [Lemmon, 1966, p. 56 ff.]), and the other (often called ‘filtration’) is
due to Lemmon and Scott and is appropriate to Kripke-style models (cf.
[Lemmon, 1966, p. 208 ff]). Actually these two methods are closely con-
nected (equivalent?) in the familiar situation where algebraic model sand
Kripke models are duals. The problem is that neither seems to work with
E and R. The difficulty is most clearly stated with R as paradigm. For the
algebraic models the problem is given a de Morgan monoid (M,∧,∨, −, ◦)
and a finite de Morgan sublattice (D,∧′,∨,−

′

), how to define a new multi-
plicative operation ◦′ on D so as to make it a de Morgan monoid and so for
x, y ∈ D, if x ◦ y ∈ D then x ◦ y = x ◦′ y. the chief difficult is in satisfying
the associative law. For the Kripke-style models (say the Routley–Meyer
variety) the problem is more difficult to state (especially if the reader has
skipped Section 3.7) but the basic difficulty is in the satisfying of certain re-
quirements on the three-placed accessibility relation once set-ups have been
identified into a finite number of equivalence classes by ‘filtration’. Thus,
e.g. the requirement corresponding to the algebraic requirement of associa-
tivity is Rayx & Rbcy ⇒ ∃y(Raby & Rycx)45 the problem in a nutshell
is that after filtration one does not know that there exists the appropriate
equivalence class ȳ needed to feed such an existentially hungry postulate.

The McKinsey-Tarski method has been used successfully by Maksimova
[1967] with respect to a subsystem of R, which differs essentially only in

44As something like ‘the exception that proves the rule’ it should be noted that Belnap’s
[1967a] work on first-degree formulas and slightly more complex formulas has actually
been a subtle blend of model-theoretic (algebraic) and proof-theoretic methods.

45This is suggestively written (following Meyer) as Ra(bc)x ⇒ R(ab)cx.
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that it replaces the nested form of the transitivity axiom

(A→ B)→ [(B → C)→ (A→ C)]

by the ‘conjoined’ form

(A→ B) ∧ (B → C)→ (A→ C).46

Perhaps the most striking positive solution to the decision problem for a
relevance logic is that provided for RM by Meyer (see [Anderson and Belnap, 1975,
Section 29.3], although the result was first obtained by Meyer [1968].47

Meyer showed that a formula containing n propositional variables is a the-
orem of RM iff it is valid in the ‘Sugihara matrix’ defined on the non-zero
integers from −n to +n. this result was extended by [Dunn, 1970] to show
that every ‘normal’ extension of RM has some finite Sugihara matrix (with
possibly 0 as an element) as a characteristic matrix. So clearly RM and
its extensions have at least the finite model property. Cf. Section 3.10 for
further information about RM.

Meyer [private communication] has thought that the fact that the de-
cidability of R is equivalent to the solvability of the word problem for de
Morgan monoids suggests that R might be shown to be undecidable by
some suitable modification of the proof that the word problem for monoids
is unsolvable. It turns out that this is technique is the one which pays off —
although the proof is very complex. The complexity arises because there
is an important disanalogy between monoids and de Morgan monoids in
that in the latter the multiplicative operation is necessarily commutative
(and the word problem for commutative monoids is solvable).48 Still it has
occurred to both Meyer and Dunn that it might be possible to define a new
multiplication operation × for both ◦ and ∧ in such a way as to embed the
free monoid into the free de Morgan monoid. This suspicion has turned out
to be right, as we shall see in the next section.

46Dunn remembers R. Routley communicating some such result to in say the late 1960s,
but he now finds no record of it. Also both Meyer and Dunn experimented with applying
McKinsey-Tarksi methods to weak relevance logics at about this time.

47In fact neither McKinsey-Tarski methods nor filtration was used in this proof. We are
no clearer now that they could not be used, and we think the place to start would be to
try to apply filtration to the Kripke-style semantics for RM of [Dunn, 1976b], which uses
a binary accessibility relation and seems to avoid the problems caused by ‘existentially
hungry axioms’ for the ternary accessibility relation.

48In this connection two things should be mentioned. First, Meyer [unpublished type-
script, 1973] has shown that not all finitely generated de Morgan monoids are finitely
presentable. Second, Meyer and Routley [1973c] have constructed a positive relevance
logic Q+ (the algebraic semantics for which dispenses with commutativity) and shown it
undecidable.
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4.12 R, E and Related Systems

As is quite well known by now, the principal systems of relevance logic, R,
E and others, are undecidable. Alasdair Urquhart proved this in his ground
breaking papers [Urquhart, 1983, Urquhart, 1984]. We have recounted ear-
lier attempts to come to a conclusion on the decidability question. The
insights that helped decide the issue came from an unexpected quarter —
projective geometry. To see why projective geometry gave the necessary
insights, we will first consider a simple case, the undecidability of the sys-
tem KR. KR is given by adding A ∧ ¬A → B to R. A KR frame is one
satisfying the following conditions (given by adding the clause that a = a∗

to the conditions for an R frame).

R0ab iff a = b Rabc iff Rbac iff Racb (total permutation)
Raaa for each a R2abcd only if R2acbd

The clauses for the connectives are standard, with the proviso that a � ¬A
iff a 6� A, since a = a∗.

Urquhart’s first important insight was that KR frames are quite like
projective spaces. A projective space P is a set P of points, and a collection
L of subsets of P called lines, such that any two distinct points are on
exactly one line, and any two distinct lines intersect in exactly one point.
But we can define projective spaces instead through the ternary relation
of collinearity. Given a projective space P , its collinearity relation C is a
ternary relation satisfying the condition:

Cabc iff a = b = c, or a, b and c are distinct and they lie on a
common line.

If P is a projective space, then its collinearity relation C satisfies the fol-
lowing conditions,

Caaa for each a. Cabc iff Cbac iff Cacb. C2abcd only if C2acbd.

provided that every line has at least four points (this last requirement is
necessary to verify the last condition). Conversely, if we have a set with a
ternary relation C satisfying these conditions, then the space defined with
the original set as points and the sets lab = {c : Cabc} ∪ {a, b} where a 6= b
as lines is a projective space.

Now the similarity with KR frames becomes obvious. If P is a projective
space, the frame F(P) generated by P is given by adjoining a new point 0,
adding the conditions C0aa, Ca0a, and Caa0, and by taking the extended
relation C to be the accessibility relation of the frame.

Projective spaces have a naturally associated undecidable problem. The
problem arises when considering the linear subspaces of projective spaces.
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A subspace of a projective space is a subset which is also a projective space
under its inherited collinearity relation. Given any two linear subspaces X
and Y , the subspace X + Y is the set of all points on lines through points
in X and points in Y .

In KR frames there are propositions which play the role of linear sub-
spaces in projective spaces. We need a convention to deal with the extra
point 0, and we simply decree that 0 should be in every “subspace.” Then
linear subspaces are equivalent to the positive idempotents in a frame. That
is, they are the propositions X which are positive (so 0 ∈ X) and idempotent
(so X = X ◦ X). Clearly for any sentence A and any KR model M, the
extension of A, ||A|| inM is a positive idempotent iff 0 � A∧ (A↔ A ◦A).
It is then not too difficult to show that if A and B are positive idempotents,
so are A ◦B and A ∧ B, and that t and > are positive idempotents.

Given a projective space P , the lattice algebra 〈L,∩, +〉 of all linear
subspaces of the projective space, under intersection and + is a modular ge-
ometric lattice. That is, it is a complete lattice, satisfying these conditions:

Modularity a ≥ c⇒ (∀b)
(

a ∩ (b + c) ≤ (a ∩ b) + c
)

Geometricity Every lattice element is a join of atoms, and if a is an atom
and X is a set where a ≤ ΣX then there’s some finite Y ⊆ X , where
a ≤ ΣY .

The lattice of linear subspaces of a projective space satisfies these conditions,
and that in fact, any modular geometric lattice is isomorphic to the lattice
of linear subspaces of some projective space. Furthermore the lattice of
positive idempotents of any KR frame is also a modular geometric lattice.

The undecidable problem which Urquhart uses to prove the undecidabil-
ity of KR is now simple to state. Hutchinson [1973] and Lipshitz [1974]
proved that

The word problem for any class of modular lattices which in-
cludes the subspace lattice of an infinite dimensional projective
space is undecidable.

Given an infinite dimensional projective space in which every line includes
at least four points P , the logic of the frame (P) is said to be a strong logic.
Our undecidability theorem then goes like this:

Any logic between KR and a strong logic is undecidable.

The proof is not too difficult. Consider a modular lattice problem

If v1 = w1 . . . vn = wn then v = w

stated in a language with variables xi (i = 1, 2, . . .) constants 1 and 0,
and the lattice connectives ∩ and +. Fix a map into the language of KR
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by setting xt
i = pi for variables, 0t = t, 1t = >, (v ∩ w)t = vt ∧ wt and

(v + w)t = vt ◦ wt. The translation of our modular lattice problem is then
the KR sentence

(

B ∧ (vt
1 ↔ wt

1) ∧ · · · ∧ (vt
n ↔ wt

n) ∧ t
)

→ (vt ↔ wt)

where the sentence B is the conjunction of all sentences pi ∧ (pi ↔ pi ◦ pi)
for each pi appearing in the formulae vt

j or wt
j .

We will show that given a particular infinite dimensional projective space
(with every line containing at least four points) P , then the word problem
is valid in the lattice of linear subspaces of P if and only if its translation
is provable in L, for any logic L intermediate between KR and the logic of
the frame F(P).

If the translation of the word problem is valid in L, then it holds in the
frame F(P). Consider the word problem. If it were invalid, then there
would be linear subspaces x1, x2, . . . in the space P such that each vi = wi

would be true while v 6= w. Construct a model on the frame F(P) as
follows. Let the extension of pi be the space xi together with the point 0.
It is then simple to show that 0 � B, as each pi is a positive idempotent. In
addition, 0 � t, and 0 � vt

i ↔ wt
i , for the extension of each vt

i and wt
i will

be the spaces picked out by vi and wi (both with the obligatory 0 added).
However, we would have 0 6� vt ↔ wt, since the extensions of vt and wt

were picked out to differ. This would amount to a counterexample to the
translation of the word problem, which we said was valid. As a result, the
word problem is valid in the space P . The converse reasoning is similar.

Unfortunately, these techniques do not work for systems weaker than KR.
The proof that positive idempotents are modular uses essentially the special
properties of KR. Not every positive idempotent in R need be modular.
But nonetheless, the techniques of the proof can be extended to apply to a
much wider range of systems. Urquhart examined the structure of the of the
modular lattice undecidability result, and he showed that you could make
do with much less. You do not need to restrict your attention to modular
lattices to construct an undecidable word problem. But to do that, you need
to examine Lipshitz and Hutchinson’s proof more carefully. In the rest of
this section, we will sketch the structure of Urquhart’s undecidability proof.
The techniques are quite involved, so we do not have the space to go into
detail. For that, the reader is referred to Urquhart [1984].

Lipshitz and Hutchinson proved that the word problem for modular lat-
tices was undecidable by embedding into that problem the already known
undecidable word problem for semigroups. It is enough to show that a struc-
ture can define a “free associative binary operation”, for then you will have
the tools for representing arbitrary semigroup problems. (A semigroup is a
set with an associative binary operation. An operation is a “free associative”
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operation if it satisfies those conditions satisfied by any associative opera-
tion but no more.) We will sketch how this can be done without resorting
to a modular lattice.

The required structure is what is called a 0-structure, and a modular
4-frame defined within a 0-structure. An 0-structure is a set equipped with
the following structure

• A semilattice with respect to u.

• With a binary operator + which is associative and commutative.

• And x ≤ y ⇒ x + z ≤ y + z.

• 0 + x = x.

• y ≥ 0 ⇒ x u (x + y) = x.

A 4-frame in a 0-structure is a set {a1, a2, a3, a4} ∪ {cij : i 6= j, i, j =
1, . . . , 4} such that

• The ais are independent. If G, H ⊆ {a1, . . . , a4} then (ΣG) u (ΣH) =
Σ(G ∩H) (where Σ∅ = 0)

• If G ⊆ {a1, . . . , a4} then ΣG is modular

• ai + ai = ai

• cij = cji

• ai + aj = ai + cik; cij u aj = 0, if i 6= j

• (ai + ak) u (cij + cjk) = cik for distinct i, j, k

Now, we are nearly at the point where we can define a semigroup structure.
First, for each distinct i, j, we define the set Lij to be {x : x + aj =
ai + aj and x u aj = 0}. Then if b ∈ Lij and d ∈ Ljk where i, j, k are
distinct, then we set b ⊗ d = (b + d) u (ai + ak), and it is not difficult to
show that b ⊗ d ∈ Lik. Then, we can define a semigroup operation ‘.’ on
L12 by setting

x.y = (x⊗ c23)⊗ (c31 ⊗ y)

Now it is quite an involved operation to show that this is in fact an associa-
tive operation, but it can be done. And in fact, in certain circumstances,
the operation is a free associative operation. Given a countably infinite-
dimensional vector space V , its lattice of subspaces is a 0-structure, and it
is possible to define a modular 4-frame in this lattice of subspaces, such that
any countable semigroup is isomorphic to a subsemigroup of L12 under the
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defined associative operation. (Urquhart gives the complete proof of this
result [Urquhart, 1984].)

The rest of the work of the undecidability proof involves showing that this
construction can be modelled in a logic. Perhaps surprisingly, it can all be
done in a weak logic like TW[∧,∨,→,>,⊥]. We can do without negation by
picking out a distinguished propositional atom f , and by defining −A to be
A→ f , t to be −f , and A : B to be −(A→ −B). A is a regular proposition
iff −−A↔ A is provable. The regular propositions form an 0-structure, un-
der the assumption of the formula Θ = {R(t, f,>,⊥), N(t, f,>,⊥),−> ↔
⊥}. where R(A) is −− A↔ A, N(A) is (t → A) → A, and R(A, B, . . .) is
R(A) ∧ R(B) ∧ · · · and similarly for N . In other words, we can show that
the conditions for an 0-structure hold in the regular propositions, assuming
Θ as an extra premise. To interpret the 0-structure conditions we interpret
u by ∧, + by : and 0 by t.

Now we need to model a 4-frame in the 0-structure. This can be done
as we get just the modularity we need from another condition which is
simple to state. Define K(A) to be R(A) ∧ (A ∧ −A ↔ ⊥) ∧ (A ∨ −A ↔
>) ∧ (A : −A↔ −A) ∧ (A↔ A : A). Then we can show the following

K(A), R(B, C), C → A ` A ∧ (B : C)↔ (A ∧B) : C

In other words, if K(A), then A is modular in the class of regular proposi-
tions. Then the conditions for a 4-frame are simple to state. We pick out
our atomic propositions A1, . . . , A4 and C12, . . . , C34 which will do duty for
a1, . . . , a4 and c12, . . . , c34. Then, for example, one independence axiom is

(A1 : A2 : A3) ∧ (A2 : A3 : A4)↔ (A2 : A3)

and one modularity condition is

K(A1 : A3 : A4)

We will let Π be the conjunction of the statements that express that the
propositions Ai and Cij form a 4-frame in the 0-structure of regular proposi-
tions. So, Θ∪Π is a finite (but complex) set of propositions. In any algebra
in which Θ ∪ Π is true, the lattice of regular propositions is a 0-structure,
and the denotations of the propositions Ai and Cij form a 4-frame. Finally,
when coding up a semigroup problem with variables x1, x2, . . . , xm, we will
need formulae in the language which do duty for these variables. Thus we
need a condition which picks out the fact that pi (standing for xi) is in L12.
We define L(p) to be (p : A2 ↔ A1 : A2)∧ (p∧A2 ↔ t). Then the semigroup
operation on elements of L12 can be defined in terms of ∧ and : and the
formulae Ai and Cij . We assume that done, and we will simply take it that
there is an operation · on formulae which picks out the algebraic operation
on L12. This is enough for us to sketch the undecidability argument.
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The deducibility problem for any logic between TW[∧,∨,→
,>,⊥] and KR is undecidable.

Take a semigroup problem which is known to be undecidable. It may be
presented in the following way

If v1 = w1 . . . vn = wn then v = w

where each term vi, wi is a term in the language of semigroups, constructed
out of the variables x1, x2, . . . , xm for some m. The translation of that
problem into the language of TW[∧,∨,→,>,⊥] is the deducibility problem

Θ, Π, L(p1, . . . , pm), vt
1 ↔ wt

1, . . . , v
t
n ↔ wt

n ` vt ↔ wt

where each the translation ut of each term u is defined recursively by setting
xt

i to be pi, and (u1.u2)t to be ut
1 · u

t
2.

Now the undecidability result will be immediate once we show that for
any logic between TW and KR the word problem in semigroups is valid if
and only if its translation is valid in that logic.

For left to right, if the word problem is valid in the theory of semi-
groups, its translation must be valid, for given the truth of Θ and Π and
L(p1, . . . , pm), the operator · is provably a semigroup operation on the
propositions in L12 in the algebra of the logic, and the terms vi and wi

satisfy the semigroup conditions. As a result, we must have vt and wt

picking out the same propositions, hence we have a proof of vt ↔ wt.
Conversely, if the word problem is invalid, then it has an interpretation

in the semigroup S defined on L12 in the lattice of subspaces of an infinite
dimensional vector space. The lattice of subspaces of this vector space is
the 0-structure in our countermodel. However, we need a countermodel for
our — the 0-structure is not a model of the whole of the logic, since it just
models the regular propositions. How can we construct this? Consider the
argument for KR. There, the subspaces were the positive idempotents in the
frame. The other propositions in the frame were arbitrary subsets of points.
Something similar can work here. On the vector space, consider the subsets
of points which are closed under multiplication (that is, if x ∈ α, so is kx,
where k is taken from the field of the vector space). This is a De Morgan
algebra, defining conjunction and disjunction by means of intersection and
union as is usual. Negation is modelled by set difference. The fusion α◦β of
two sets of points is the set {x + y : x ∈ α and y ∈ β}. It is not too difficult
to show that this is commutative and associative, and square increasing,
when the vector space is in a field of characteristic other than 2, since if
x ∈ α then x = 1

2
x + 1

2
x ∈ α ◦ α. Then α → β is simply −(α ◦ −β). It

is not too difficult to show that this is an algebraic model for KR, and
that the regular propositions in this model are exactly the subspaces of the
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vector space. It follows that our counterexample in the 0-structure is a
counterexample in a model of KR to the translation of the word problem.
As a result, the translation is not provable in KR or in any weaker logic.

This result applies to systems between TW and KR, and it shows that
the deducibility problem is undecidable for any of these systems. In the
presence of the modus ponens axiom A∧(A→ B)∧t→ B, this immediately
yields the undecidability of the theoremhood problem, as the deducibility
problem can be rewritten as a single formula.

(

Θ ∧Π ∧ L(p1, . . . , pm) ∧ (vt
1 ↔ wt

1) ∧ · · · ∧ (vt
n ↔ wt

n) ∧ t
)

→ (vt ↔ wt)

As a result, the theoremhood problem for logics between T and KR is
undecidable. In particular, R, E and T are all undecidable.

The restriction to TW is necessary in the theorem. Without the pre-
fixing and suffixing axioms, you cannot show that the lattice of regular
propositions is closed under the ‘fusion-like’ connective ‘ : ’.

Before moving on to our next section, let us mention that these geo-
metric methods have been useful not only in proving the undecidability of
logics, but also in showing that interpolation fails in R and related log-
ics [Urquhart, 1993].

5 LOOKING ABOUT

A lot of the work in relevance logics taking place in the late 1980’s and in
the 1990’s has not focussed on Anderson’s core problems. Now that these
have been more or less resolved, work has proceeded apace in other direc-
tions. In this section we will give an undeniably indiosyncratic and personal
overview of what we think are some of the strategic directions of this recent
research. The first two sections in this part deal with generalisations —
first of semantics, and second of proof theory — which situate relevance
logic into a wider setting. The next sections deal with neighbouring formal
theories, and we end with one philosophical application of the machinery of
relevance logics.

5.1 Gaggle Theory

The fusion connective ◦ has played an important part in the study of rel-
evance logics. This is because fusion and implication are tied together by
the residuation condition

a ≤ b→ c iff a ◦ b ≤ c
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In addition, in the frame semantics, fusion and implication are tied to the
same ternary relation R, implication with the universal condition and fusion
with the existential condition.

This is an instance of a generalised Galois connection. Galois studied
connections between functions on partially ordered sets. A Galois connec-
tion between two partial orders ≤ on A and ≤′ on B is a pair of functions
f : A→ B and g : B → A such that

b ≤′ f(a) iff a ≤ g(b)

The condition tying together fusion and implication is akin to that tying
together f and g for Galois. So, gaggle theory (for ‘ggl’: generalised Galois
logic) studies these connections in their generality, and it turns out that rele-
vance logics like R, E and T are a part of a general structure which not only
includes other relevance logics, but also traditional modal logics, Jónsson
and Tarski’s Boolean algebras with operators [Jónsson and Tarski, 1951]
and many other formal systems. Dunn has shown that if a logic has a
family of n-ary connectives which are tied together with a generalised galois
connection, then the logic has a frame semantics in which those connec-
tives are modelled using the one n + 1-ary relation, in the way that fusion
and implication are modelled by the same ternary relation in relevance log-
ics [Dunn, 1991, Dunn, 1993a, Dunn, 1994].

In general, an n-ary connective f has a trace (τ1, . . . , τn) 7→ + if

• f(c1, . . . ,1, . . . , cn) = 1, if τi = + (where the 1 is in position i).

• f(c1, . . . ,0, . . . , cn) = 1, if τi = − (where the 0 is in position i).

• If a ≤ b, and if τi = + then f(c1, . . . , a, . . . , cn) ≤ f(c1, . . . , b, . . . , cn).

• If a ≤ b, and if τi = − then f(c1, . . . , b, . . . , cn) ≤ f(c1, . . . , a, . . . , cn).

We write this as T (f) = (τ1, . . . , τn) 7→ +. On the other hand, the connec-
tive f has trace (τ1, . . . , τn) 7→ − if

• f(c1, . . . ,1, . . . , cn) = 0, if τi = + (where the 0 is in position i).

• f(c1, . . . ,0, . . . , cn) = 0, if τi = − (where the 1 is in position i).

• If a ≤ b, and if τi = + then f(c1, . . . , b, . . . , cn) ≤ f(c1, . . . , a, . . . , cn).

• If a ≤ b, and if τi = − then f(c1, . . . , a, . . . , cn) ≤ f(c1, . . . , b, . . . , cn).

We write this as T (c) = (τ1, . . . , τn) 7→ −. Here are a few examples of
traces of connectives. Conjunction-like connectives tend to be (−,−) 7→ −,
disjunction-like connectives tend to be (+, +) 7→ +, necessity-like connec-
tives tend to be + 7→ +, possibility-like connectives tend to be − 7→ −, and
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negations can be either + 7→ − or − 7→ + (and in many cases they are
both).

Now we are nearly able to state the abstract law of residuation. First, we
define S(f, a1, . . . , an, b) as follows. If T (f) = (· · · ) 7→ +, then S(f, a1, . . . , an, b)
is the condition f(a1, . . . , an) ≤ b. If, on the other hand, T (f) = (· · · ) 7→ −,
then S(f, a1, . . . , an, b) is b ≤ f(a1, . . . , an). Then, two connectives f and
g are contrapositives in place j iff, if T (f) = (τ1, . . . , τj , . . . , τn) 7→ τ , then
T (g) = (τ1, . . . ,−τ, . . . , τn) 7→ −τj . (Where we define −+ as − and −−
as +.) Two operators f and g satisfy the abstract law of residuation iff
f and g are contrapositives in place j, and S(f, a1, . . . , aj , . . . , an, b) iff
S(g, a1, . . . , b, . . . , an, aj).

A collection of connectives in which there is some connective f such that
every element of the collection satisfies the abstract law of residuation with
f , is called a founded family of connectives. Dunn’s major result is that if
you have an algebra in which every connective is in a founded family, then
the algebra is isomorphic to a subalgebra of the collection of propositions in
a model in which each founded family of n-ary connectives shares an n + 1-
ary relation. The soundness and completeness of the Routley–Meyer ternary
relational semantics is for the implication-fusion fragment of relevance logics
is an instance of this more general result.

The gaggle theoretic account of negation in relevance logics is interest-
ing. We do not automatically get negation modelled by the Routley star —
instead, being a unary connective, negation is modelled with a binary re-
lation. One way negation can be modelled along gaggle theoretic lines is
as follows. The De Morgan negation connective has trace − 7→ +, so the
gaggle theoretic result is that there is a binary relation C between set-ups
such that

• x � ¬A iff for each y where xCy, y 6� A

This is the general semantic structure which models negation connectives
with trace − 7→ +. Given a relation C, which we may read as ‘compatibil-
ity’, we can define another negation connective ∼, using C’s converse:

• x � ∼A iff for each y where yCx, y 6� A

Then it follows that A ` ∼B iff B ` ¬A. For the De Morgan negation of
relevance logics, ∼ and ¬ are the same, for the compatibility relation C is
symmetric. But in more general settings, this need not hold.

The general perspective of gaggle theory not only opens up new formal
systems to study — it also helps with interpreting the semantics. The
condition for ¬ above can be read as follows: ¬A is true at x iff for each
y compatible with x, A is not true at y. This certainly sounds like a more
palatable condition for negation than that using Routley star. We have an
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understanding of what it is for two set-ups (theories, worlds or situations)
to be compatible, and the notion of compatibility is tied naturally to that
of negation. Furthermore, the Routley star condition is an instance of this
more general ‘compatibility’ condition. For any set-up a, a∗ can be seen as
the set-up which ‘wraps up’ all set-ups compatible with a. We can argue
whether there is such an all-encompassing set-up, but if there is, then the
semantics for negation in terms of the compatibility relation is equivalent
to that of the Routley star. And in addition, we have another means of
explaining it.

Furthermore, once we have this generalised position from which to view
negation, we can tinker with the binary accessibility relation in just the same
way that modal logics are studied. Clearly if Boolean negation (written
‘−’) is present, then ¬A is simply �−A for the positive modal operator �

which uses C as its accessibility relation; and the study of these negation
is dealt with using the techniques of modal logic. However, in relevance
logics and other related systems, boolean negation is not present. And
in this case the theory of negations arising from compatibility clauses like
the one we have seen is a young and interesting subject in its own right.
This perspective is pursued in Dunn [1994], and Restall [1999] develops a
philosophical interpretation of the semantics.

5.2 Display Logic

Nuel Belnap has developed proof theoretical techniques which are quite sim-
ilar to those from gaggle theory. Consider the general problem of providing
a sequent calculus for logics like R and others. We have the choice of how
to formulae sequents. If they are of the form X ` A, where X is a struc-
tured collection of formulae, and A is a formula, then we have the problem
of how to state the introduction and elimination of negation rules in such
a way as to make ¬¬A equivalent to A. It is unclear how to do this while
maintaining that the succedent of every sequent is a single formula. On the
other hand, if we allow that sequents are of the form X ` Y , where now
both X and Y are structured complexes of formulae, it is unclear how to
state a cut rule which is both valid and admits of a cut-elimination proof in
the style of Gentzen. If we are restricted to single formulae in the succedent
position the rule is easy to state:

X ` A Y (A) ` B

Y (X) ` B

but in the presence of multiple succedents it is unclear how to state the
rule generally enough to be eliminable yet strictly enough to be valid under
interpretation. If there is only one sort of structuring in the consequent this
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might be possible, in the way used in the proof theories of classical or linear
logic, for example:

X ` A, Y X ′, A ` Y ′

X, X ′ ` Y, Y ′

But if we have X ` Y (A) and X ′(A) ` Y ′ where the indicated instances of
A are buried under multiple sorts of structure, then what is the appropriate
conclusion of a cut rule? X ′(X) ` Y (Y ′) will not do in general, for it is
invalid in many instances. For example, in R if Y (A) is A ∧ B and X ′(A)
is A ◦D, then we have A∧B ` A∧B and A ◦D ` A ◦D, but we don’t have
(A ∧ B) ◦ D ` (A ◦ D) ∧ B in general. (Consider the case where B = A.
A ◦D needn’t imply A.)

The alternative examined by Belnap is to make do with Cut where the
cut formula is “displayed” in both premises of the rule.

X ` A A ` Y

X ` Y

In order to get away with this, a system needs to be such that whenever you
need to use a cut you can. The way Belnap does this is by requiring what he
calls the “display condition”. The display condition is satisfied iff for every
formula, every sequent including that formula is equivalent (using invertible
rules) to one in which that formula is either the entire antecedent or the
entire succedent of the sequent. For Belnap’s original formulation, this is
achieved by having a binary structuring connective ◦ (not to be confused
with the sentential connective ◦) and a unary connective ∗. The display
rules were as follows:

X ◦ Y ` Z ⇐⇒ X ` ∗Y ◦ Z
X ` Y ◦ Z ⇐⇒ X ◦ ∗Y ` Z ⇐⇒ X ` Z ◦ Y

X ` Y ⇐⇒ ∗Y ` ∗X ⇐⇒ ∗ ∗X ` Y

A structure is in antecedent position if it is in the left under an even number
of stars, or in the right under an odd number of stars. If it is not in
antecedent position, it is in succedent position. The star is read as negation,
and the circle is read as conjunction in antecedent position, and disjunction
in succedent position. The display postulates are a reworking of conditions
like the residuation condition for fusion and implication. Here we have the
conditions that a ◦ b ≤ c iff a ≤ ∼b + c (where x + y is the fission of x and
y).

Belnap’s system allows that different families of structural connectives
can be used for different families of connectives in the language. For exam-
ple, when ◦ and ∗ are read intensionally, we can have the following rules for
implication:

X ◦A ` B

X ` A→ B

X ` A B ` Y

A→ B ` ∗X ◦ Y
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If the properties of ◦ vary, so do the properties of the connective →. We
can give ◦ properties of extensional conjunction in order to get a material
conditional. Or conditions can be tightened, to give → modal properties.
It is clear that the family of structural connectives (here ◦ and ∗) act in
analogously to accessibility relations on frames. However, the connections
with gaggle theory run deeper, however. It can be shown a connective in-
troduced in with rules without side conditions, and in a way which ‘mimics’
structural connectives (just as here A → B mimics ∗X ◦ Y in consequent
position) must have a definable trace. Any implication satisfying those rules
will have trace (−, +) 7→ +, for example. For more details of this connection
and a general argument, see Restall’s paper [Restall, 1995a].

Display logic gives these systems a natural cut-free proof theory, for Bel-
nap has shown that under a broad set of conditions, any proof theory with
this structure will satisfy cut-elimination. So again, just as with gaggle the-
ory, we have an example of the way that the study of relevance logics like
R and E have opened up into a more general theory of logics with similar
structures.

5.3 Paraconsistency

Relevance logics are paraconsistent, in that argument forms such as A∧¬A `
B are taken to be invalid. As a result, relevance logics have been seen to
be important for the study of paraconsistent theories. [[See Priest’s article
in this volume]]. Relevance logics are suited to applications for which a
paraconsistent notion of consequence is needed however, not all logics are
equal in this regard. For example, paraconsistentists have often considered
the topic of näıve theories of sets and of truth (any predicate yields the set
of things satisfying that predicate, the proposition p is true if and only if
p). With a relevance logic at hand, you can avoid the inference to triviality
from contradictions such as that arising from the liar

This proposition is not true.

(from which you can deduce that it is true, and hence that it isn’t) and
Russell’s paradox ({x : x 6∈ x} both is and is not a member of itself).
However, the Curried forms of these paradoxes

If this proposition is true then there is a Santa Claus.

and {x : (x ∈ x) → P} are more difficult to deal with. These yield ar-
guments for the existence of Santa Claus and the truth of P (which was
arbitrary) in logics like R, or any others with theorems related to the rule
of contraction. The theoremhood of propositions such as

(

A → (A →

B)
)

→ (A → B) and A ∧ (A → B) → B rule out a logic for service in the
cause of paraconsistent theories like these [Meyer et al., 1979].
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However, this has not deterred some hardier souls in considering weaker
relevance logics which do not allow one to deduce triviality in these theo-
ries. Some work has been done to show that in some logics these theories
are consistent, and in others, though inconsistent, not everything is a theo-
rem [Brady, 1989].

Another direction of paraconsistency in which techniques of relevance
logics have borne fruit is in the more computational area of reasoning with
inconsistent information. The techniques of first degree entailment have
found a home in the study of “bilattices” by Melvin Fitting and others,
who seen in them a suitable framework for reasoning under the possibility
of inconsistent information [Fitting, 1989].

5.4 Semantic Neighbours

Another area in which research has grown in the recent years has been
toward connections with other fields. It has turned out that seemingly
completely unrelated fields have studied structures remarkably like those
studied in relevance logics. These neighbours are helpful, not only for giv-
ing independent evidence for the fact that relevance logicians have been
studying something worthwhile, but also because of the different insights
they can bring to bear on theorising. In this section we will see just three
of the neighbours which can shed light on work in relevance logics.

The first connection comes with Barwise and Perry’s situation semantics
[1983]. For Barwise and Perry, utterances classify situations (parts of the
world) which may be incomplete with regard to their semantic ‘content’.
Consider the claim that Max saw Queensland win the Sheffield Shield”.
How is this to be understood? For the Barwise and Perryof Situations and

Attitudes [Barwise and Perry, 1983], this was to be parsed as expressing
a relationship between Max and a situation, where a situation is simply
a restricted part of the world. Situations are parts of the world and they
support information. Max saw a situation and in this situation, Queensland
won the Sheffield Shield. If, in this very situation, Queensland beat South
Australia, then Max saw Queensland beat South Australia.

This shows why for this account situations have to be (in general) re-
stricted bits of the world. The situation Max saw had better not be one
in which Paul Keating lost the 1996 Federal Election, lest it follow from
the fact that Max witnessed Queensland’s victory that he also witnessed
Keating’s defeat, and surely that would be an untoward conclusion. Let’s
denote this relationship between situations an the information they support
as follows. We’ll abbreviate the claim that the situation s supports the
information that A by writing ‘s � A’, and we’ll write its negation, that s
doesn’t support the information that A by writing ‘s 6� A’. This is standard
in the situation theoretic literature. The information carried by these situ-
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ations has, according to Barwise and Perry, a kind of logical coherence. For
them, infons are closed under conjunction and disjunction, and s � A ∧ B
if and only if s � A and s � B, and s � A ∨ B if and only if s � A or
s � B. However, negation is a different story — clearly situations don’t
support the traditional equivalence between s � ¬A and s 6� A (where ¬A
is the negation of A), for our situation witnessed by Max supports neither
the infon “Keating won the 1996 election” nor its negation.

What to do? Well, Barwise and Perry suggest that negation interacts
with conjunction and disjunction in the familiar ways — ¬(A∨B) is (equiv-
alent to) ¬A∧¬B, and ¬(A∧B) is (equivalent to) ¬A∨¬B. And similarly,
¬¬A is (equivalent to) A. This gives us a logic of sorts of negation — it is
first degree entailment. Now for Barwise and Perry, there are no actual sit-
uations in which s � A∧¬A (the world is not self-contradictory). However,
they agree that it is helpful to consider abstract situations which allow this
sort of inconsistency. So, Barwise and Perry have an independent motiva-
tion for a semantic account of first-degree entailment. (More work has gone
on to consider other connections between situation theory and relevance
logics [Mares, 1997, Restall, 1994, Restall, 1995b].)

Another connection with a parallel field has come from completely differ-
ent areas of research. The semantic structures of relevance logics have close
cousins in the models for the Lambek Calculus and in Relation algebras.
Let’s consider relation algebras first.

A relation algebra is a Boolean algebra with some extra operations, a
binary operation which denotes composition of relation, a unary operation
^,for the converse of a relation, and a constant 1 for the identity relation.
There is a widely accepted axiomatisation of the variety RA of relation
algebras. A relation algebra is set R with operations ∧,∨,−, 1, ◦, ^ such
that

• 〈R,∧,∨,−〉 is a boolean algebra.

• ^ is an automorphism on the algebra, satisfying a^^ = a, (a∧b)^ =
a^ ∧ b^, −(a^) = (−a)^.

• ◦ is associative, with a left and right identity 1, satisfying (a∨ b) ◦ c =
(a ◦ c) ∨ (b ◦ c), a ◦ (b ∨ c) = (a ◦ b) ∨ (a ◦ c).

• ^ and ◦ are connected by setting (a ◦ b)^ = b^ ◦ a^.

These conditions are satisfied by the class of relations on any base set (that
is, by any concrete relation algebra). However, not every algebra satisfying
these equations is isomorphic to a subalgebra of a concrete relation algebra.

These algebras are quite similar to de Morgan monoids. If we define ¬A
to be −(a)^ or (−a)^ then the conjunction, disjunction, ¬, 1 fragment is
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that of first degree entailment. We do not have a ≤ b ∨ ¬b, and nor do we
have a ∧ ¬a ≤ b. Consider the relation a:

a x y
x 1 1
y 0 1

Then ¬a is the following relation

a x y
x 0 1
y 0 0

So we don’t have b ≤ a ∨ ¬a for every b, and nor do we have a ∧ ¬a ∨ b.
(However, we do have 1 ≤ a ∨ ¬a.)

The class of relation algebras have a natural form of implication to go
along with the fusionlike connective ◦. If we define a → b to be ¬(¬b ◦ a),
then we have the residuation condition a ◦ b ≤ c iff a ≤ b → c. However,
that is not the only implication-like connective we may define. If we set
b← a to be ¬(a◦¬b), then a◦ b ≤ c iff b ≤ c← a. Since ◦ is not, in general,
commutative, we have two residuals.

In logics like R this is not possible, for the left and the right residuals of
fusion are the same connective. However, in systems in the vicinity of E,
these implication operations come apart. This is mirrored by the behaviour
on frames, since we can define B ← A by setting x � B ← A iff for each y, z
where Ryxz if y � A then z � B. This will be another residual for fusion,
and it will not agree with → in the absence of commutativity of R (if Rxyz
then Ryxz).49

It was hoped for some time that relation algebras would give an inter-
esting model for logics like R. However, there does not seem to be a nat-
ural class of relations for which composition is commutative and square
increasing. (The class of symmetric relations will not do. Even if a = a^

and b = b^, it does not follow that a ◦ b = b ◦ a. You merely get that
a ◦ b = a^ ◦ b^ = (b ◦ a)^.) Considered as a logic, RA is a sublogic of R

(ignoring boolean negation for the moment). It is not a sublogic of E, since
in RA, a = 1 → a. Another difference between RA and typical relevance
logics is the behaviour of contraposition. We do not have a→ b = ¬b→ ¬a.
Instead, a→ b = ¬a← ¬b.

A final connection between RA and relevance logics is in the issue of
semantics. As we stated earlier, not all relation algebras are representable
as subalgebras of concrete relation algebras. However, Dunn has shown

49We should flag here that in the relevance logic literature, [Meyer and Routley, 1972]
seems to have been the first to consider both left- and right-residuals for fusion.
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that all relation algebras are representable by algebras of propositions on
a particular class of Routley–Meyer frames [Dunn, 1993b]. This is the first
representation theorem for RA, and it shows that the semantical techniques
of relevance logics have a wider scope than applications to R, E and their
immediate neighbours.

In a similar vein, Dunn and Meyer [1997] have provided a Routley–Meyer
style frame semantics for combinatory logic. The key idea here is that the
ternary relation R satisfies no special conditions, but these properties are
encoded by combinators, which are modelled by special propositions on
frames.

Lambek’s categorial grammar is also similar to relevance logics, though
this time it is introduced with frames, not algebras [Lambek, 1958, Lambek, 1961].
Here, the points in frames are pieces of syntax, and the ‘propositions’ are
syntactic classifications of various kinds. For example, the classifications
into noun phrases, verbs, and sentences. The interest comes with the way
in which these classifications can be combined. For example A ◦ B can be
defined, where we say x � A ◦ B iff x is a concatenation of two strings y
and z, where y � A and z � B. We can also define ‘slicing’ operations,
setting x � A\B iff for each y where y � A, yx � B; and x � B/A iff
for each y where y � A, xy � B. These are obviously analogues for ◦ and
→ in relevance logics, and again, we have a ‘left’ and ‘right’ residuals for
fusion. In these frames Rxyz iff xy = z. So the Lambek calculus gives us an
independently motivated interpretation of a class of Routley–Meyer frames.
This connection has been explored by Kurtonina [1995], which is a helpful
sourcebook of some recent work on ternary frames in connection with the
Lambek calculus and related logics.

If you like, you can enrich the logic of strings with conjunction and dis-
junction, and if you do it in the obvious way (using the same clauses as in
relevance logics) you get a formal logic quite like RA [Restall, 1994]. But
more importantly, the conditions for conjunction and disjunction may be
independently motivated. A string is of type A ∨ B just when it is of type
A or of type B. A string is of type A ∧ B just when it is of type A and of
type B. The resulting logic is clearly interpretable, but it was a number of
years before a proof theory was found for it. Here the techniques for the
Gentzenisation for positive relevance logics are appropriate, and the proof
theory can be found by utilising the proof theory for R+, and removing
the commutativity and contraction of the intensional bunching operation.
The resulting proof theory captures exactly the Lambek calculus enriched
with conjunction and disjunction. In addition, the techniques of Giambrone
show that the resulting logic is decidable [Restall, 1994].
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5.5 Linear Logic

The burgeoning phenomenon of linear logic is one which has a number of
formal similarities to relevance logics [Girard, 1987, Troelstra, 1992]. Linear
logic is the study of systems in the vicinity of LRW (R without contraction,
without distribution). This is proof-theoretically a very stable system. It
is simple to show that it is decidable. Girard’s innovation, however, is to
extend the proof theory with a modal operator ! which allows intuitionistic
logic to be modelled inside linear logic. This operation in given as follows,
in single-succedent Gentzen systems.

X ` B

X, !A ` B

X ; A ` B

X ; !A ` B

!X ` B

!X ` !B

X, !A, !A ` B

X, !A ` B

Given this proof theory it is possible to show that A⇒ B defined as !A→
B is an intuitionistic implication. This is similar to Meyer’s result that
A ∧ t→ B is an intuitionistic implication in R (indeed, !A defined as A ∧ t
satisfies each of the conditions for ! above in R, but not in systems without
contraction). However, nothing like it holds in relevance logics without
contraction.

Linear logic also brings with it many new algebraic structures and models
in category theory. None of these models have been mined to see if they can
bring any ‘relevant’ insight. However, some transfer has gone on in the other
direction — Allwein and Dunn [1993] have shown that the multiplicative
and additive fragment of linear logic can be given a Routley–Meyer style
semantics. This is not a simple job, as the absence of the distribution of
(additive) conjunction over disjunction means that at least one of these con-
nectives (in this case, disjunction) must take a non-standard interpretation.

5.6 Relevant Predication

There has been one major way in which relevance logics have been used
in application to philosophical issues, and this application makes a good
topic to end this article. The topic is Dunn’s work on relevant predica-
tion [Dunn, 1987].50 The guiding idea is that a theory of relevant implica-
tion will give you some way of marking out the distinction between the way
that Socrates’ wisdom is a property of Socrates, in the way that Socrates’
wisdom is not a property of Bill Clinton.

50The reference [Dunn, 1987] is of course “Relevant Predication”: Of course all work
has precursors, in this instance (largely unpublished) thoughts in the 1970’s by N. Belnap,
J. Freeman, and most importantly R. K. Meyer and A. Urquhart (and Dunn). Cf. Sec. 9
of [Dunn, 1987] for some history.
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Classical first order logic is not good at marking out such a distinction,
for if Wx stands for ‘x is wise’, and s stands for Socrates, and c stands for
Bill Clinton, then Wx is true of x iff it is wise, and (Ws ∧ x = x) ∨Ws
is true of something iff Socrates is wise. Why is one a ‘real’ property and
the other not? The guiding idea for relevant predication is the following
distinction. It is true that if x is Socrates then x is wise. However, it is not
true that if x is Bill Clinton then Socrates is wise. At least, it is plausible
that this conditional fail, when read ‘relevantly’. This can be cashed out
formally as follows. F is a relevant property of a (written (ρxFx)a) if and
only if (∀x)(x = a→ Fx).

Given this definition, if F is a relevant property of a then Fa holds
(quite clearly) and if F and G are relevant properties of a then so is their
conjunction, and the disjunction of any relevant property with anything at
all is still a relevant property.

Furthermore, one can define what it is for a relation to truly be a relation
between objects. If Hx is ‘x’s height is over 1 meter’, and Ly is ‘y is a
logician’ then, it is true that Greg’s height is over 1 meter and Mike is a
logician. However, it would be bizarre to hold that in this there is a real
relation that holds between Greg and Mike because of this fact. We would
have the following

∀x∀y(x = g ∧ y = m → Hx ∧ Ly)

(assuming that (ρxHx)g and (ρyLy)m) but it need not follow that

∀x∀y(x = g → (y = m → Hx ∧ Ly))

for there is no reason that Hx should follow from y = m, even given that
x = g holds. There is no connection between ‘y’s being m’ and Hg.
This latter proposition is a good candidate for expressing that there is a
real relationship holding between g and m. In other words, we can define
(ρxyLxy)ab to be

∀x∀y
(

x = a→ (y = b→ Lxy)
)

to express the holding of a relevant relation. For more on relevant predica-
tion, consult Dunn’s series of papers [Dunn, 1987, Dunn, 1990a, Dunn, 1990b]

Relevance logics are very good at telling you what follows from what
as a matter of logic — and in this case, the logical structure of relevant
predication and relations. However, more work needs to be done to see in
what it consists to say that a relevant implication is true. For that, we
need a better grip on how to understand the models of relevance logics. It
is our hope that this chapter will help people in this aim, ant to bring the
technique of relevance logics to a still wider audience.
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of Gödel’s completeness theorem. Journal of Symbolic Logic, 24:320–321, 1959. (Ab-
stract.).

[Anderson and Belnap Jr., 1961] A. R. Anderson and N. D. Belnap Jr. Enthymemes.
Journal of Philosophy, 58:713–723, 1961.

[Anderson and Belnap Jr., 1962a] A. R. Anderson and N. D. Belnap Jr. The pure cal-
culus of entailment. Journal of Symbolic Logic, 27:19–52, 1962.

[Anderson and Belnap Jr., 1962b] A. R. Anderson and N. D. Belnap Jr. Tautological
entailments. Philosophical Studies, 13:9–24, 1962.



124 J. MICHAEL DUNN AND GREG RESTALL

[Anderson and Belnap, 1975] Alan Ross Anderson and Nuel D. Belnap. Entailment:
The Logic of Relevance and Necessity, volume 1. Princeton University Press, Prince-
ton, 1975.

[Anderson et al., 1992] Alan Ross Anderson, Nuel D. Belnap, and J. Michael Dunn.
Entailment: The Logic of Relevance and Necessity, volume 2. Princeton University
Press, Princeton, 1992.

[Anderson, 1960] A. R. Anderson. Entailment shorn of modality. Journal of Symbolic
Logic, 25:388, 1960. (Abstract.).

[Anderson, 1963] A. R. Anderson. Some open problems concerning the system E of
entailment. Acta Philosophica Fennica, 16:7–18, 1963.

[Avron, 1986] Arnon Avron. On purely relevant logics. Notre Dame Journal of Formal
Logic, 27:180–194, 1986.

[Avron, 1990a] Arnon Avron. Relevance and paraconsistency — a new approach. Jour-
nal of Symbolic Logic, 55:707–732, 1990.

[Avron, 1990b] Arnon Avron. Relevance and paraconsistency — a new approach. part
II: The formal systems. Notre Dame Journal of Formal Logic, 31:169–202, 1990.

[Avron, 1990c] Arnon Avron. Relevance and paraconsistency — a new approach. part
III: Cut-free gentzen-type systems. Notre Dame Journal of Formal Logic, 32:147–160,
1990.

[Avron, 1991] Arnon Avron. Simple consequence relations. Information and Computa-
tion, 92:105–139, 1991.

[Avron, 1992] Arnon Avron. Whither relevance logic? Journal of Philosophical Logic,
21:243–281, 1992.

[Barcan Marcus, 1946] R. C. Barcan Marcus. The deduction theorem in a functional
calculus of first-order based on strict implication. Journal of Symbolic Logic, 11:115–
118, 1946.

[Barwise and Perry, 1983] Jon Barwise and John Perry. Situations and Attitudes. MIT
Press, Bradford Books, 1983.

[Belnap and Dunn, 1981] Nuel D. Belnap and J. Michael Dunn. Entailment and the
disjunctive syllogism. In F. Fløistad and G. H. von Wright, editors, Philosophy of
Language / Philosophical Logic, pages 337–366. Martinus Nijhoff, The Hague, 1981.
Reprinted as Section 80 in Entailment Volume 2, [Anderson et al., 1992].

[Belnap and Spencer, 1966] Nuel D. Belnap and J. H. Spencer. Intensionally comple-
mented distributive lattices. Portugaliae Mathematica, 25:99–104, 1966.

[Belnap Jr. and Wallace, 1961] N. D. Belnap Jr. and J. R. Wallace. A decision pro-
cedure for the system E

i
of entailment with negation. Technical Report 11, Con-

tract No. SAR/609 (16), Office of Naval Research, New Haven, 1961. Also published
as [Belnap Jr. and Wallace, 1965].

[Belnap Jr. and Wallace, 1965] N. D. Belnap Jr. and J. R. Wallace. A decision procedure
for the system E

i
of entailment with negation. Zeitschrift für Mathematische Logik

und Grundlagen der Mathematik, 11:261–277, 1965.
[Belnap Jr. et al., 1980] N. D. Belnap Jr., A. Gupta, and J. Michael Dunn. A consecu-

tion calculus for positive relevant implication with necessity. Journal of Philosophical
Logic, 9:343–362, 1980.

[Belnap, 1960a] Nuel D. Belnap. EQ and the first-order functional calculus. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 6:217–218, 1960.

[Belnap, 1960b] Nuel D. Belnap. A formal analysis of entailment. Technical Report
Contract No. SAR/Nonr. 609(16), Office of Naval Research, New Haven, 1960.

[Belnap, 1962] Nuel D. Belnap. Tonk, plonk and plink. Analysis, 22:130–134, 1962.
[Belnap, 1967a] Nuel D. Belnap. Intensional models for first degree formulas. Journal

of Symbolic Logic, 32:1–22, 1967.
[Belnap, 1967b] Nuel D. Belnap. Special cases of the decision problem of relevant im-

plication. Journal of Symbolic Logic, 32:431–432, 1967. (Abstract.).
[Belnap, 1977a] Nuel D. Belnap. How a computer should think. In G. Ryle, editor,

Contemporary Aspects of Philosophy. Oriel Press, 1977.



RELEVANCE LOGIC 125

[Belnap, 1977b] Nuel D. Belnap. A useful four-valued logic. In J. Michael Dunn and
George Epstein, editors, Modern Uses of Multiple-Valued Logics, pages 8–37. Reidel,
Dordrecht, 1977.

[Bia lynicki-Birula and Rasiowa, 1957] A. Bia lynicki-Birula and H. Rasiowa. On the rep-
resentation of quasi-boolean algebras. Bulletin de L’académie Polonaise des Sciences,
5:259–261, 1957.

[Brady, 1989] Ross T. Brady. The non-triviality of dialectical set theory. In Graham
Priest, Richard Routley, and Jean Norman, editors, Paraconsistent Logic: Essays on
the Inconsistent, pages 437–470. Philosophia Verlag, 1989.

[Brady, 1991] Ross T. Brady. Gentzenization and decidability of some contraction-less
relevant logics. Journal of Philosophical Logic, 20:97–117, 1991.

[Brady, 1994] Ross T. Brady. Rules in relevant logic — I: Semantic classification. Journal
of Philosophical Logic, 23:111–137, 1994.

[Brady, 1996] Ross T. Brady. Relevant implication and the case for a weaker logic.
Journal of Philosophical Logic, 25:151–183, 1996.

[Burgess, 1981] J. P. Burgess. Relevance: A fallacy? Notre Dame Journal of Formal
Logic, 22:97–104, 1981.
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