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Abstract: It is tempting to take the logical connectives, such as conjunction, disjunction, nega-
tion and the material conditional to be de�ned by the basic inference rules in which they fea-
ture. Systems of ‘natural deduction’ provide the basic framework for studying these inference
rules. In natural deduction proof systems, well-behaved rules for the connectives give rise to
intuitionistic logic, rather than classical logic. Some, like Michael Dummett [31], take this to
show that intuitionistic logic is on a sounder theoretical footing than classical logic. Defenders
of classical logic have argued that some other framework, such as Gentzen’s sequent calculus,
or a bilateralist system of signed natural deduction, can provide a proof-theoretic justi�cation
of classical logic. Such defences of classical logic have signi�cant shortcomings, in that the sys-
tems of proof o�ered are much less natural than existing systems of natural deduction. Neither
sequent derivations nor signed natural deduction proofs are good matches for representing the
inferential structure of everyday proofs.

In this paper I clarify the shortcomings of existing bilateralist defences of classical proof,
and, making use of recent results in the proof theory for classical logic from theoretical computer
science [88, 89], I show that the bilateralist can give an account of natural deduction proof that
models our everyday practice of proof as well as intuitionist natural deduction, if not better.

1 the problem of classical proof
There are many ways to design a system of proofs for classical logic. Since the rise of
proof theory in the 20th Century we have seen a plethora of di�erent systems of proof,
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ranging from axiomatic proof systems in the style of Hilbert [53,54], tableaux proofs in
the manner of Beth [21], Hintikka [55] and Smullyan [115], and Gentzen’s in�uential se-
quent calculus [44]. No style of proof system, though, has received anywhere near the
sustained degree of philosophical attention, either in logic textbooks, or in the research
literature, that has been given to systems of natural deduction. With origins in the pi-
oneering works of Jáskowski [63] and Gentzen [43], natural deduction proof systems
have been studied by Fitch [36], Lemmon [73] and Prawitz [93] in the middle of the
20th Century, and philosophers such as Michael Dummett [31], Dag Prawitz [94–96]
and Neil Tennant [121, 122] have placed natural deduction systems at the focus of their
accounts of the semantics of logical vocabulary.

For approaches like these, a natural deduction proof system is much more than a
convient way to specify the valid arguments. It is a framework in which the rules for
each logical constant can be given a well-de�ned semantics [38, 66, 95, 112, 126], by way
of a system of introduction and elimination rules, each of which feature one (and only
one) logical concept at a time, and such that the rules for each connective are appropri-
ately harmonious. This means (very roughly speaking) that the elimination rule for a
concept allows you to extract all and only the information that was ‘put in’ to the con-
cept by way of its introduction rule. In such a harmonious natural deduction system,
we can see each pair of introduction and elimination rules as, in some sense, defining
a logical concept uniquely, in such a way that the addition of any such a logical con-
cept to some language by way of these inference rules is a conservative extension (not
allowing for the addition of new proofs in the old vocabulary), while also a�ording an
increase in expressive power to the language. The harmonious inference rules of the
logical concepts give us an answer to Prior’s challenge to explain how it is that some sets
of inference rules might truly define a logical concept [98]. A natural deduction proof
system provides a background context of deducibility against which logical concepts
can be given ‘de�nitions’ which are both conservative and uniquely de�ning [15]. To
use Brandom’s terminology, the addition of logical vocabulary like→ (a conditional),
¬ (a negation),∧ (conjunction),∨ (disjunction) or the quanti�ers or identity, allow us
to make explicit [25] what was merely implicit (inferential connections, contradictori-
ness, generality, etc.) in the original vocabulary. Natural deduction proof systems are
philosophically rich as well as pedagogically useful.

Rather than continuing to talk abstractly about natural deduction systems as such,
it will be helpful to attend to one particular system of rules, as a focus of our attention.
It is simplest, for our purposes, to choose Gentzen’s own presentation of natural de-
duction, as systematised and popularised by Dag Prawitz [93].1 The basic rules for this

1There are signi�cant subtleties involved in the choice of one system or another, especially when it
comes the behaviour of the structural rules [105, 117]. It would be worth exploring whether the choices
made here in Gentzen–Prawitz-style natural deduction could be adapted to other frameworks. For a
good account of the plethora of such frameworks, either of the histories of natural deduction by Je�
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Figure 1: natural deduction proofs

system of natural deduction are displayed in Table 1. In this display, A, B and C range
over formulas, Π, Π′ and Π′′ are each proofs, whose conclusion is the formula written
directly below it. If any formula is written above a ‘Π’, and surrounded in brackets, this
means that some number of occurrences of that premise in the proof Π are discharged
in the next inference. So, in a→I inference to the conclusion A → B, some number
of instances of A occurring as assumptions in the proof Π are discharged, and are no
longer active premises of the proof of A→ B.2

Proofs are inductively de�ned objects, and so, we include the base case of the induction,
the single formula A. This is the smallest proof, in which A as a premise that has been
assumed, and that very same formula A is at the very same time its conclusion. These
‘atomic’ proofs are the seeds from which all proofs grow.

Natural deduction proof systems form an attractive package. The introduction and
elimination rules for each logical concept behave rather like the left-to-right and right-
to-left components of the truth conditions for sentences in which that concept is dom-

Pelletier (the longer, co-authored with Allen Hazen) are well worth exploring [91, 92].
2One surprising, but important fact for these natural deduction proofs is that this number of occur-

rences of the suppositionA to be discharged can be zero. There is a one-step proof from the premise p to
the conclusion q→ p using the rule→I, discharging zero instances of the supposition q.

Greg Restall, restall@unimelb.edu.au july 9, 2021

https://consequently.org/writing/speech-acts-for-classical-proofs
mailto:restall@unimelb.edu.au


https://consequently.org/writing/speech-acts-for-classical-proofs 4

Π
¬¬A DNE
A

[¬A]i
Π
⊥ ⊥EcA

[A]i
Π
C

¬A
Π′

C Casesi,j
C

Figure 2: classical principles in standard natural deduction

inant. Each rule governs what it takes for the claim to be true, or what follows given
that the claim is true.

However, this package is, in its current form, rather opinionated. Natural deducion
is well suited to intuitionistic logic, and not its older cousin, classical logic. The familiar
natural deduction rules for the conditional do not allow for a proof of Peirce’s Law
((p→ q)→ p)→ p, even though this is a tautology of classical logic. The rules for the
conditional and disjunction are not enough to supply a proof of p∨ (p→ q), which is
also a classical tautology. The rules for negation do not supply a proof from ¬¬p to p,
and neither do we have a proof of the Law of the Excluded Middle, p ∨ ¬p.

It is simple enough to extend a natural deduction system with rules to plug these
gaps. The rules for classical natural deduction as you will �nd in the usual textbooks [11,
24,28,73,120, for example] do so by adding rules for negation. Candidate rules are Dou-
ble Negation Elimination, a classically strengthened⊥ Elimination Rule, or a rule that
allows reasoning by arbitrary ‘Boolean’ cases. These are collected together in Figure 2.
Each of these rules are natural enough in their own way. (They would not be proposed
as rules if they struck most people as being invalid, after all.) However, the upshot of
the need to patch the proof system with rules like these is that the connective rules are
no longer harmonious. The rules add to our usual introduction and elimination rules
an extra rule, governing one connective, negation.3 The typical results for natural de-
duction proof theory, including normalisation, and the subformula property and con-
servative extension results fail to hold or hold only in an eviscerated form in this kind
of classical natural deduction [93]. Peirce’s Law can be proved only by way of a detour
through negation. Figure 3 contains, for example, a proof of Peirce’s Law, using a Dou-
ble Negation Elimination inference. That we have to use proofs like this shows either
that theses like Peirce’s Law are not analytic in the sense of following from the semantic
rules governing the conditional alone, or those rules as presented in Figure 1 are at best,
incomplete. The rules for the conditional do not adequately capture its meaning. They
only do so when supplemented by rules governing some other connective.4

3Or two concepts, if we wish to count ‘⊥’ as a distinct logical concept, as we ought. See Section 4
for a discussion of a slightly di�erent way to treat contradictoriness, which provides a cleaner way for
negation to be modelled, without relying on its connection with the contradiction constant⊥.

4I have chosen negation rules here, as they are the usual textbook additions. Classical logic can be
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Figure 3: Peirce’s Law, proved with Double Negation Elimination

So, ‘textbook’ classical natural deduction has nothing like the appeal of its intuition-
istic cousin. This unsatisfactory state of a�airs for classical proof theory is one plank of
Dummett’s argument in favour of intuitionistic logic over classical logic in The Logical
Basis of Metaphysics [31]. We have a use-based theory of meaning grounded in well-
behaved natural deduction rules for the logical connectives, but those rules give rise to
intuitionistic logic, and give no justi�cation for properly classical logical principles, or
so the argument goes.

So, for the friend of classical logic the challenge is clear. If you wish to retain your
allegiance to classical logic, you must either give up the search for a system of proofs
with well-behaved rules and give some other account of the semantics of our logical
vocabulary (admittedly, this is the overwhelmingly dominant response to the problem),
or you must �nd a better proof system than textbook classical natural deduction.

If we want a well-behaved proof system for classical logic, we hope to do better. We
must do better. We can do better.

∗ ∗ ∗

The philosophical literature contains two dominant contenders for providing a well-
behaved proof system for classical logic, with separable rules, normalisation and the
subformula property. The most venerable system of this kind is Gentzen’s sequent cal-
culus [43]. We shift from considering natural deduction proofs, which are structured

regained by supplementing the rules for the conditional with princples like a Pierce rule (from (A →
B)→ A, deriveA) or Tarski’s conditional reasoning by cases (if C can be derived from B→ A and from
A→ B′, thenC follows). The point we have been making concerning the standard textbook rules apply
to these, too. Now we need to apply a rule governing the conditional in order to derive p from ¬¬p,
breaking the subformula property.
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lists or trees of formulas, representing the di�erent steps at which claims are assumed,
inferred, discharged, etc., to trees of sequents, which are not formulas but are themselves
collections of formulas. Given this shift, it is straightforward to design separable rules
for the classical connectives, which are just as harmonious as the rules in a natural de-
duction system. The price to pay is that derivations in a sequent calculus are trees of
sequents of the form X � Y , where X and Y are collections5 of formulas. The upshot
is that sequent derivations do not bear as close a relationship to everyday proofs as proofs
formalised in natural deduction systems.

The more recent contender for a well-behaved proof-theoretic foundation for clas-
sical logic is a signed natural deduction system. Here, again, there is an added layer of
complexity beyond natural deduction proofs. In a signed natural deduction system,
formulas are tagged with signs. In the systems proposed for classical logic, there are two
signs, one positive, and one negative, and a signed formula represents either a positive
or negative attitude to a formula (acceptance or rejection) or a positive or negative speech
act (assertion or denial).6

The sequent calculus and signed natural deduction are both very well behaved proof
systems, with none of the inelegance of textbook systems for classical natural deduction.
The rules for the connectives in these systems have the right kind of harmony to be in
contention for providing an account of what it is to define logical concepts. However, as
we will see, both the sequent calculus and signed natural deduction have shortcomings
which mean they are not as suited to the project of providing a semantics for the infer-
entialist as standard unsigned natural deduction. The proper inferentialist treatment
for classical logic has some way, yet, to go.

As proponents of the sequent calculus have seen [29, 30, 51, 103], Gentzen’s proof
system for classical logic is very well suited to its target. The Law of the Excluded Middle
( � p ∨ ¬p) and the Law of Non-Contradiction (p ∧ ¬p � ) have derivations that are

5Whether the components of a sequent are sets, multisets or lists or some other kind of collection is
not important for our purposes.

6In Timothy Smiley’s in�uential paper, “Rejection” [114], the attitude interpretation was dominant,
and the sign ‘∗’ was used to tag rejections of formulas, and a sign for accepted formulas was ommitted.
In more recent works parity between pro and con is maintained with the use of two signs, ‘+’ and ‘−’,
and the interpretation centres on speech acts of assertion and denial [61, 110, 114]. I will follow the recent
conventions in this paper. As Humberstone has shown [58], this ‘rejective’ approach to negation was
pioneered in the 1970s by Kent Bendall [18, 19]. The use of positively and negatively signed formulas in a
proof system for classical logic occurs elsewhere, too. Smullyan [115] uses signed formulas in an analytic
tableaux system for classical �rst-order logic (this work was known and cited by Bendall [19], but is cited
neither by Smiley [114] nor Rum�tt [110]). Beisecker [14] discusses an explicitly bilateralist interpretation
of such tableaux proof systems, and shows that many of the motivating bilateralist ideas are expressed, at
least in nascent form, by Charles Sanders Peirce.
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exactly dual to one another:

p � p
¬R

� p,¬p
∨R

� p ∨ ¬p

p � p
¬Lp,¬p �
∧Lp ∧ ¬p �

The structure of sequents, allowing for collections of formulas on the left, and on
the right, gives the maximum degree of �exibility in constructing derivations. The
left/right symmetry pairs neatly with the inherent true/false duality between conjunc-
tion and disjunction in two-valued Boolean valuations.7 As a formal, structural axioma-
tisation of valid sequents in classical logic, the classical sequent calculus is unimpeach-
able. However, this does not mean that it helps to isolate an understanding of classical
proof. If we grant that a proof is a proof of some conclusion, then the �exibility of classical
sequents begins to look not so much like a feature, and more like a bug. Restall [103]
and Ripley [108] have argued that derivations in the sequent calculus can be wedded
to our practice as giving us an account of which positions are out of bounds. On their
accounts, a derivation of X � Y shows how it is that asserting each member of X and
denying Y is out of bounds. On this account, the two derivations above show that it
is always out of bounds to deny p ∨ ¬p (by classical lights, instances of the Law of the
Excluded Middle are undeniable), and similarly, the self contradiction p ∧ ¬p is (by
classical lights) unassertible.8

It is not my place in this paper to take issue with Restall’s and Ripley’s bilateralism
in their interpretations of the sequent calculus. Many proponents of classical logic have
argued for some form of bilateralism, for which denial is not to be taken as analysed in
terms of the assertion of negation, but rather uses denial and its features as a part of
the analysis of the signi�cance of negation [97, 114]. A question for the inferentialist
classical logician remains. It is one thing to argue that the sequent calculus gives us
an account of the bounds for combinations of assertions and denials. It is very much
another thing to think that the sequent calculus is itself a calculus in which a derivation

7A Boolean valuation is a function assigning to each formula one (and only one) of the truth val-
ues true and false, satisfying the expected two-valued truth conditions: a conjunction is assigned true
i� both conjuncts are assigned true; a disjunction is assigned false i� both disjuncts are assigned false,
a conditional is assigned false i� the antecedent is assigned true and the consequent assigned false; a
negation is assigned true i� the negand is assigned false and⊥ is assigned false. The Chapter 1 of Hum-
berstone’s The Connectives contains a comprehensive discussion of valuations and their connections to
consequence relations [59, esp. p.54–100].

8Note, ‘unassertible’ here does not merely mean that the assertion is unwarranted. It means that any
position in which the assertion is made is out of bounds in a much stronger sense than being unwarranted.
That is, it involves a clash, in just the same way that any position in which p is asserted and p is denied
involves a clash. In fact, the derivation of the sequent p∧¬p � shows how the clash involved in asserting
p ∧ ¬p arises out of the clash involved in asserting p and asserting ¬p, which itself arises out of the clash
involved in asserting p and denying p.
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of a sequent describes some kind of proof.9 The central plank of Steinberger’s argument
against the application of the sequent calculus to inferentialist ends is that it violates the
principle of answerability, to the e�ect that the only deductive systems that can meet the
inferentialist’s aims must be “suitably connected” to our ordinary deductive inferential
practices [118, p. 335]. So, with this in mind, let us look at the relationship between
sequent calculus derivations and what might reasonably be called proofs.

It is relatively straightforward to take the derivation of p∧¬p � and to transform
it into a natural deduction refutation of p ∧ ¬p, that is, a proof of a contradiction,⊥,
from p ∧ ¬p.

p ∧ ¬p
∧Ep

p ∧ ¬p
∧E¬p
¬E

⊥
We can read this proof, quite straightforwardly, as explaining why, under the assump-
tion of p ∧ ¬p,⊥would follow. It is a proof, with the conclusion,⊥, and p ∧ ¬p as an
premise. There is no straightforward way to massage the dual sequent calculus deriva-
tion into a proof of the same form. If we were to turn this derivation upside down
(by way of visual analogy, where the left–right mirror duality between antecedents and
succedents in the sequent calculus becomes an up–down duality between premises and
conclusions in proofs) then the result would be a downward branching tree with> at
the leaf, and two nodes at the bottom, both containing p ∨ ¬p.

p ∨ ¬p ∨I
p

p ∨ ¬p ∨I
¬p ¬I

⊥

While such an inferential network may be theoretically elegant, and formally interest-
ing,10 it is less than compelling as an account of the structure of a proof [118]. A deriva-
tion of a sequentX � A in a single-conclusion sequent system can be seen as a means to
construct a natural deduction proof fromX toA, but it is less clear how one might un-
derstand a derivation of a classical sequentX � Y is a construction of something that is
clearly a proof. The structure above, starting from> and leading to two “conclusions”
p∨¬p shares some structural similarities to everyday proofs, but the analogy is strained
at best. Typically, at least, a proof is a proof of a conclusion, relative to a background
(the collection of assumptions) that is taken for granted. This structure is present in

9To use MacFarlane’s terminology [77], Restall’s and Ripley’s accounts of the sequent calculus and
the bounds is a kind of normative pragmatism (the logic is grounded in rules for use), but they are not
inferentialist.

10Multiple conclusion ‘proof structures’ of this general shape are a minority tradition in logic, though
they are of signi�cant formal interest [23, 26, 27, 39, 64, 100, 104, 109, 113, 124]. Proof structures that are
not trees have come into focus since the introduction of Jean-Yves Girard’s linear logic [45], and the in-
troduction of proof nets [40, 46].
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tree-style natural deduction proofs, with the assumptions at the leaves and the conclu-
sion at the root. This structure is clearly re�ected in sequents of the formX � Awhere
the assumptions are collected together in X and the conclusion A is singled out. This
structure is not manifest in sequents of the form X � Y , in which each formula in X
and in Y has equal status, and no formula is in focus.11

This preference for a single conclusion structure is not merely a conservative long-
ing for the familiar or the everyday. I take it that the point of Steinberger’s principle of
answerability is not that the deductive practices to be systematised in a theory of proof
be everyday and familiar, but that the formal system be appropriately connected to not
merely to the features that our practices happen to have, but that they answer to the aim
of that practice. A good system of natural deduction might stand to our deductive in-
ferential practice as Peano Arithmetic corresponds to our counting practice. It would,
in a small number of primitive principles, make rigorous and explicit and precise, what
is at least implicit or nascent in our everyday deductive inferential practice.

So, let me spell out one of the aims of our ordinary deductive practice that makes
the single conclusion nature of proof not an accident, but the central plank of the exer-
cise. One way to understand the function of giving a proof is to provide an answer to a
justi�cation request for an assertion. Suppose you make a claim—let it be A, and I ask
you to defend it. You do so, by making other claims—say, B and B → A. I could stop
there, satis�ed, or I could ask you to defend either of those claims, until I am satis�ed.
If I ask you to defend B→ A, one strategy would be for you to ask me to suppose B (to
grant it for the sake of the argument), and then you will defend A, now appealing to
that supposition of A. In this process of claim and defence, at any stage there is a single
claim in focus, the current target of the justi�cation request [52, Chapter 7,8]. It is nat-
ural to understand the function of proof in just this dialogical fashion [34, 35, 48], and
when we do so, we see that the focus on single conclusions in proof structures is not an
accident, but is at the heart of the exercise. So, too, is the tree structure of Prawitz–style

11Another approach to get something a little more like a natural deduction proof, starting from a
sequent derivation, is the sequence conclusion system of Boričić [23,100]. Here, we allow for a collection
of formulas as alternative conclusions, at each step of the proof, while imposing the tree structure familiar
to natural deduction. Our proof of p ∨ ¬p would become something like this:

> ¬Ip,¬p
∨I

p ∨ ¬p,¬p
∨I

p ∨ ¬p, p ∨ ¬p
W

p ∨ ¬p

Such ‘proofs’ are in a halfway house between the sequent calculus, with a structure of formulas at a step
in a proof doing duty for the right hand side of the sequent, and the undischarged leaves doing duty
for the left hand side, and the critical comments about downward branching proofs apply to sequence
proofs, too.
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natural deduction proofs. The sub-tree rooted in some given formula in a proof is nat-
urally understood as that part of the proof that is used to meet the justi�cation request
for that formula. As we play out the questions and answers, these can be laid out in the
shape of a tree, with the leaves being either temporary commitments later discharged,
or assumptions granted and left unjusti�ed.

Of course, a proof presented in natural deduction form does not bear the marks of
its dialogical origin,12 but it is natural to think of an inference step, of the form “A, B, so
C” or “suppose A, we can show B, so A → B” as presenting the means to pre-emptively
meet justi�cation requests, or to show our working. We not only make the claim C
or A → B, but we also supply backup in the form of pointing to what we would give
as a justi�cation, were we asked. A proof is not merely a way to come to a yes or no
answer—an oracle would su�ce for that—a proof of A is a way to show that A. A
sequent derivation of X � Y , or its rendering in a proof with multiple “conclusions”
does not �t this structure anywhere near as well. Much more work would need to be
done to explain how sequent derivations relate to proofs, if we use proofs as means of
meeting justi�cation requests. This is not to say that sequent calculi (even those with
multiple formulas on the right hand side of a sequent) are not of use in their own way as
a part of the inferentialist’s toolkit—to the contrary, the sequent calculus is an excellent
framework for providing scoreboards for the state of play in some context—but it is to
say they should not, on their own, be the whole account of proof for an inferentialist.
After all, designing new ways to manipulate a scoreboard does not guarantee that your
newfangled scoreboard matches some possible play of some game.13

∗ ∗ ∗

The second major contender for a proof-theoretical framework for classical logic does
not have the shortcoming of not having identi�able conclusions in proof structures.
Signed natural deduction systems give us proof structures where, at every stage of de-
velopment, a proof has a single conclusion. Here is an example of a signed natural de-

12Unlike other dialogical formal systems, natural deduction proofs do not have moves marked “pro-
ponent” and “opponent” [20, 56, 57, 74–76].

13For more on the game/scoreboard metaphor, and what the related question concerning the relation-
ship between the relatively abstract notion of a game, which could be implemented in many di�erent
ways, and the essentially embodied notion we might call a sport, see Mark Lance’s “Some Re�ections on
the Sport of Language” [71]. This becomes salient when we consider the relation between the dialogical
notions of assertion and denial and the embodied notions of belief and disbelief.
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duction proof, for the Law of the Excluded Middle.

[− p ∨ ¬p]1

−∨E
− p

+¬I+¬p
+∨I

+ p ∨ ¬p [− p ∨ ¬p]2

RAA1,2
+ p ∨ ¬p

In a proof of this form, every formula is signed, with a ‘+’ (marking assertions) or a ‘−’
(marking denials or rejections). For each connective there are introduction and elimi-
nation rules, both for assertions of formulas in which that connective is dominant and
for denials of those formulas. There are also distinctive structural rules such as the re-
ductio ad absurdum rule (RAA) employed here in the last step. The RAA rule allows
us to prove a signed formula (+A, or−A) if under the supposition of its opposite (−A,
or +A, respectively) we are able to prove some signed formula (+B) and also prove its
opposite (−B). In the instance of RAA in the proof above, in the left branch we proved
+ p ∨ ¬p from− p ∨ ¬p (that takes three steps) and we have proved− p ∨ ¬p from it-
self (that was immediate). So, discharging the supposition of− p ∨ ¬p, we conclude its
opposite, + p ∨ ¬p.

This signed natural deduction proof of + p ∨ ¬p is slightly longer than the swift se-
quent derivation of � p ∨ ¬p in the classical sequent calculus (which amounts to only
two inferences), but it does have the virtue of having a single signed formula at its con-
clusion, rather than a sequent. If you squint at the proof, you can perhaps see the shared
structure with the inverted natural deduction proof with the two conclusions. There
are exactly three inferences using a connective rule. In the signed system, we have one
−∨E and one +∨I step. These are mirror images of one another. What is traditionally
an unsigned inference from B toC may be taken positively as a step from +B to +C or
negatively, as a step from−C to−B, so the disjunction steps,−∨E and +∨I in some
sense correspond to the two ∨I steps in the inverted natural deduction ‘proof’. The
positive negation introduction rule corresponds to the negation introduction step in
the inverted tree proof, and the remaining step, the RAA inference, is structural book-
keeping, wrapping up the result in a single conclusion.

The phenomenon of one structure (signed natural deduction) rhyming with an-
other (the sequent calculus) is quite general. Viewed from the perspective of the se-
quent calculus, or of proof-nets, a negatively signed premise in a proof provides a way
to represent what would otherwise be an alternative positive conclusion. What is proved
by the left sub-proof from− p ∨ ¬p, to + p ∨ ¬p would be represented in the sequent
calculus as a derivation of � p ∨ ¬p, p ∨ ¬p, perhaps with one of the instances sin-
gled out in focus as the conclusion. In general, it is straightforward to rewrite a signed
natural deduction derivation from positive assumptions +X and negative assumptions
−Y to conclusion +A as a derivation of the sequent X � A, Y , where X and Y are
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the corresponding collections of unsigned formulas. If the conclusion is−B, then the
sequent derived is X, B � Y .14 We have a notational variant of the sequent calculus,
with the extra feature that all sequents have one formula singled out as the conclusion.
If the formula is on the right of the sequent, we give it a positive sign, if the formula is
on the left, we give it a negative sign. The price to pay for this transformation is that
instead of introduction and elimination rules for each connective, we have strangely
doubled pairs of rules. Positive introduction and negative elimination rules (which look
uncannily alike) and negative introduction and positive elimination rules (which also
look strangely similar).15 Therefore, the question of harmony for our connective rules
transforms from the matter of the match between introduction and elimination rules to
the more complex four way match between positive introduction, positive elimination,
negative introduction and negative elimination rules.

So, it is worth considering if the price of this added complexity is worth paying for
the bene�t of having proofs in which one signed formula is present as the conclusion.
As we have seen, there are good reasons to look for a single conclusion framework, given
the �t with our practices of proof. Here, the formal costs of syntactic complexity are
noticeable, but are, ultimately, manageable. The more important price to consider is
whether the structures that result are any good at representing proofs—does the bilat-
eralist framework meet the answerability criterion any better than the sequent calculus?

Signed natural deduction is not a simple extension of natural deduction proofs with
the addition of some extra rules, but a change to a di�erent framework. Natural deduc-
tion proofs, as traditionally understood, contain formulas. Signed natural deduction
proofs contain signed formulas. So, to understand the costs and bene�ts of the frame-
work, we need to understand the signi�cance of those signs, and whether they can be
understood in ways that are answerable to our inferential practice. How, exactly, are we
to understand ‘+’ and ‘−’?16 Rum�tt’s answer, given when he distinguishes negation, as
a freely iterating sentence-forming operator on sentences, and ‘−’ the sign of rejection,
goes like this:

The sign of rejection, by contrast, was explained as the formal correlate of
the operation of forming an interrogative sentence from a declarative and

14This observation is by no means original with me. Humberstone, in “The Revival of Rejective
Negation” [58] notes this connection between signed natural deduction proofs and sequent derivations.

15The rules are not quite mirror images of each other, given the distinctive role played by the conclu-
sion. Rum�tt’s rule +→I, which is the signed version of the traditional→I rule, is not the mirror image
of his−→E rule [110, p. 802], because the former invovles discharging positive assumptions, and there
is no way to dualise this, because there is only a single conclusion spot. However, he could well have
instead dualised his −→E rule for his +→I rule. Rum�tt’s −→E rule is additive, while the +→I is
multiplicative.

16This short discussion is indebted to Nils Kürbis’ more extensive treatment of bilateralism and speech
acts, presented at the 10th European Congress for Analytic Philosophy in August 2020 [69]. In hearing
Nils’ presentation, I was convinced that my concerns about the interpretation of bilateralist natural de-
duction were worth attending to. I thank him for his presentation and for our subsequent discussion.
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appending the answer “No”, and this operation cannot be iterated. “Is it
the case that two is not a prime number? No” makes perfectly good sense,
but “Is it the case that is it the case that two is a prime number? No? No?”
is gibberish. The sign “−”, then, does not contribute to propositional con-
tent, but indicates the force with which that content is promulgated. Just
as one asserts the entire content expressed byA by inscribing p+Aq, so one
expressly rejects that same content by inscribing p−Aq. [110, p. 802–803]

Rum�tt’s understanding of the signs is clear. ‘+’ and ‘−’ are force indicators. They
cannot be embedded. ‘+’ expresses assertion and ‘−’ expresses rejection. Rum�tt’s ar-
gument is, in part, that ‘−’ does not embed, while negation can.17 Whether our natu-
ral language works exactly as Rum�tt claims is not so important for the issue at hand.
Rum�tt’s understanding of how he takes these signs to be interpreted when they are
used in his formalism is what is important for our purposes. Rum�tt’s intention is
completely clear when they stand alone and signed formulas are not linked together in
inference. If I write down a number of sentences on a sheet of paper and prepend some
with a ‘+’ and others with a ‘−’, it is clear that, following the convention set out, I am
asserting those marked with a ‘+’ and denying those with a ‘−’.

The situation becomes more delicate when we move from a collection of discon-
nected sentences—some asserted, others denied—to the interlocked network of sen-
tences used when using a proof to justify some conclusion. Consider the bilateralist
proof, ending in +A ∨ ¬A given above. If we follow the convention that p+Aq is a sign
of asserting the content expressed by pAq and writing down p−Aq is a sign of rejecting
that content, then when I wrote down that signed proof of p+A∨¬Aq I contradicted
myself, because in the process of writing down that proof, I asserted and rejected the
same content. But of course I never actually contradict myself when I write down such
a proof. I do not even need to retract any of the assertions that I made along the way. I
have not really rejected the content A ∨ ¬A when I start writing down p−A ∨ ¬Aq as
I compose the left branch of the proof. After all, I am proving A∨¬A, not rejecting it.
In a traditional natural deduction proof, with no signs, I can start a branch of my tree
by writing down a formula and in doing so, I do not assert that formula, I suppose it.18

Perhaps I suppose it for the sake of the argument. The traditional norms of assertion
(whether the truth norm, the knowledge norm, or whatever else you prefer [70, 83])
simply do not apply to supposition. It would be wrong to criticise a supposition, or
to say that it in any sense failed in its aim, if it turned out to be untrue, or if we had
no evidence for it. It would be wrong to take what is a supposition, for the sake of an

17Rum�tt’s view is controversial. Textor argues that “No” is never a force marker [123]. For responses
to Textor, see Incurvati and Smith [60] and Schang and Tra�ord [111].

18This point is a variant of what Geach calls the Frege point [42, p. 449]. Just as a content appears
unasserted when it occurs as the antecedent of a conditional, so it may when it is supposed when intro-
duced as a premise, later to be discharged, in a natural deduction proof.
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argument, as a license to reassert that content in other contexts. Yet these norms are
what we take to be salient when it comes to assertion [78]. Supposition is, of course,
related to assertion, but supposition should not be identi�ed with assertion. When we
suppose, try a content on for size, working with its downstream consequences, without
imposing any of the quality control measures we apply to assertion, or to denial.

This di�erence between the assertion and supposition is clearly marked in the type
theoretic natural deduction formalisms. In systems in which types are annotated with
terms [47, 80], proofs look like this:

[x : p→ q]1 t : p
→Ext : q
→I1

λx.xt : (p→ q)→ q

Here, the undischarged assumption p is paired with a term t. We can think of t as our
ground for the assertion that p, whatever that ground may be. On this view, to assert a
content is (at least in part) to present it as having grounds. From p, we aim to conclude
(p → q) → q, to show that it, too, has grounds, by showing how grounds for (p →
q)→ qmay be derived from the grounds we posses for p. To do this, we suppose p→ q.
We need not possess any grounds for p → q, and neither do we need to present it
as having grounds, so instead of naming any ground for p → q in the proof, we use
a variable as a marker to stand in for the grounds were there any. Then, in the→E
step, the supposed grounds x are combined with the grounds t we in fact possess for p,
to give us xt, which would be grounds for q, under the scope of the supposition that
x does select some ground for p → q. This hybrid object xt is partly ground, partly
placeholder, and is not, in itself, grounds for q. Then, in the �nal step, the supposition
is discharged, the variable x is bound in the term λx.xt, and we have grounds for the
conclusion (p → q) → p. This ground involves the ground t we possess for p, and it
constructs the ground for (p→ q)→ q, as a function, which when supplied a ground
x for p→ q (if there are any such grounds), returns the result of applying that ground
(as a function) to the ground t we possess.

The details of how to interpret terms as grounds do not matter for the point at
hand. The important lesson for us in this example is the clear di�erence between those
speech acts as marked by the terms annotating them. Assertions in proofs, are annotated
by terms in which no variables are free. This represents the fact that they have been sup-
plied grounds, as they depend on no undischarged assumptions. Suppositions, which are
leaves in the proof tree marked with variables, which are unasserted but granted for the
sake of the argument. Proofs contain other claims (like the q in this case) which are in-
ferred under the scope of a supposition. These are neither supposed, and nor are they
asserted, since they have not presented as having grounds. In the proof we have only
speci�ed what would be grounds for q, were some value for the variable x to be supplied
as grounds for p→ q. In this formalism, there is a clear representation of what formu-
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las are asserted and what formulas are not, as a proof unfolds.19 This distinction in the
formal system resepects our answerability criterion. In our everyday reasoning practice,
what we assert we can also deny, and those contents we can assert and deny are the same
contents that we can suppose and also infer or conclude.

So how might a user of a signed natural deduction system understand the signs in
a natural deduction proof if it is not quite correct to understand all positively signed
formulas in a proof as asserted and all negatively signed formulas as rejected?

A natural thought might be to think of the supposed positively signed formulas
as hypothetically asserted and the supposed negatively signed formulas as hypothetically
rejected. This should not mean that the person who presents the proof supposes that
they assert (or reject) the content in question, for that way lies a confusion. When I can
quite coherently suppose that the cat is on the mat but that I do not assert that it is,
but it is a contradictory supposition to suppose that I assert that the cat is on the mat
and that I do not assert that it is. To suppose that p is not to suppose that you (or that
anyone else) assert p.

At this point we might seek guidance from Rum�tt’s canonical understanding of
signed formulas, quoted above. We are to understand p+Aq as the polar question “Is it
the case that A?” followed by “Yes”. It makes little grammatical sense to embed this in
a “Suppose” wrapper. However, it seems straightforwardly meaningful to enclose the
answer in such a wrapper, like this:

“Is it the case that two is a prime number? Suppose no.”

This does look like a kind of negative supposition, and a supposition of just this form
could well serve as the leaf in a signed natural deduction proof. (Whether the content of
what is supposed is the content expressed by “Is it the case that two is a prime number?”,
which is somehow negatively supposed, or if it is better understood as a supposition of
“It is not the case that two is a prime number”, I leave to others to decide.) This strategy,
of allowing the supposition to modify the answer indicator, seems to provide some way
to make sense of positive and negative supposition. However, it is a strategy that comes
with its own costs. If we allow for answer modi�ers such as “suppose no”, then we have
opened the gate to forms such as the double negative:

“Is it the case that two is a prime number? Not no.”

which seems just as meaningful an answer as ‘suppose no’. In saying this, you reject
giving the answer “no” to the question. If Rum�tt or any friend of signed natural de-
duction is going to avail himself of supposed rejection, then the issue of rejected rejection
is on the table, and with it, the question of exactly which of these speech acts should

19See J. E. Wiredu’s “Deducibility and Inferability” as an older example of the importance of keeping
track of the di�erence between suppositions that may later be discharged in a proof, and assumptions,
that are asserted [127].
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play a role in our theorising, and what bene�t is being played by constructions that do
seem to take us quite some distance away from the plain form of everyday reasoning,
dealing with speech acts like assertion, denial, supposition and inference, each of which
take the same content.

So, at the very least, if we are to employ signed natural deduction as an account
of the structure of our inferential practice, we should say something about the range
of speech acts involved in using a signed proof. Restricting our attention to assertion
and denial (or rejection) is not enough to give an account of the speech acts involved
when we suppose and when we infer. These are also speech acts, and if we are to use a
signed natural deduction system, the onus is on us to explain how that system manages
to regiment the structure of our everyday inferential practice.

∗ ∗ ∗

So, in both the sequent calculus and signed natural deduction systems, the bilateral-
ist has a formalism that is theoretically elegant, with beautiful proof-theoretic features,
such as separable rules, normalisation, the subformula property, conservative extension,
and the like. However, the price that we have paid for that formal elegance is moving
some distance away from a natural understanding of everyday proof, composed of indi-
vidual speech acts of supposing or granting, and inferring or concluding. In the remain-
der of this paper, I will show how the way is available—for the bilateralist—to take
classical proof theory back to its proof-theoretical roots, keeping all of the good for-
mal properties we want out of a natural deduction system, while hewing much more
closely to the everyday notion of proof. The tools that we need have already been built
for us by our colleagues in theoretical computer science: speci�cally, we may make use
of Michel Parigot’s λµ-calculus, which is a single conclusion, normalising natural de-
duction system for classical logic [88,89].20 (Its elegant features extend to second-order
predicate logic, but our attention will be restricted to the propositional fragment.) My
task, in the rest of this paper, is to show how this readily available system of natural de-
duction proofs addresses exactly the criticisms that have been laid at the feet of those
who would use the sequent calculus or bilateralist signed natural deduction as a means
of accounting for proof. Proofs in this system are single conclusion. At each inference
a single formula is marked out as the conclusion,21 not a signed formula, not sequences

20The λµ-calculus has gone on to receive quite some attention in the literature [5–7, 65, 72, 81, 86, 87],
and its intimate connection to the important concept of a continuation, which �nds its use in the se-
mantics of programming languages [85, 107, 119], as well as scope features in the semantics of natural
languages [1, 8–10, 49, 50] is some evidence that the λµ-calculus is not merely a ‘hack’ designed to solve
one particular problem, but is isolating something of independent interest. The connections with con-
tinuations in the speech act context will not be spelled out in what follows. How those connections can
be made and what we might �nd is left to further research.

21This includes the contradiction marker ⊥. Later we will consider whether this is best understood
as a formula or as something else.
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or sets of formulas, and not sequent. The way we make use of a bilateral treatment of
assertion and denial is that we allow formulas in the leaves of our proofs to be signed.
A bare formula by itself is taken to be supposed or postively granted for the sake of the
argument, and a slashed formula (e.g. A ) is taken to be set aside as an alternative, or
negatively granted, also for the sake of the argument. As we will see, speech acts em-
ployed in using a λµ-proof to infer a conclusion from a context in which some things
have been granted and others have been set aside as alternatives, are speech acts that we
use in everyday unformalised proofs.

Before proceeding with the positive account of proofs and their interpretation, it is
worth indicating that there is no attempt here to defend classical logic to any construc-
tivists or intuitionists who have their own independent reasons to reject classical deduc-
tive practice tout court. If your reasons to reject distinctively classical principles such as
Peirce’s Law, and the Law of the Excluded Middle amount to more than the unavail-
ability of a normalising natural deduction proof system that hews closely to the speech
acts we actually make when we prove things, then, likely as not, these reasons will still
stand. The aims of this paper are modest. I will show that everyday feasible speech acts
can be harnessed in a natural notion of proof, in a way that gives rise to a well-behaved
system of rules for classical logic. That is the aim of the rest of this paper, no more, no
less.

2 natural deductionwith alternatives
The bilateralist need not move so far away from the traditional natural deduction for-
mat for intuitionistic logic. The Gentzen–Prawitz proofs we have already seen [43, 93]
can be kept, unchanged. A proof of a formula is a tree, with that formula (unsigned)
situated at its root. The premises of the inference—the assumptions on which the con-
clusion rests—are among the leaves of the tree. Our only change will be admitting at
some of these leaves may be negatively marked, as well as the traditional, unmarked pos-
itive assumptions. The rules for each connective are unchanged from the rules we have
already seen (see Table 1), and the additions to our proofs are purely structural rules
governing the negatively marked leaves—the so-called alternatives.

So where does our classical proof system di�er from intuitionistic natural deduc-
tion? The di�erence should not, and cannot be located in a rule for this or that con-
nective, because intuitionist logic di�ers from classical logic across a range of di�erent
connectives. Classical logic asks us to provide a proof from ¬¬p to p. If the rules for
each connective are separable, and if we can normalise proofs appropriately, then the
only connective rules involved in a properly analytic normal proof from ¬¬p to p will
be the negation rules. Classical logic also asks us to provide a proof from no premises
to ((p→ q)→ p)→ p. In a normal proof of Peirce’s Law, the conditional rules will be
the only connective rules in play. The only rules that could play a part in both proofs—
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as the crucial ingredient in supplying classical reasoning—would be properly structural
rules, not those particular to this or that connective.

One pair of structural rules is enough to make the di�erence between intuitionistic
and classical proof. In one sense, the nature of these structural rules are not di�cult to
understand. Since Gentzen’s insight in constructing the sequent calculus, we have seen
that adding space in our proof structures so that more than one formula can appear
in the consequent position of a sequent makes the di�erence needed classical proofs,
to restore symmetry where there was once asymmetry between the many premises and
the single conclusion in intuitionistic natural deduction or the intuitionistic sequent
calculus.

The thoroughgoing duality between truth and falsity in classical logic seems to call
for some measure of duality between premise and conclusion. It is not for nothing that
classical proof systems have all involved reintroducing some kind of premise/conclusion
duality, whether by expanding making sequents from the form X � A to the form
X � Y , or by layering in an extra duality, like the duality between + and −, to do
that job. These innovations were not for nothing, and they all circle around the one
logical phenomenon, the need to have ‘locations’ in our proof structures that allow for
more than one formula to be in ‘positive’ position, in just the same way that all natu-
ral deduction proofs allow for more than one formula to be in ‘negative’ position, as
undischarged assumptions in a proof.22

The rules that we add will thread a seemingly impossible needle, by allowing for our
proof to (a) keep track of more than one occurrence of a formula in positive position at
any stage of a proof, while (b) having at any stage of our proof one and only one current
conclusion. That is our target.

The inference rules that manage to thread this needle are the Alternative rules, pre-
sented in Figure 4.

The Store rule can be understood as the bilateralist’s analogue to¬E, with the denial
of A substituting for the assertion of the negation of A. If concluding A and conclud-
ing¬A leads to a contradiction, so does concludingA and also (for the sake of the argu-
ment, perhaps temporarily) ruling A out. This is the mild bilateralism that is required

22The role of positive and negative position in logical presentations is most clearly set out algebraically
in J. Michael Dunn’s Gaggle Theory [22, 32, 33, 101], and proof theoretically in Nuel Belnap’s Display
Logic [16, 17, 101, 125]. A position in A a complex formula C(A) is said to be positive if C(A) entails the
result C(A′), of replacing A by a formula A′ that A entails. If, on the other hand, when A entails A′

we also have D(A′) entailing D(A), then the position A inside D is said to be negative. In a conditional
A → B, whether that conditional be material, strict, relevant, or linear, the antecedent position is nega-
tive and the consequent position is positive. In the same way, it makes sense to think of the assumptions
in a proof as being in negative position while the conclusion is in positive position, for if we have a proof
fromX, A toB, then we can construct another proof fromX, A′ toB′ when we have a proof fromA′ toA,
and when we have a proof from B to B′. In natural deduction proofs, traditionally understood, we have
many places (the assumptions) in negative position, and only one (the conclusion) in positive position.

Greg Restall, restall@unimelb.edu.au july 9, 2021

https://consequently.org/writing/speech-acts-for-classical-proofs
mailto:restall@unimelb.edu.au


https://consequently.org/writing/speech-acts-for-classical-proofs 19

A
Π
A ↑ (Store)

⊥

[B ]i
Π
⊥ ↓i (Retrieve)
B

Figure 4: the alternative rules

for our natural deduction system. When we place a conclusion A in storage (marked
by the ‘↑’, showing that what was a conclusion is now stored among the leaves of the
proof) we temporarily rule it out, setting it aside to consider alternatives. Of course,
since we have proved A, it is undeniable. To reject it is to close o� your options. No
matter. Once we have reached that contradiction, as is usual in natural deduction, we
turn to the commitments we have undertaken to that point, to see which we we might
take back. If we wish to take back something that we have supposed, we can discharge
it and deduce the negation of that supposition (in a ¬I step, as usual). On the other
hand, we could retrieve one of the claims we have placed in storage, to retrieve it.23

So, at any stage of a classical natural deduction proof we keep track of two kinds of
claims. As usual in natural deduction proofs, we keep track of the assumptions active at
this point of the proof. These may be premises we have granted and which will remain
undischarged at the time of the proof’s conclusion, or they may be suppositions which
have been made and have not yet been discharged. We naturally account for assump-
tions when we step from inference to inference. For example, when inferring from an
assumptionA to the conclusionA∨B in a∨I step, I do not forget that assumption. It is
retained as the assumption under which the conclusion has been proved. If I discharge a
supposition in a→I step or in a∨E step, then the discharged suppositions are removed
from the collection of assumptions that are active at this point. When we introduce a
conjunctionA∧Bby provingA (from some assumptions) and provingB (from others),
then these assumptions are collected together as the assumptions under which A ∧ B
has been proved. All this is totally standard. In classical proofs, we not only keep track
of assumptions: We also keep track of alternatives.24

23In Michael and Murdoch Gabbay’s “Some Formal Considerations on Gabbay’s Restart Rule” [41]
these two rule are—in e�ect—combined into a single rule, which they call Restart, which allows the
move from A to B, at the cost of adding B as an alternative. As will become clear, that name is not well
suited to our intended reading of the rule, especially when the natural deduction proof are read from top
to bottom. The B in the conclusion of a Store/Retrieve pair does not represent in any way a new start to
a line of reasoning. It is not an extra assumption. Instead, it is an alternative conclusion.

24So, an alternative in a proof is a claim which now falls into the context, like the assumptions and
suppositions on which the current conclusion rests, rather than another conclusion.
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With this in mind, the Store and Retrieve steps are straightforward. If before a Store
step, we have provedA from the assumptionsX , having also gathered some alternatives
Y along the way, then after the inference, now proved⊥ from X with the former con-
clusion A added to our collection of alternatives. When we Retrieve, the other hand,
we have proved a contradiction⊥ from some collection ofX of suppositions and a col-
lection B, Y of alternatives, among which we �nd B.25 After the Retrieve step, we have
proved B from the suppositions X and alternatives Y . We can present these rules in
‘sequent’ form as follows:

[X : Y ] � A
Store

[X : A, Y ] � ⊥
[X : B, Y ] � ⊥

Retrieve
[X : Y ] � B

where the left hand side of the sequent separator bears the context, the claims ruled in
and those ruled out, and the right hand side bears the current conclusion. These may
look more familiar presented in the following form, which look nearly indistinguishable
from rules of the classical sequent calculus:

X � A;Y
Store

X � ⊥;A, Y
X � ⊥;B, Y

Retrieve
X � B;Y

The only di�erence is the presence of a semicolon on the right hand side. Our natu-
ral deduction proofs are not best modelled by an undi�erentiated sequent of the form
X � Y , for our proofs always have one and only one conclusion (that is, either a for-
mula, or⊥).26 To model the state of play at a stage of a proof, the appropriate sequent
representation should single out a formula as the conclusion. So, sequents have the
form X � C ;Y , where the conclusion C is in ‘focus’, or in the form we will use hence-
forth, [X : Y ] � C , indicating that [X : Y ] is the background context against which
the conclusion C has been derived.

∗ ∗ ∗

Let’s see how we can use these rules to prove essentially classical theorems. First, Peirce’s
Law: The straightforward proof is presented in Figure 5. In the right branch of this
proof, we suppose p, and immediately set p aside to land in a contradiction, from which
we infer q as our conclusion. The state of the proof is, therefore [p : p] � q. Since we
reached this q under the scope of the supposition of p, we discharge that supposition

25See below for a discussion of whether B must have been stored as an alternative, or if we should
allow ‘vacuous’ retrieval, of conjuring an alternative from thin air. To jump ahead, vacuous retrieval is
another way to understand the ⊥E rule, and this setting gives us a helpful context for understanding
why, in proofs,⊥E and vacuous discharging of assumptions stand or fall together.

26Is that disjunction inclusive or exclusive? Is⊥ a formula or not? Our account, so far, is agnostic on
this issue. If⊥ is not in fact a formula, but is a punctuation mark, then proofs ending in⊥ do not have
a concluding formula.
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[p ]2
[(p→ q)→ p]3

[p ]2 [p]1

↑
⊥ ⊥Eq

→I1
p→ q

→Ep
↑

⊥ ↓2

p
→I3

((p→ q)→ p)→ p

Figure 5: A direct proof of Peirce’s Law

and conclude p → q using→I, and hence the state is [ : p] � p → q, since we have
derived p → q at the cost of setting p aside as an alternative. Of course, this does not
mean that p→ q is true categorically (despite the fact that we have discharged our only
supposition, p), but it does tell us that p→ q holds if we can rule out the alternative, p.
Then, in the left branch we suppose (p → q) → p, and combining this with our con-
clusion p → q, we infer q, by→E. The status is [(p → q) → p : p] � p, but that step,
having reached the conclusion p again, we absorb the alternative p into our conclusion
by �rst setting p aside in another Store step, and thence to retrieve two copies of p, so we
have [(p → q) → p : ] � p. There is now no remaining alternative other than our
conclusion p. We have concluded p from our supposition of (p → q) → p, using the
p→ q that we had proved (at the cost of allowing p as an alternative). Discharging that
supposition we conclude ((p → q) → p) → p on the basis of no remaining assump-
tions, and no remaining alternatives. We have proved Peirce’s Law. There was no need
to involve negation in the proof, there was never downward branching, though we did,
of course, set a conclusion aside, and the proof simply involves assumptions, inferences,
and alternatives.27 (We do encounter the contradiction marker⊥ after we store a con-
clusion, and we will see, later, that this need not involve a violation of the subformula
property for proofs, because there is no need to treat ⊥ as a formula.) Finally, we do
not need to decorate each and every formula with a sign. The constituents in this proof
are contents, not speech acts. At each step of this proof we suppose, we set aside, we
infer and we conclude.

It is instructive to compare this direct proof of Peirce’s Law with the proof em-
ploying Double Negation Elimination, displayed in Figure 3. In the simpler proof using

27A natural question arises. Do we need to understand disjunction before we can operate with alter-
natives? After all, alternatives seem rather disjunction-like. We will see at the end of the next section that
—given the mildest form of bilateralism—that no more prior grasp of disjunction is required, than a
grasp of conjunction is required for operating with the notion of assumptions.
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alternatives, in the rightmost branch we suppose p, park it as an alternative, and derive
p → q. In the proof in Figure 3 we manage the same e�ect in the rightmost branches
of the proof, at the cost of encoding that alternative p instead as an assumption of ¬p.
(This is an implicit double negation translation, in e�ect parking our alterative p in an
assumption, the only place we can store it, under the cover of a negation, to give it the
correct polarity.) This assumption of¬p plays a role again, to contradict the conclusion
p (arising out of the→E step from the supposed (p→ q)→ p and the derived p→ q),
to give us the contradiction that we blame on that very assumption. This gives us¬¬p,
which we need to unpack into the desired p. So, the more complex proof in Figure 3 can
thus be seen to use negation to approximate the reasoning more directly represented in
the proof in Figure 5, which exhibits the subformula property and has no need to make
this detour through negation.

What goes for the conditional also goes for the other connectives. Here are two
negation proofs, one, from ¬¬p to p for Double Negation Elimination, and the other
for the Law of the Excluded Middle.

¬¬p

[p ]2 [p]1

↑
⊥ ¬I1
¬p
¬E

⊥ ↓2

p [p ∨ ¬p ]3

[p ∨ ¬p ]3

[p ]2 [p]1

↑
⊥ ¬I1
¬p

∨Ip ∨ ¬p
↑

⊥ ↓2

p
∨Ip ∨ ¬p
↑

⊥ ↓3

p ∨ ¬p

These proofs share their initial inferences, from an assumption p, which is immediately
set aside for the contradiction⊥, at which point the assumption is discharged, giving
rise to the conclusion ¬p, in the context of the alternative, p. In the proof for double
negation elimination, this conclusion ¬p is ruled out by the assumed ¬¬p, leaving the
alternative p the only option on the �eld. In this way, ¬¬p entails p. The proof for the
Law of the Excluded Middle proceeds by deriving p ∨ ¬p from ¬p, setting this aside,
temporarily, to also prove it from the other alternative p, and concluding that p ∨ ¬p,
therefore, holds inevitably. The proof of p∨¬p, like the proof for + p ∨ ¬p in the signed
natural deduction system, has two disjunction steps, one negation step, together with
some bookkeping structural rules. With alternatives in play, there is no need to decorate
formulas with signs, or to involve multiple conclusions, to get a natural deduction proof
with the desired structure.

Further examples of distinctively classical proofs could be multiplied endlessly. In-
stead of exploring more proofs, let’s turn to some of the options that are opened up for
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us once we have alternatives in our repertoire. A natural place to turn is the rules for dis-
junction and negation, which both have a certain complexity, and are worth revisiting
in the light of this new setting for natural deduction proofs.

Consider negation. If we were to attempt to characterise the fundamental princi-
ples that govern negation as such, there is no doubt that a constructivist or intuitionist
would be happy with something like our current ¬I and ¬E rules, but this enthusi-
asm is not universally shared. Contenders for fundamental rules governing negation
would be the Law of Non-Contradiction and the Law of the Excluded Middle. Now,
as sequents, these are natural and simple:

¬A, A � � A,¬A

and the ¬E rule is as good as any representation of the law of non-contradiction in
our setting. On the other hand, ¬I does not show its connection with the Law of the
Excluded Middle so clearly. However, using ¬E, in the presence of alternatives, the
connection becomes a little clearer. Consider these two small proofs:

A [A]1

↑
⊥ ¬I1

¬A

¬A

[A ]2 [A]1

↑
⊥ ¬I1

¬A ↑
⊥ ↓2

A

In the �rst, we have concluded¬A, at the cost of the alternative, A, with no remaining
assumptions. In the second, we have concluded A, at the cost of the alternative, ¬A,
also with no remaining assumptions. Packaging up these small proofs as new rules, we
have the two following simple principles for reasoning by cases.

A ¬I′

¬A
¬A ¬I′

A
We can introduce ¬A as conclusion, paying the price of accepting A as an alternative,
or we can introduce A as conclusion, paying the price of keeping ¬A on the books as
an alternative. In either case, no positive assumption is required. The price to be paid
is wholly in the coin of alternatives.

The¬I ′ rules are good candidates for simple rules that bear a more clear connection
with the Law of the Excluded Middle than the original¬I rule does. If we like, we can
replace¬I with the¬I ′ rule, at no cost. Any appeal to¬I, can be replaced by an appeal
to ¬I ′, as follows:

[A]i
Π
⊥ ¬Ii
¬A

becomes

[¬A ]i
¬I′

A
Π
⊥ ↓i
¬A
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So there is no loss of generality or proof power if we use these rules. With alternatives
in our proof toolkit, the negation rules could just as well be¬E (lnc) and¬I′ (lem) as
they are the regular rules.28

In the proof for the Law of the Excluded Middle, and in the introduction of the
¬I ′ rule, we appealed to a combination of Store and Retrieve steps to swap out one
alternative and replace it for another. The dance has this form:

A

[B ]i
Π
A ↑

⊥ ↓i
B

The current conclusionA of Π is stored, and B is retrieved from storage, in its place. In
such a dance, the last inference here could instead be⊥E, in which case the conclusion
B comes out of nowhere. In either case, we will abbreviate such a dance as follows,
labelling them ‘Swap’ and ‘Alt’:29

A

[B ]i
Π
A Swapi

B
A

Π
A Alt

B

Here is another sequence of steps that is worth giving a name:

[A ]i

[A ]i
Π
A
↑

⊥ ↓i
A

Here, we have taken a proof Π of A from a context in which A is stored as an alter-
native, and with another store/retrieve pair, we store A again, and retrive each instance
immediately, to proveA now without appealing toA as an alternative. This is a form of
reductio reasoning: if I can prove A while having set A aside, I can prove A regardless.

[A ]i
Π
A Reductioi
A

28There are reasons to make this choice, and there are also reasons to keep the traditional natural de-
duction rules, which have the virtue of applying equally to intuitionistic proofs—in which we avoid
using alternatives—as to classical proofs, where we make free use of alternatives. ¬I′ is exclusively clas-
sical, and so, cannot be used in settings where we wish to restrict ourselves to constructive scruples. For
more on why we might want to do this, see the conclusion.

29The Alt inference is Gabbay’s Restart rule in our notation, making alternatives explicit [41].
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Just as alternatives provide scope for di�erent, more familiar rules for negation, we can
do the same for disjunction. The traditional disjunction elimination rule

Π
A ∨ B

[A]i
Π′

C

[B]j
Π′′

C ∨E
C

has a feature not shared by the other usual natural deduction rules, the repeated conclu-
sion parameter, here C . We can replace this rule with structurally simpler rules, using
alternatives:

Π
A ∨ B B ∨E′

A

Π
A ∨ B A ∨E′

B
Using the∨E′ rule, we infer a disjunct from a disjunction, provided that we pay by stor-
ing the other disjunct as an alternative, to be dealt with later. These rules are negation-
free renderings of a kind of disjunctive syllogism principle, and as such, they have a claim
to being principles which are at least as cognitively fundamental for reasoning with dis-
junction than ∨E, if not more so.30 Given alternatives, these inferences are implicit in
the traditional∨E rule:

Π
A ∨ B [A]1

[B]2 B
Alt

A
∨E1,2

A

Π
A ∨ B

[A]1 A
Alt

B [B]2

∨E1,2

B

On the other hand, given the∨E′ rules, we can recover the original∨E rule like this:

Π
A ∨ B

[A]i
Π′

C

[B]j
Π′′

C ∨E
C

becomes [C ]j

Π
A ∨ B [B ]i

∨E′

A
Π′

C
Swapi

B
Π′′

C Reductioj
C

30Disjunctive syllogism was one of the Stoic Logicians’ Indemonstrables, those fundamental princi-
ples that brook no further demonstration. Chrysippus went so far as to argue that even dogs reason in
accordance with disjunctive syllogism: “[Chrysippus] declares that the dog makes use of the �fth com-
plex indemonstrable syllogism when, on arriving at a spot where three ways meet..., after smelling at the
two roads by which the quarry did not pass, he rushes o� at once by the third without stopping to smell.
For, says the old writer, the dog implicitly reasons thus: “The animal went either by this road, or by that,
or by the other: but it did not go by this or that, therefore he went the other way.”” [37]. It is harder to
imagine that the dog directly employs ∨E.
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So we could start instead the simpler rules, with no loss of expressive power in con-
structing our proofs.

Another rule that is worth examining is the Retrieve rule. We have seen that⊥E and
Retrieve have the same shape, with the only di�erence that Retrieve takes a formula out
of the storehouse of former conclusions, while⊥E conjurs its conclusion by sleight of
hand. In fact,⊥E is not a di�erent rule at all. It is better understood as a vacuous case
of the Retrieve rule, which stands to alternatives as the case of vacuous discharging—
that is, discharging zero occurrences of a formula—does to assumptions. The ‘irrel-
evant’ behaviour of our contradiction marker, according to which it entails anything
and everything, is just as much a structural rule as any ‘irrelevant’ behaviour of the con-
ditional.31The contradiction marker, ⊥, is not so much a substantial conclusion but
a marker that we have reached a contradiction. In the sequent calculus, whether we
allow multiple conclusions or not, ⊥ is represented most naturally by an empty right
hand side.32 Then, in a separate step of weakening, we allow the move from an empty
conclusion to an arbitrary one. Weakening, in premise and in conclusion position, cor-
responds to vacuous discharge and vacuous retrieval, respectively.33

∗ ∗ ∗

This is our natural deduction system. It is not new. It is Michel Parigot’sλµ-calculus [88,
90], stripped of proof terms, and presented in the natural deduction garb of Gentzen
and Prawitz. It is a well-behaved single conclusion proof system for classical proposi-
tional logic. In the remaining sections, I will explain why this proof system is well suited
for the inferentialist’s aims, and show how it avoids the criticisms that have been laid at

31In fact, it is most natural to have the irrelevant behaviour either with both alternatives and assump-
tions, or with neither. We can smuggle in an ‘irrelevant’ assumption q in into a proof of p by way of a⊥E
step (that is, a vacuous retrieval), like this:

[q]2

[ p ]1 p
↑

⊥ ⊥E¬q
¬E

⊥ ↓1
p

→I2
q→ p

Here, the irrelevant q is smuggled in as an assumption by the adding of¬q as an (irrelevant) conclusion.
If we wish to avoid the smuggling in of irrelevant assumptions, we need to avoid the addition of irrelevant
alternatives, too.

32For more on the signi�cance of⊥ in natural deduction proofs, see the discussion in Section 4.
33If we wish to live without vacuous retrieval, a more discriminating approach would be to introduce

two false constants. The intensional or multiplicative false constant f could be used as a contradiction
marker, corresponding to the empty right hand side of a sequent. The extensional or additive false con-
stant F can still entail everything, if such a constant is desired.
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the feet of signed natural deduction, the sequent calculus and other multiple conclu-
sion proof formalisms.

In this discussion, the criterion of answerability will play a signi�cant role, as it has
so far. It is worth pausing for a moment to clarify what this condition is and what it
isn’t. To say that our account of proofs is answerable to our everyday practice is not
to say that the account is a simple-minded reiteration of that practice. There are as-
pects of Gentzen–Prawitz natural deduction—take vacuous discharging34 —that seem
downright weird or unnatural. Yet, the defender of natural deduction can argue that
this account of supposition and discharging is at the very least implicit in our everyday
practice,35 and that structuring the rules in such a way as to allow vacuous discharging
is a way to specify a well-behaved explication of our practice that plays a useful theoret-
ical role. The particular choices of the rules for connectives or the structural rules may
seem alien at �rst, but if we can show that every aspect of the system �nds its roots in
our practice (and so is answerable to that practice in that sense), and we can account for
signi�cant properties of the logical concepts in terms of a small number of rules, each
governing one and only one concept, then we will have met our aims.

3 from formal proofs to speech acts
As with regular natural deduction proofs, there are two ways to use a proof with alter-
natives to guide a process of reasoning. We can read the proof forwards (that is, we read
from the leaves down to the conclusion), and we can read it backwards (that is, starting
at the conclusion and reading upwards to the top of the tree). In this section, we will see
how natural deduction proofs with alternatives can be read in either way. A proof from

34That is, the practice of allowing zero instances of an assumption to be discharged in an→I or ∨E
inference.

35We can get the e�ect of vacuously discharging the hypothesis A by laundering it through a pair of
∧I and∧E steps, like this:

Replace
Π
B →I

A→ B
with

[A]i
Π
B
∧I

A ∧ B ∧E
B →Ii

A→ B

The assumption A is now present in the second proof but it plays no signi�cant role in deriving B. The
obvious normalisation step for this detour through A ∧ B is to replace the detour with the vacuous
dischrarge, so any self-respecting proof system that allows for the premise-laundering∧I/∧E move of the
detour also allows vacuous discharge. This is not to say that there is nothing to be learned by exploring,
and perhaps adopting, treatments of conditionals which disallow vacuous discharge [2, 3, 45, 79, 102]. It
is just to say that our everyday inferential practices are messy and unsystematic, that∧I,∧E and→I are
compelling rules in their own rights, and admitting vacuous discharge with all that involves, is one way to
settle on a practice for regimenting proof that has its roots in that messy practice, and which has proved
useful and clarifying.
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assumptions X to conclusion A, with alternatives Y is a way to truly prove the conclu-
sion A in a context where each member of X has been ruled in, and each member of Y
has been ruled out. When we read the proof from top to bottom, we will construct a
chain of reasoning leading from the commitments we allow—rulingX in and ruling Y
out—to the conclusion,A. When we read the proof from bottom to top, we construct
a chain of answers to questions, starting from the conclusion, and stopping in the com-
mitments we take for granted—again, ruling X in and ruling Y out. We will see that
in the process we stay close to our everyday proof practice, and need employ no exotic
speech acts.

One piece of notation will be useful, as we proceed explaining how both ways to
read a formal proof can be e�ected. That is the notation ‘[X : Y ]’ for a context, the
background commitments in place as a dialogue progresses. The left component X
consists of all of the claims that we have ruled in, and the right component Y consists
of all those claims we have ruled out. This is one way to represent the common ground [4,
116] in a conversation, where our aim is to keep track of �nely-grained distinctions, such
as in the dynamics of a proof where we don’t take for granted that ifA has been asserted,
then everything that is a logical consequence of A follows in its train without further
elaboration of its own. When we make an assertion, it is a bid to rule the claim in, or
to add it to the left set in the context. When we deny, it is a bid to rule the claim out,
or to add it to the right sent in the context. When we suppose A, we temporarily add
A to the left set ‘for the sake of the argument’, with an aim to withdraw it, later, after
this supposition is discharged. In the same way, when I set a claim aside, to consider an
alternative, I add the original claim, temporarily, to the right set of the context, with an
aim to withdraw it, later.

∗ ∗ ∗

When we read a proof from top to bottom, we start with formulas at the leaves, some
of which will be discharged in inferences as the reasoning progresses. If the formula at
the leaf,A is not slashed, and not later discharged, when we employ the proof, we assert
A. If the formula is slashed, and is also not later discharged, we deny it when we employ
the proof. If, on the other hand, the formula (slashed or not) is later discharged, then
we assert or deny it for the sake of the argument. Wether positive or negative, the claim
is entered into the current context in the appropriate component, left for an assertion,
and right for a denial. If there are no further steps in our proof, then the conclusion is
an assumption, and in this case, the only leaf is positive. We have the limit case of having
shown our conclusion from the context. Represented in sequent form we have this:

[X : Y ] � A where A ∈ X

where on the left we keep track of [X : Y ], the context current this stage of the proof.
The simplest way to prove A, relative to the current context is to �nd it explictly granted
in that context.
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As a sanity check, we can verify that the assumption rule is indeed satis�ed by all
Boolean valuations. We say that a sequent [X : Y ] � A is Boolean-valid if every Boolean
valuation v that veri�es (assigns the value true) to each member ofX and falsi�es (assigns
the value false) to each member ofY veri�esA. This is trivially satis�ed in the case where
A ∈ X . We will see this form of reasoning again and again in what follows, and we will
call valuations that verify each member of X and falsify each member of Y ‘[X : Y ]-
valuations’ for short.

Now let us turn to a representative sample of the rules of our proof system, to show
how these are to be understood as speech acts that we employ when following a proof,
how they manipulate the local context as they are used, and that they, too, produce only
Boolean-valid sequents. The rules we will consider are→E,→I, Store and Retrieve, as
they display all the distinctive features of our proof system.36 Here are the conditional
rules, written out in sequent form, in which we make the contexts explicit:

[X : Y ] � A→ B [X ′ : Y ′] � A
→Eseq

[X, X ′ : Y, Y ′] � B
[X, A : Y ] � B

→Iseq
[X : Y ] � A→ B

Attending to the conditional elimination rule, we see that if we have proved A → B
(from context [X : Y ]) and A (from context [X ′ : Y ′]), then we can go on to infer
B, provided that we collect together the contexts appealed-to in the proof of A → B
and in the proof of A. If no assumptions were made, and the two proofs were given in
the same context, this is trivially satis�ed. The local context is the shared background
of claims we take for granted. On the other hand, if we made some assumptions in the
proof ofA→ B, or in the proof ofA, then the new conclusionB is in the scope of those

36And indeed, the other connectives are not only de�nable in terms of→ and ⊥, but when we use
those de�nitions, the standard rules for the de�ned connectives can be seen as de�ned rules, arising out
of the rules we have given here. For example, if we de�ne A ∨ B as (A → ⊥) → B, then we can replace
the proof steps ∨I and∨E from the standard suite in Figure 1 by these proofs:

[A→ ⊥]i
Π
A
→E

⊥ ⊥E
B →Ii

(A→ ⊥)→ B

Π
B →Ij

(A→ ⊥)→ B
[C ]k

Π
(A→ ⊥)→ B

[A ]j [A]i
↑

⊥ →I
A→ ⊥

→E
B
Π′′

C
↑

⊥ ↓j
A

Π′

C Reductiok
C

In the same way, the rules for conjunction and negation can be encoded by→I,→E and the alternative
rules, so there is absolutely no loss of generality in attending only to these particular rules.
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suppositions. If, on the other hand, we set aside some conclusion as an alternative in the
course of provingA→ B, or in the course of provingA then this alternative remains in
play as we deriveB. So, our claim ofBmay have the force of an assertion if it depends on
no other local assumptions later to be discharged. That is, if it depends on a context set
[X : Y ] which contains only those commitments we are prepared to take for granted.
Otherwise, it is a claim made under supposition, for the sake of the argument.

Of course, if any [X : Y ]-valuation veri�es A → B, and any [X ′ : Y ′]-valuation
veri�es B, then any [X, X ′ : Y, Y ′]-valuation will verify both A → B and A and hence,
by elementary features of the valuation conditions for the material conditional, such a
valuation veri�es B, as desired.

The conditional introduction rule works in the same way, except now, we have the
opportunity to discharge an assumption. If I have proved B against the context of as-
sumingA alongside the members ofX (and setting aside the members ofY ), then when
I discharge that supposition, I can conclude A→ B, as usual with→I. Now the nom-
inated assumptions of A in our proof are marked o� as discharged, and they are no
longer in the local context. (The number of discharged instances can be zero, of course,
if the discharge is vacuous.) We have proved A → B from the context [X : Y ]. Again,
the speech acts involved are straightforward.

As we expect, if any [X : A, Y ]-valuation also veri�es B, then it follows that every
[X : Y ]-valuation must verify A → B, by the usual behaviour of the material condi-
tional on Boolean valuations.

Consider now the Store rule. Here it is, in sequent form:

[X : Y ] � A
↑seq

[X : A, Y ] � ⊥

If we have proved A in the context [X : Y ], we can go on to conclude⊥, at the cost of
parking A among the alternatives. We have already explained how this is be e�ected in
everyday reasoning. Having concluded A, in the context [X : Y ], I simply point to the
A newly added as a denial (whether for the sake of the argument, or as something to be
kept in the context at the end of our proof), and conclude that, in this context, we have
reached a contradiction.

This rule is, of course, truth preserving. If any [X : Y ]-valuation veri�es A, then
any [X : A, Y ]-valuation (per impossibile) veri�es⊥, as desired.

The remaining rule in our toolkit is Retrieve, but this is straightforward, too.

[X : A, Y ] � ⊥
↓seq

[X : Y ] � A

If, relative to my context [X : A, Y ], I have proved ⊥, I have shown that my com-
mitments (at least locally incurred) are unsatis�able. I have reduced this context to a
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contradiction. This is the point at which we release the tension by taking back one of
the denials we have temporarily made. We retrieve the option A from the local denial
context, concluding A from the narrower context [X : Y ]. As with Store, Retrieve is
truth preserving.

We have seen that when we read proofs from top to bottom, we can understand the
background context [X : Y ] of claims ruled in and ruled out as shifting as assumptions
are granted and discharged. There are no exotic speech acts involved in reasoning in this
way, and the moves we make �nd their roots in our everyday reasoning practices. We
have seen, along the way, that the rules of classical natural deduction preserve Boolean
validity, so our proof system is sound for classical propositional logic. That the rules are
complete for classical logic is trivial. We know already that adding any of the classical
principles from Figure 2 su�ce to generate all of classical logic, and each of these are
derivable using the rules of natural deduction with alternatives.

∗ ∗ ∗

We will end this section by brie�y considering another way to understand our proofs,
as a bottom-up procedure to be understood in a more dialogical manner. Again, we will
consider dialogical readings of the rules for the conditional and the alternative rules as
examples of how a dialogical formulation for all our rules could be given.

Again, we will proceed by induction on the construction of proofs, to show that if
we have a proof for [X : Y ] � A, we can read our proof as providing us a systematic
way to meet a justi�cation request for the assertion of the claim A in a local context
where each member of X is taken as ruled in, and each member of Y has been ruled
out. Again, bare assumption proofs are straightforward. If, relative to the local context
[X : Y ], the claimAhas been made, one way to meet the justi�cation request is to point
back to the context if in that context A has been taken for granted.

Consider a proof ending in→E. If I make the claim B in the local context [X : Y ]
and I am asked to justify that claim, then one straightforward way to do this is to make
two claims, A → B and A. If my interlocutor is willing to take those for granted, all is
well and good. If, however, she presses on, I will then attempt to prove A → B from
the local context and do the same for A. Given that I have proofs of A → B and A,
these proofs will guide my justi�cations.

Consider, on the other hand, a proof ending in→I. If I have made the claimA→ B
against the background of the commitments [X : Y ], and I am asked to justify this
claim, I will ask my interlocutor to suppose A, adding it to the local context, temporarily,
and I will then, for the sake of this argument, claim B under the scope of that assump-
tion. If I am asked to further justify this claim, I will proceed by following the guidance
of the rest of this proof, for the rest of my proof indeed is a proof of B from [X, A : Y ].
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Next, consider the Store rule. If I have been asked to prove a contradiction from the
context [X : A, Y ], one way to do this would be to attempt to prove A, and then point
to the fact that in our context A is (at least, for the sake of the argument) denied, and
so we are out of options: we have reached a contradiction.

The Retrieve rule reverses this process. If I have been asked to prove A from the
context [X : Y ], one way to attempt this would be to show that denying A is o� the
table—that is, to prove a contradiction from the larger context [X : A, Y ]. Should we
manage this, we can then discharge that local assumption, to conclude A, as desired.

So, it is possible also to give a bottom-up dialogical understanding of our proof
rules as means to justify claims when pressed, or as a prospective top-down manner
of unfolding the commitments made in our background context of claims we take for
granted. The proof techniques are clearly the kinds of moves we �nd in dialogue, or in
our everyday reasoning. Yes, they are classical, through and through: the justi�cation of
the retrieve rule makes this manifest. For someone whose tastes are of a more restricted
kind, the alternative moves may be unpalatable. However, they cannot be impeached
on the grounds of being alien to our proof practices, or of being uninterpretable in the
coin of everyday speech acts.

So, we see that the speech acts involved in reading classical proofs with alternatives
are reasonable and appropriate to everyday proof. Along the way we have made use
of bilateralism: We take the notion of ruling in and ruling out as fundamental, and
ruling out pAq is not to be identi�ed, in the �rst instance, with ruling in p¬Aq. That
much we have taken for granted. The task was to �nd a natural home for the bilateralist
inferentialist.

∗ ∗ ∗

To end this section, notice that in either of these ways to read formal proofs, that there
is no implicit ‘disjunctive’ conclusion at any point of our reasoning. Not only is there
one and only one identi�ed conclusion at each step of the proof, but the alternatives,
at any stage, do not need to be (implicitly or explicitly) collected together in a disjunc-
tion. In general, given a proof for [X : Y ] � A we have grounds for A whenever we
have grounds for each member of X and grounds against each member of Y . There
is no requirement that the alternatives Y be understood disjunctively, any more than
the assumptionsX be understood conjunctively. As Steinberger points out [118, p. 348],
the inferentialist—whether bilateralist or not—is free to note that assertion, in some
sense, distributes over conjunction. To assertA and to assert B is, (at least implicitly) to
assert their conjunction. In the same way, the bilateralist will note that to denyA and to
deny B is, (at least implicitly) to deny their disjunction. So, it is understandable that we
might be moved to identify the alternatives in a context with their disjunction, in the
same way that we might be moved to identify the assumptions with their conjunction.
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Nonetheless, this identi�cation is not required, and no prior understanding of disjunc-
tion is needed in order to employ natural deduction with alternatives, any more than
an understanding of conjunction is needed to employ natural deduction with assump-
tions.

4 categoricity
There is one supposed advantage for signed natural deduction over traditional unsigned
systems which merits attention. This is its categoricity [62, 84, 99]. Call a function v
from the sentences in the language to the truth values true and false a valuation. We
made use of Boolean valuations in the previous section, to verify our proof systems’
soundness. Not all valuations are Boolean. A valuation is Boolean if it satis�es the ex-
pected valuation conditions: v(A → B) is false if and only if v(A) is true and v(B) is
false, v(⊥) is false, and so on. There is the gullible valuation vtrue, which assigns true
to every formula whatsoever, including⊥. The skeptical valuation vfalse assigns false to
every fortmula, and is the tautology valuation v>, which assigns true to every tautology,
and false to every other formula. Most valuations are not Boolean.

We say that a valuation v is compatible with a traditional natural deduction system of
proofs if whenever there is a proof from premisesX to the conclusionA, if v assigns true
to each member ofX , it also assigns true toA. If that proof system is sound for classical
valuations, then every Boolean valuation is compatible with it. Not all valuations are
compatible with every proof system, of course. The skeptical valuation vfalse is ruled out
as incompatible with standard natural deduction, because we can prove formulas from
zero premises. Since we can prove p → p against an empty context, if v is compatible
with this proof system, we require that v at the very least assign true to p→ p. So, vfalse
is ruled out as incompatible.

The categoricity problem for a proof system (at least, for a proof system intended
to capture classical logic) is to show that only Boolean valuations are compatible with
that proof system. This is a desirable feature for a proof system to have if you (a) think
that the proof system should be doing semantic work and (b) you think that Boolean
valuations are the appropriate valuations for the language of propositional logic. This is
a problem for traditional (unsigned) natural deduction in which the proofs lead from
some collection X of premises to a single conclusion A. Any such proof system, no
matter what rules it employs, cannot rule out vtrue as incompatible, because the gullible
valuation is compatible, vacuously, with every sequent of the form X � A. For good
measure, the tautology valuation v> is also compatible with any sequent X � A that is
classically provable, for if the assumptionsX are all tautologies, so, too, is the conclusion
A. That is the categoricity problem for a single conclusion proof system, and it is a
serious problem for anyone who wishes to make the claim that the norms for proof
are somehow fundamental, who the truth conditions of valuations are in any sense,
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derivative, and who takes valuations such as vtrue and v> to be defective.

Categoricity is not a problem for signed natural deduction [62], and this is a signi�-
cant point in its favour. Given a signed proof from signed formulas as assumptions to a
signed formula as a conclusion, the natural requirement for a valuation be compatible
with that proof is that if the valuation assigns true to every formula signed positively
as an assumption formula, and false to every formlua signed negatively as an assump-
tion, then it assigns true to the conclusion formula if it is signed positively, and false
if it is signed negatively. And indeed, with this understanding of compatibility, only
Boolean valuations are compatible with every argument with a signed natural deduc-
tion proof. The gullible valuation is ruled out, since we have a proof from +¬p to−p,
which means that any valuation that assigns true to ¬p must assign false to p. So, the
gullible valuation fails on that score. This proof also shows that the tautology valuation
v> is incompatible, because this assigns false to every atom, and also to every negated
atom.

What about classical natural deduction with alternatives? At �rst blush, our proofs
fail the categoricity constraint in exactly the same way that standard single conclusion
proofs do. The natural way to read proofs as constraining valuations is to say that if we
have a proof from [X : Y ] to A then any valuation that assigns true to every member
of X and false to every member of Y assigns true to A.

We can see, immediately, that this de�nition fails to rule out vtrue and v> as incom-
patible. The gullible valuation vtrue is vacuously compatible with any sequent of the
form [X : Y ] � A, and v> is compatible with any classically provable sequent of this
form. So, it seems that signed natural deduction has one virtue that classical natural
deduction with alternatives lacks.

But not so fast.

∗ ∗ ∗

It is true that in the system we have discussed so far, there is nothing stopping us from
contemplating valuations like vtrue and v>, and taking them to be compatible with all
the constraints we have considered. However there is one very natural option available
for anyone who favours an unsigned natural deduction system. This is to learn a lesson
from the sequent calculus, and to look again at ⊥. In the sequent calculus the role
played by⊥ is taken by something other than a formula: the empty right hand side. In
the sequent calculus, whether for classical or intuitionistic logic, we derive A,¬A � ,
where this sequent has an empty right hand side. If there is no formula to assign a value
on the right hand side, the natural way to understand compatibility of a valuation with
a sequentX � is to require that there is no valuation which assigns each member ofX
the value true. It has long been known that sequents, whether multiple conclusion or
single-and-zero conclusion sequents, render deviant valuations like vtrue incompatible.
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Figure 6: refutation rules

We are free to take a leaf out of the sequent calculus’ book and to treat our proofs
of a contradiction not as proofs of a particular conclusion formula, but as refutations
of the commitments we have already made. Rather than leaving the conclusion spot
blank in refutations, we will allow for a new conclusion marker #—not a formula!—
to take the spot in a conclusion of a proof.37 We are free to retain ⊥ as a distinctive
formula constant, if we wish, but now, # plays the role in proofs not of some content
that is asserted, but as the cry ‘that’s a contradiction!’ we make when we reach such a
spot in a proof. Revising our rules just a little, we get new formulations for the rules for
negation, for weakening in a conclusion where there was none before, and new rules for
⊥, to make it the object language correlate of the punctuation mark ‘#.’ The new rules
are collected together in Figure 6. From a proof-theoretical prerspective, these rules
embody an even greater separation of powers and clarity of function. The negation rule
no longer involves a distinct formula, but is connected only with the structure of proofs.
The weakening in of a conclusion after a contradiction has been proved is also a feature
of the structure of proofs, and is not connected to the behaviour of some formula with
the mysterious power of being strong enough to entail everything. If we wish, though,
we can reintroduce such a formula with the⊥ introduction and elimination rules. The
⊥I rule is redundant in the system for classical logic which allows for vacuous discharge.
In the Retrieve (↓) rule, if we discharge zero instances of a stored formula, we could
conclude it from the contradiction marker #, even if that formula is⊥. So, any formula,
including⊥, follows from the contradiction #.

Such a refactoring of our rules is, in fact, well motivated by our everyday inferen-
tial practice. We do not, as a habit, have a particular contradiction⊥ in mind when we
notice that we have proved A and ¬A, and go on to say that we have reached a contra-
diction, and then discharge one of our premises. Better to say that when we have proved
A and ¬A, we no longer have a conclusion formula to our proof but we have reached
a contradiction. This ‘proof’ has no conclusion formula at all. It is better understood
as a refutation of the assumptions leading up to it, consisting of formulas as premises
(and perhaps as alternatives), but no conclusion at the root.

37This is the technique, and the notation, used by Neil Tennant in his Natural Logic [121].
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As a pleasing side-bene�t of this refactoring of our rules, we can answer the cate-
goricity objection. Given that # is not a formula at all, and there is no place in a valua-
tion to assign a value to it, if we have a proof from [X : Y ] to #, that is, a refutation of
[X : Y ], the natural requirement for valuations is that for it to be compatible with this
refutation, that it not be an [X : Y ]-valuation, that is, that it not verify each member
of X and falsify each member of Y . And if we have a proof from [X : Y ] to A, if v is
to be compatible with this proof, as usual we require that if it is an [X : Y ]-valuation,
then it must verify A.

With that understanding of compatibility, we have an answer to the categoricity
objection in just the same form as it is available to the signed natural deduction bilater-
alist. Since there is a proof from [p,¬p : ] to # (that is, a refutation of [p,¬p : ]) any
valuation that assigns true to p and to¬p is incompatible, so vtrue is ruled out of court.
Similarly, since there is a proof from [ : p] to ¬p, any valuation that assigns false to p
must assign true to¬p, so v> is incompatible with natural deduction with alternatives.

Two examples alone are not enough to demonstrate the fact that only Boolean valua-
tions are compatible with our proofs. The demonstration of the general fact is not hard
to come by. Consider the connectives, one by one. For conjunction, we have proofs for
the following sequents:

[A, B : ] � A ∧ B [A ∧ B : ] � A [A ∧ B : ] � B

which together ensure that if v is a compatible valuation then v veri�esA∧B if and only
if it veri�es A and veri�es B. For disjunction, we have

[A : ] � A ∨ B [B : ] � A ∨ B [A ∨ B : A] � B

which ensure that for any such v, it veri�es A ∨ B i� it veri�es A or veri�es B. For the
conditional we have

[ : A] � A→ B [B : ] � A→ B [A→ B, A : ] � B

which ensure that v veri�es A→ B i� it either falsi�es A or veri�es B. For negation we
have

[A,¬A : ] � # [ : A] � ¬A
which ensure that v veri�es¬A i� it falsi�es A, and �nally:

[⊥ : ] � #

ensures that⊥ is not veri�ed in any compatible valuation. So, any valuation compatible
with these twelve sequent schemes must be Boolean. Since these are all provable in
natural deduction with alternatives, this proof system, too, is categorical for Boolean
valuations.

Categoricity, therefore, is not a distinctive bene�t of signed natural deduction. Clas-
sical natural deduction with alternatives—given the use of refutations—is also categor-
ical.
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5 in conclusion
Let’s take stock of where we have come, and look up to the horizon, to see where further
adventures may lead us.

In the �rst instance, we have an answer to the objection that there is no genuinely
inferential account of classical proof. We have shown how a bilateralist, with very mod-
est commitments concerning assertion and denial, can give an account of classical proof
that is answerable to our inferential practice, and which does not invoke exotic proof
structures, and does not unnecessarily decorate every formula in a proof with signs.

The resulting proof system is remarkably well behaved. Although I have not spent
time on this, natural deduction with alternatives not only has a normalisation result (in
which introduction/elimination detours can be normalised away), the proof system is
strongly normalising, in the sense that any process of reducing detours will terminate
in a �nite number of steps [90]. This result holds not only for propositional logic, but
holds under the addition of rules for the quanti�ers—even the second order quanti�ers.
We have all the bene�ts of a normalising deduction system, with seprable rules, and the
conservative extension results that these entail.

Although we have presented Parigot’s λµ-calculus shorn of its proof terms, terms
can be added to our proofs when it makes sense to consider the information they carry.
Each proof from the context [X : Y ] to the conclusion A can be seen as generating
a term t constructed from variables annotating members of X and co-variables anno-
tating members of Y . There is no need for us to work through the details of the term
calculus here. (Parigot’s work is a clear introduction [88–90] in itself.) Su�ce it to say,
just as there is a straightforward interpretation of traditional λ-terms in terms of proce-
dures to generate veri�cations or grounds for a conclusion of a proof from grounds for
its premises [96], the way is open for us to do the same here for classical proof. A proof
from the context [X : Y ] to the conclusion A gives us a way to generate grounds for A
from grounds for each member of X and grounds against each member of Y .

To be sure, since this is classical proof we are talking about, we will have the means
to construct grounds—by way of the obvious proofs—for disjunctions like p ∨ ¬p,
where logic alone is no help at generating grounds for p or grounds for ¬p, in gen-
eral. Our grounds will fail to be prime. We will have means to decide that p ∨ ¬p is
true, while having, in general, no insight into which of p and¬p is true. Grounds, con-
structed with the full power of classical proof, do not have all the features of properly
constructive grounds. Canonical constructive grounds of disjunctions give us ways to
pinpoint grounds for one or other disjunct. Canonical constructive grounds of existen-
tially quanti�ed statements give us the means to �nd some witness for that statement
and to construct a ground for the claim that this is indeed a witness. All that speci�city
is lost when we move to constructing classical proofs and their grounds.

Whether this ability to construct non-prime grounds should count as a bug or a
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feature is very much a matter of considerations other than pure logic. A thoroughgo-
ing realist would say that this is a feature, but, despite this defence of the coherence
and elegance of classical proof theory, I am not so sure that the friend of classical logic
need be so sanguine that the constructivist is missing the point in her desire for con-
structive proofs and prime grounds. The reasoner who proves things constructively
has something that the classical reasoner lacks. Kürbis makes the point [68] in favour
of the intuitionist to the e�ect that adopting the intuitionist rules allows for one to have
a clean, simple account of decidability. The intuitionist can make the straightforward
claim that to treat A as decidable is to assume A ∨ ¬A. Clearly, this move is not open
to the friend of classical proof theory, since we can prove A ∨ ¬A, for any formula A
at all, whether decidable or not. But clearly, not everything is decidable, and it would
be churlish of the friend of classical proof to think that the constructivist is missing the
point in paying attention to intuitionist strictures for proofs and grounds.

It is fortunate, then, that I was too swift when I said, in the previous paragraph,
that the “reasoner who proves things constructively has something that the classical
reasoner lacks.” That was overstating things. The classical reasoner has everything that
the constructive reasoner has, and more.38 In adopting classical natural deduction with
alternatives, we do not need to change any of the intuitionistic rules, though we have
seen that we could replace some of these rules with simpler variants that use alternatives,
should we wish. This means that we can do more than the intuitionist when it comes to
proof, than the intuitionist, not less. The way is open to be pluralist about the canons of
proof [12,13,106]. Is no problem, for the friend of classical proof, with one and the same
set of connective rules for constructive logic as for classical logic, to pay attention to
whether or not alternatives are invoked in a proof. If we don’t use the alternative rules,
the proof is constructive. Any ground we construct for our conclusion is a constructive
ground, with all the discriminating properties the intuitionist wants. Let’s call those
grounds strong, in view of their extra discriminating properties.

To be sure, the pluralist cannot say, with Kürbis, that A is decidable when A ∨ ¬A
is true, since she thinks thatA∨¬A is always true, since she can prove it. However, she
can say that A is decidable when we have strong grounds for A, and this is a discrimi-
nating claim, since the standard proofs for A ∨ ¬A produce only weak grounds, not
the stronger stu�. That form of words is not quite as stark as the direct statement of

38This is, perhaps, the starkest di�erence between natural deduction with alternatives and signed nat-
ural deduction systems. Those systems are so thoroughgoingly bilateralist in every aspect that restricting
ourselves to constructive reasoning seems well-nigh impossible. The signed rules for negation veritably
hard-code the equivalence of ¬¬A with A. This is very much unlike the situation with everyday math-
ematical proof, where it is not di�cult for the alert mathematician to understand when a proof is con-
structive, and when it uses non-constructive principles. To restrict your attention to constructive proofs,
you eschew just a few principles. See Kürbis’ “Some Comments on Ian Rum�tt’s Bilateralism” [67] for
an extended discussion of di�erent signed natural deduction systems and the di�erent commitments to
classicality in those di�erent presentations.
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an intuitionist, but it goes some way to show how the pluralist can, in an ecumenical
spirit, adopt the classical structural rules as the wide ambient space in which proofs in
general �nd their home, and see the virtues of constructing more discriminating proofs
satisfying the structures laid down by her constructivist comrades.

That seems to me to be an account of classical proof worth having.
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