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Abstract

Natural deduction with alternatives extends Gentzen–Prawitz-style natural

deduction with a single structural addition: negatively signed assumptions,

called alternatives. It is a mildly bilateralist, single-conclusion natural de-

duction proof system inwhich the connective rules are unmodified from the

usual Prawitz introduction and elimination rules— the extension is purely

structural. �is framework is general: it can be used for (1) classical logic,

(2) relevant logic without distribution, (3) affine logic, and (4) linear logic,

keeping the connective rules fixed, and varying purely structural rules.

�ekey result of this paper is that the twoprinciples that introduce kinds

of irrelevance to natural deduction proofs: (a) the rule of explosion (from a

contradiction, anything follows); and (b) the structural rule of vacuous dis-

charge; are shown to be two sides of a single coin, in the same way that they

correspond to the structural rule of weakening in the sequent calculus. �e

paper also includes a discussion of assumption classes, and how they can

play a role in treating additive connectives in substructural natural deduc-

tion.

1 Proofs and Sequents

Gentzen–Prawitz-style natural deduction is an elegant way to present proofs. In

this proof calculus, each connective is governed by introduction and elimination

*
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rules, and the structural features of proofs— the conditions governing proposi-

tions as such, unlike connective rules, which govern propositions of particular

forms—are given by the proof ’s tree structure, togetherwith rules governing dis-

charge of assumptions [12]. To illustrate, consider the natural deduction system

for intuitionistic linear logic. �e simplest proof in this system is a formula stand-

ing on its own:

A

�is is the identity proof, in which the conclusion is identical to the undischarged

assumption,A. In this limiting case, the first thing that follows from the assump-

tion ofA isA itself, in zero inference steps. To keepmatters simple, let’s consider

two connectives, the conditional (→) and negation (¬).

[A]i

Π
B →Ii

A→ B

Π
A→ B

Π ′

A→E
B

[A]i

Π
]

¬Ii

¬A

Π
¬A

Π ′

A
¬E

]

Each inference rule builds a larger proof from smaller proofs (here marked

with a Π or a Π ′). (To be precise, in these statements of rules, a Π with a for-

mula below it represents a proofwith that formula as its conclusion. If, in addition, it

has a formula above it (perhaps surroundedwith brackets), it represents the proof

with that formula among its assumptions.) In the elimination rules→E and ¬E,

we form a proof by combining two proofs. For→E we combine one proof (Π) of
A → B with another (Π ′) of A to form a proof of B. �e resulting proof has, as

its assumptions, all those assumptions used inΠ, together with those used inΠ ′.
For ¬E, we combine a proof of ¬A with a proof ofA. �is introduces a new kind

of conclusion, the symbol ‘]’. �is is not a formula, but is a punctuationmark,
1
in-

dicating that the proof has reached a contradiction, becausewe have proved (from

the assumptions granted inΠ andΠ ′) a contradictory pair of conclusions.
�e mark ‘]’ is exploited in the rule ¬I which allows us to backtrack when we

have reached such a contradiction, by ‘blaming’ it on one of the undischarged as-

sumptions—bydischarging it and concluding its negation. A similar sort ofmove

ismade in the conditional introduction rule→I.Hereweprove a conditionA→ B

by first proving B on the basis of the assumptionA. We discharge the assumption

A to concludeA→ B on the basis of the remaining assumptions.

Here is an example proof, illustrating the use of all four rules:

p→ ¬q [p]1
→E

¬q [q]2
¬E

]
¬I1

¬p
→I2

q→ ¬p

1
�is treatment of falsity follows Neil Tennant [21]
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�is proof represents the process of reasoning from the premise p → ¬q as fol-

lows: we assume p to derive¬q. We assumeq and get a contradiction. We ‘blame’

that contradiction on the assumption ofp, discharging it, to conclude¬p, and so,

we have proved ¬p having assumed q, so we discharge that assumption, to con-

clude q→ ¬p.

�e undischarged assumption of the proof, p → ¬q, stands unbracketed as

a leaf of the tree, and the conclusion, q → ¬p is at the root. Each transition in

the proof is governed by an introduction or elimination rule. �e two introduc-

tion steps discharge one assumption: the negation introduction discharges the

assumptionp (taggedwith a ‘1’) while the conditional introduction discharges the

q (tagged with a ‘2’).

�e system with these rules models the implication/negation fragment of in-

tuitionistic linear logic. (See Girard’s fundamental paper [3] for an introduction to

linear logic, and Troelstra’s Lectures on Linear Logic [22] for a presentation of natural

deduction for intuitionistic linear logic in a sequent format.) It is intuitionistic lin-

ear logic because (as is familiar) the proof system provides no way to prove p from

¬¬p. It is linear because each introduction step is restricted to discharge one and

only one occurrence of an assumption. As a result, we cannot (for example) prove

p→ q from the assumption of p→ (p→ q) (that would require discharging two

copies of p) and neither can we prove p → q from the assumption p (that would

require discharging zero copies of p).

* * *

To extend this system to stronger logics, including intuitionistic logic, we can

keep these connective rules largely unchanged, by adding purely structural rules

to the calculus, managing the assumption classes used in the discharging rules

¬I and→I. To extend the system first to the system of relevant implication, we

allow for more than one assumption instance to be discharged at once, we allow

for proofs like this:

p→ (p→ q) [p]1
→E

p→ q [p]1
→E

q
→I

p→ q

Proofs such as this allow for duplicate discharge, in which the set of discharged

formula instances has size at least two.

To extend the system to minimal logic, we modify the discharge policy fur-

ther, by allowing for for any number of instances of the indicated assumption to

be discharged, including zero. With this in place, we have a very short proof of

p→ (q→ p).

[p]1
→I

q→ p
→I1

p→ (q→ p)
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Here, zero instances of the assumption q are discharged at the first→E step. Let’s
say that a policy for discharging assumption classes allows for vacuous discharging

if and only if it allows for proofs like this, where the set of discharged assumptions

is empty.

Given that we can either allow or ban vacuous discharge, and allow or ban du-

plicatedischarge,wehave fourdifferent proof systems inone, given this simple set

of rules. �is is a natural deduction proof system for intuitionistic logic if we allow

both vacuous and duplicate discharge. If we ban duplicate discharge while allow-

ing vacuous discharge, we get affine logic. If we allow duplicate discharge while

banning vacuous discharge, we get relevant logic, and if we ban both vacuous and

duplicate discharge, we get linear logic.

Well, almost. �ere is one small wrinkle in this simple story. �ere is no vacu-

ous discharge in the following proof, from¬p andp toq. �is proof is not allowed

in linear logic or in relevant logic, but it is intuitionistically acceptable:

¬p p
¬E

]
]E

q

�is proof does not use vacuous discharge (there is no discharge at all in the¬E in-

ference). Instead, it uses the newprimitve inference rule, an elimination principle

for ]:
Π
]

]E
A

�e ]E rule is another properly structural proof principle, governing the logical
power of reaching an inconisistent state, and not governing any connective in par-

ticular. To extend our proof system all the way up to intuitionistic logic, we need

to add ]E as well as allowing duplicate and vacuous discharge. Conversely, to con-
vert intuitionistic logic into a properly relevant logic, wemust not only ban vacuous

discharge—youmust also ban ]E.

* * *

It is straightforward to verify that the natural deduction system with no vacuous

discharge and no duplicate discharge gives us proofs for the implication/negation

fragment of intuitionistic linear logic. �is logic is given by the following single-

conclusion sequent system, in which sequents consist of amultiset of formulas on

the left and either a single formula on the right, or an empty right hand side. (�e

empty right hand side plays the same sort of role in a sequent as the contradiction

marker ]does in the conclusionof aproof.) Weuse ‘C’ to rangeoverpossible inhab-
itants of the conclusion position, so here, ‘C’ is either a formula or the empty rhs,

while ‘A’ and ‘B’ always stand for formulas, and ‘X’ and ‘X ′’ range over arbitrary
multisets of formulas. �e structural rules are Id and Cut:

A � A Id

X � A X ′, A � C
Cut

X,X ′ � C
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�e connectives are governed by the expected left and right rules.

X � A X ′, B � C
→L

X,X ′, A→ B � C
X,A � B

→R
X � A→ B

X � A
¬L

X,¬A �
X,A �

¬R
X � ¬A

fact 1 �ere is a linear natural deduction proof from the premisesX to the conclusionC if

and only if there is a derivation of the sequent X � C in the linear sequent calculus. (Fol-

lowing our convention concerning ‘C’, thismeans that there is a sequent derivation ofX � if

and only if there is anatural deductionproof fromX to ]. Weallow ‘C’ to take the appropriate
formwhether occuring as a conclusion of a proof or the rhs of a sequent.)

Proof: From left to right, this can be verifiedby a simple induction on the construc-

tion of the proof. �e base case proof is the identity proof A, which corresponds

exactly to the identity sequent A � A. Now, for the induction steps, consider

the ways to generate new proofs from old. For→I, suppose we have a proof from
assumptionsX togetherwith one given occurrence of the assumptionA to conclu-

sion B and we discharge that occurrence ofA in a→I step to deduceA→ B. �e

induction hypothesis delivers us a derivation of X,A � B, which can be extended
to a derivation ofX � A→ B, by→R, as desired.

For→E, suppose we have a proof from X to A → B and another from X ′ to
A, and we combine these into a proof from X,X ′ to B. �e induction hypothesis

delivers us derivations of X � A → B and X ′ � A. Using Cut and→R we can
construct the desired derivation ofX,X ′ � B like this:

X � A→ B

X ′ � A
Id

B � B
→L

X ′, A→ B � B
Cut

X,X ′ � B

�e cases for the negation rules parallel the conditional rules precisely, so leaving

these as an exercise, I will declare this part of the proof done.

For the right-to-left direction of the equivalence, we show how we can con-

struct a proof fromX toC, given a derivation ofX � C (whetherC is a formula or
]). If our derivation is a simple appeal to Id (A � A) we have the atomic proof fea-
turing the assumptionA standing alone as both assumption and conclusion. For

Cut, we paste together a proof fromX toA to a proof fromX ′, A toC to construct
the combinedproof fromX andX ′ toC, going throughA as an intermediate step.2

X ′

X
Π1

A

Π2

C

2
Here, the dashed line aboveΠ2 indicates that the subproofΠ2 has the formulas listed inX

′
and

A together as its undischarged leaves.
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�e connective rules on the left and right correspond neatly to the corresponding

applications of the elimination and introduction rules. For→L, suppose we al-
ready have a proofΠ1 from X toA and a proofΠ2 from X

′, B toCwe construct a
proof fromX,X ′, A→ B toC like this:

X ′
A→ B

X
Π1

A→E
B

Π2

C

Similarly, given a proof fromX,A toB, we can discharge that instance ofA in the

assumptions in one→I step to construct a proof from X toA → B. �e reason-

ing for the negation rules has the same shape, so again, we can declare the proof

complete.

So,wecansee that the sequent calculusand thenatural deductionsystemfor linear

implication and negation mirror each other.

To extend the sequent calculus to model relevant logic, affine logic and in-

tuitionistic logic, we can add the structural rules of contraction (on the left) and

weakening (both on the left and on the right), like so:
3

X,A,A � C
W

X,A � C
X � C

KL

X,A � C
X �

KR

X � B
Using contraction (W), we can implement in the sequent calculus the behaviour of

duplicate discharge in natural deduction. If we wish to discharge more than one

instance of the assumption formula A in a→I step, then in the derivation, you
may contract those copies ofA in the left of the sequent down to one, withW, and

then you are in a position to apply→R. Usingweakening on the left (KL), we can do
thework of vacuous discharge in natural deduction. Whereverwewould vacuously

discharge an assumption formula in some inference, in the sequent calculus we

insert that formula usingKL to be in a position to apply the right rule, introducing

a conditional or a negation.

However, once we add these structural rules, the parallel between the sequent

calculus and natural deduction is less direct and straightforward than it is in the

linear case. Consider the followingderivationof the sequentp→ (p→ q), p � q,
using contraction:

p � p
p � p q � q

→L
p→ q, p � q

→L
p→ (p→ q), p, p � q

W

p→ (p→ q), p � q
3
Weuse ‘W’ for contraction and ‘K’ forweakening, following the names fromCombinatory Logic.

Haskell Curry named the contraction combinator ‘W’ (for the combinator satisfying (Wxy) =

(xyy)), since ‘W’ is reminiscent of repetition [1]; while Schönfinkel’s ‘K’ (for the combinator sat-

isfying (Kxy) = x) stands for ‘Konstanzfunktion’ [18].
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�is sequent derivation in some sense ‘says’ that there is a proof of q from p →
(p→ q) and p—from one copy of each. �ere indeed is a natural deduction proof

from p → (p → q) and p to q, but there is no such proof that simply uses two

steps of→E, in the way that this derivation uses two steps of→L. In our natural
deduction system, the job of contraction is accomplished at the points where we

discharge assumptions, in→I and ¬I inferences. Our proof which uses only one

copy of p among the assumptions goes like this:

p→ (p→ q) [p]1
→E

p→ q [p]1
→E

q
→I1

p→ q p
→E

q

�is proof manages to get to the conclusion q from one copy each of the premises

p → (p → q) and p, but it does so at the cost of making an initial detour, con-

structingp→ q and immediately breaking it down again. It doesmorework than

seems appropriate in derivingq from those premises. �is is our first hint that we

may not yet have the clearest understanding of the behaviour of structural rules,

like weakening and contraction, in Prawitz-style natural deduction.

* * *

However, there is a more pressing issue concerning the behaviour of structural

rules in natural deduction, and that is the extension of our simple natural deduc-

tion system to extend to classical logic, and to the classical variants of the implica-

tion/negation fragmentsof linear logic, relevant logic andaffine logic. Ifweextend

the sequent calculus to allow for more than one formula on the right, like this—

A � A Id

X � A, Y X ′, A � Y ′
Cut

X,X ′ � Y, Y ′

X � A, Y X ′, B � Y ′
→L

X, Y,A→ B � Y, Y ′
X,A � B, Y

→R
X � A→ B, Y

X � A, Y
¬L

X,¬A � Y
X,A � Y

¬R
X � ¬A, Y

—it is well known that we get fully dualising behaviour from these rules. For ex-

ample, we can derive double negation elimination as well as introduction. �e fully

left–right symmetric sequent calculus allows for this symmetric pair of deriva-

tions:
p � p

¬L
p,¬p �

¬R
p � ¬¬p

p � p
¬R

� ¬p, p
¬L

¬¬p � p
Can we extend Prawitz-style natural deduction with purely structural rules, so as

to do justice to derivations like these,whichmakeuse ofmore than one formula on
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the right hand side? �is is onemotivation for a bilateralist proof system, in which

there is a full symmetry between premise and conclusion, between assertion and

denial, and between left and right. �emost direct attempts to expandnatural de-

duction in this fully symmetric direction is to propose proof systems withmultiple

conclusions [14–16,19], in addition to themultiple premises available in a Gentzen–

Prawitz-style proof. �is extension of natural deduction in a fully bilateral format

is well-motivated, but to get the details correct, one must move beyond tree-like

structures to graphs [19, see Parts I and II], and the correspondence with natural

deduction becomes less direct.
4

Another way to extend natural deduction in a bilateral direction is to allow

for negatively decorated formulas (for rejection or denial), as well as positive formu-

las [20]. In modern renderings of this kind of bilateralist natural deduction, we

assign every formula in a proof a sign, either ‘+’ or ‘−’, for assertion and denial re-

spectively [5, 17]. �is provides a neat way to pair full symmetry between positive

and negative position, in a structure with many premises and a single conclusion. A

proof from+A,−B,+C to+D can do duty for the sequentA,C � B,D, since it
reassures us that there is no way forA andC to be truewhile B andD are false, or

equally, it is inconsistent to accept A and C and reject B andD, or to put things in

termsof speech acts, to assertA andC and denyB andD. �is sequent corresponds

to other proofs, too, such as a proof from−B,−D,+C to−A. By decorating for-

mulas with ‘+’ or ‘−’, we can move them between premise to conclusion position

in a proof as desired. Since formulas can appear both positively and negatively

signed, instead of each connective being defined by two rules, they have four: in-

troduction and elimination rules for both positively and negatively signed occur-

rences. Such fully bilateralist natural deduction systems are interesting and pow-

erful, but as we will see, they add to the natural deduction framework more than

is strictly necessary to ford the chasm between intuitionist and classical natural

deduction, and the substructural variants thereof. It is possible to be bilateralist

in a much less drastic manner, and to still get all the power of classical reasoning.

In the rest of this paper, we will see how.

* * *

Before introducing the structural addition to proofs that suffices for mild bi-

lateralism, there is onemoremodification to natural deduction that isworthmen-

tioning, the Restart rule of Michael andMurdoch Gabbay [2]. �e restart rule:

A
Restart

B

4
Asimple case that shows theproblem is this. Ifwewould like adownwardbranchingdisjunction

rule (from A ∨ B you branch to two conclusions, one A and the other B) in parallel to the upward

branching conjunction rule (inferA∧ B from two premises, oneA and oneB), then there seems to

be no way to construct a proof from p∨ p to p∧ pwithout in some way breaking the tree shape of

proofs.
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is an addition to natural deduction for intuitionistic logic that is indeed sufficient

to capture classical logic. Of course the rule does not apply without restrictions.

A proof using the Restart rule is complete only when below every application of a

Restart inference fromA toB there is at least one further occurrence ofA. Surpris-

ingas it is, natural deductionextendedwith this rule is indeed soundandcomplete

for classical logic. Before explaining why, let’s see a complete proof of the classical

tautology ((p→ q)→ p)→ p using Restart:

[(p→ q)→ p]2

[p]1
Restart

q
→I1

p→ q
→E

p
→I2

((p→ q)→ p)→ p

In this proof, the Restart in the first inference is paid off when we return to p in

the second last inference. Here is why the restart rule is sound and complete for

classical logic. Suppose have a proof from premises X to a conclusion A. So, we

have X � A. �en, if we restart to introduce B, the ‘score’ is now X � B,A. �eA

does not go away, as it were. We just set it aside (as an alternative conclusion) to

insert another conclusion in its place. �e Restart rule at the point of application

is a kind of weakening on the right (KR). To make explicit the idea that the proof

still has a single formula in the conclusion, let’s represent the sequent in the form

X � C; Y where C is the formula (or ], perhaps) in conclusion position, and Y
collects together the other conclusions we have discarded along the way whenever

we have applied Restart.

What, then, is the point of the side condition to the effect that wemust return

to the discarded formulaA? Whenwe return to a previously discarded conclusion,

A, the score is X � A;A, Y. We declare the restart step complete and the formula
is removed from the discard pile: so the score is then X � A; Y. �is side con-

dition, therefore, is an application of contraction on the right hand side of the se-

quent (WR). If we complete every restart step in a proof, the discard pile is empty,

the score has the shape X � A; —and the proof is indeed a justificiation of the

conclusion on the basis of the undischarged assumptions.

�e Restart rule is an ingenious addition to natural deduction that happens to

be tailor-made for classical logic. However, the rule encodes both contraction and

weakening, so it is ill-suited to substructural variants of classical logic. Further-

more, it is difficult to see how it can be motivated on explicitly bilateralist lines.

Nonetheless, it contains the kernel of the idea of how we can make a small struc-

tural modification of natural deduction that suffices for this range of logical sys-

tems, and as wewill see, thismodification can bemotivated by bilateralist consid-

erations.
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2 Natural Deductionwith Alternatives

In any natural deduction proof, we have some collection X (possibly empty) of

undischargedassumptions, andaconcluding formulaB, or a contradictionmarker

]. If we wish the ‘score’ of our proof to encompass the whole range of sequents of
the formX � Y (as seems to be desirable, in order tomatch our classical systems),
then if the conclusion formula is selected from the collection Y of formulas on the

right hand side, we need some way to take care of the remaining formulas on the

right, if there are any.

Let’s use the notation that seemed natural when considering the restart rule,

and think of the score in our proof as taking the shapeX � C; YwhereC is the con-
clusion of the proof (whether a formula or ]),X collects together the undischarged
assumptions, and Y is yet to be accounted for. �e distinguished position in the

right hand side of the sequent is the focus. At any stage of a proof, there is either

a formula in the focus position (the conculding formula of the proof), or the focus

is empty, in which case the proof concludes in ]. �e restart rule manipulated the

score by allowing us to remove a formula from the focus, and to place something

else in its place (in this case, any other formula we please). If wewish tomodel any

of our substructural logics, this is altogether too generous, since this corresponds

to weakening our sequent by adding a new formula to the rhs. If wewish tomove

a formula out of focus, there is only one thing, in general, we can put in its place,

if we wish to refrain fromweakening. �at is ], or in sequent vocabulary, nothing.
�e appropriate sequent rule to remove a formula from conclusion position

has the following shape:

X � A; Y
↑

X � ;A, Y

Here, there is no contraction or weakening. We simply remove a formula from the

focus position, and leaving nothing in its place. Formula occurrences are neither

deleted (as happens in contraction) nor added (inweakening). A natural mate for the

↑ rule is its converse:
X � ;A, Y

↓
X � A; Y

�is rule takes a formula out of the discard pile to return it to focus. Again, there

is no implicit contraction or weakening involved.

Let’s now consider how we can achieve the effect of these moves in a natural

deduction framework. First, for the ↑ step, wemove from a proof in which a given

formula A is the conclusion, to a proof in which the conclusion is now ], a con-
tradiction. In this new proof, the formula A is now added to the discard pile, or

the collection of alternative conclusions. In natural deduction proofs, one option

to represent this formula A is among the leaves of the proof (the context against

which the conclusion is derived), but we must find some way to distinguish this

former conclusion—now set aside— from the other undischarged assumptions,

also in the leaves of the proof tree. We do this with a sign, as with other bilateralist
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natural deduction systems. To emphasise the negative role played by these formu-

las, we will use a slash for the sign. (�e slash through the entire formula should

also bring tomind that it is not another connective, able to be composedwith other

connectives.) �e corresponding proof step then takes this form:

Π
A A

↑
]

�is looks rather like the ¬E rule in that a contradiction is derived from A and a

negative version of A. However, there are two differences. �e first is obvious:

negation is an embeddable, composable content of a judgement— the negation of

a formula can occur inside other formulas—while the slash here is a structural

feature of proofs, and cannot be so embedded. �e second is more subtle, but no

less important: the negation elimination rule composes two proofs, one forA and

the other for ¬A, into a single refutation, a proof ending in ]. �e ↑ rule, on the
other hand, does not compose two proofs. �ere is no proof ending in A . In this

proof calculus, slashed formulas will appear only in leaves, and never as the con-

clusion of a proof. �ese formulas represent the conclusions we have temporarily

set aside, and are stored among the leaves. Furthermore, unlike¬Ewhich dictates

the behaviour of a specific kind of formula, the ↑ rule is purely structural, allowing
for the rearrangement of information around the proof structure, independently

of the particular content or shape of the formula involved.

Why is this rule labelledwith ‘↑’? Whenweapply it, the formulaA—whichwas

the conclusion of the proof— is lifted up from the conclusion and stored among

the leaves of the proof, where it takes its place as part of the context against which

the conclusion is proved. For this reason, we also call it the store rule, and the con-

clusion formulas, temporarily stored up in the leaves are also called alternatives,

since they are alternative candidates for conclusion, temporarily set aside for the

sake of the argument. �e converse of the store rule must do the reverse. It must

retrieve an itemkept in storage, to return it to the focus of the proof, its conclusion.

Here is the appropriate shape in natural deduction:

[A ]i

Π
]
↓i

A

Oncewehaveproveda contradiction,weare in aposition to select a stored formula

(one instance only, in linear natural deduction) and discharging it, we return it to

the conclusion. Before the retrieve step, the score was X � ;A, Y, and after, it is
X � A; Y, when theA is retrieved from the storehouse of alternatives, to return to

its place as a conclusion.

With these rules, we can mimic multiple-conclusion sequent derivations, de-

spite the asymmetric shape of tree proofs. Here are proofs of double negation
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elimination, and Peirce’s Law, the latter now making explicit how weakening (]E)
and contraction (duplicate discharge) play a role:

¬¬p

[p]1 [p ]2
↑

]
¬I1

¬p
¬E

]
↓2

p

[(p→ q)→ p]3

[p]1 [p ]2
↑

]
]E

q
→I1

p→ q
→E

p [p ]2
↑

]
↓2

p
→I3

((p→ q)→ p)→ p

�is proof system is a purely structural extension of Prawitz-style natural deduc-

tion, changing it only with the addition of two structural rules, store and retrieve.

�is calculus is bilateralist because modifying the rules in this way allows for the

context in which a formula is proved to have a twofold structure. A proof ofA from

the assumption formulas X and the alternatives Y is a proof corresponding to the

sequentX � A; Y, and the intuitive interpretation is thatA follows, provided that
we have the means to ruleX in and rule Y out.

Although this natural deduction calculus is bilateralist, it is bilateralist in a

muchmildermanner than other bilateralist generalisations of natural deduction.

Wedonot tag every formula in theproof, or add to the connective rules, andneither

have we had to change the topology of proofs from the familiar tree structure. �e

context against which formulas are proved has been enlarged, but the remaining

rules of the familiar natural deduction calculus are unchanged.

Although Ihavepresented this natural deduction systemas amoreflexible sib-

lingofGabbayandGabbay’s natural deductionwith restart, its originsgoback fur-

ther than their work. �e proof system here is derived fromMichel Parigot’s λµ-

calculus for classical logic [9–11]. �eoriginal contribution of this paper is twofold:

first, rewriting the rules tomake the connectionwithnatural deductionand the se-

quent calculus more explicit, and second, formulating the store and retrieve rules

so that the formulation applies equally to substructural systems of natural deduc-

tion. It is to the consideration of structural rules that we will now return, before

finishing this paper with an indication of how rules for other connectives can be

formulated, and a proof that the rules are indeed sound and complete for the sub-

stuctural multiple-conclusion sequent logics in question.
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3 Weakening and Explosion

We have already seen that adding irrelevance to linear natural deduction comes in

two distinct ways. Vacuous discharge, and ]E.

[p]1
→I

q→ p
→I1

p→ (q→ p)

¬p p
¬E

]
]E

q

�ese are distinct features of the natural deduction calculus. �ey are so distinct

that we can have a proof system (for minimal logic) in which we have vacuous dis-

chargewithout ]E.�is isno longer so in the classical setting, in thepresenceof the

store and retrieve rules. Given the retrieve rule, ]E is no longer a separate distinct
rule— it is simply the vacuous case of the retrieve inference. We can step from ] to
any given formula A by retrieving zero copies of the stored formula A. �e proof

from¬p and p to q now takes this form:

¬p p
¬E

]
↓

q

�enatural deduction systemwith alternative rules unifies these twodistinct kinds

of irrelevance, by showing that they both count as forms of vacuous discharge.

�e connection between ]E and vacuous retrieval is a tight one, since ifwehave
the store and retrieve ruleswith vacuous discharge of assumptions thenwe get the

effect of ]Ewhether we add vacuous discharge of alternatives as a primitive rule or
not. Vacuous discharge comes as a package deal, in the presence of the store and

retrieve rules. It is well known from minimal logic that from a contradiction we

can infer an arbitary negation, including¬¬q by vacuous discharge of the assump-

tion ¬q, and so, using a store and retrieve two-step, we can infer the arbitrary q

anyway:

¬p p
¬E

]
¬I

¬¬q

[q]1 [q ]2
↑

]
¬I1

¬q
¬E

]
↓2

q

So, the store and retrieve rules of natural deduction with alternatives gives us a

vantage point from which we can see the phenomena of irrelevance arising from

one single source, the vacuous appeal to context, whether positive or negative.

4 Varieties of Conjunction

Let’s add conjunction to our natural deduction system. It is well known that if we

use the familiar Prawitz rules&I and&E, we see that we can get the effect of vac-
uous discharge, by laundering our unused assumption (here q through an&I/&E

13



two step).

p [q]1
&I

p & q
&E

p
→I1

q→ p

So, if we wish to do without weakening, we should not use&I together with&E.
One option is to start with the rule&I and to scout around for a rule that fits neatly
with it, whether contraction or weakening are present, or not. �e resulting con-

nective is a multiplicative conjunction, and we will write ‘⊗’ to set multiplicative
conjunction apart from other conjunctions. Given the familiar introduction rule

⊗I, the matching elimination rule is natural:

Π1

A

Π2

B ⊗I
A⊗ B

Π1

A⊗ B

[A]i, [B]j

Π2

C
⊗Ei,j

C

To eliminate a conjuction A ⊗ B we can derive anything we can derive from the

conjuncts individually. In a linear context, we discharge one copy each of each

conjunct. In the presence of contraction, we may discharge more copies. In the

presence of weakening, we may discharge zero copies. �e result is the expected

behaviour ofmultiplicative conjunction inour systems, andweneednot spendany

time considering its distinctive behaviour, because in a sense, it brings nothing

new to the table. Multiplicative conjunction is definable in terms of negation and

the conditional in the way you expect:A⊗B is equivalent to¬(A→ ¬B), and the

inference rules are derivable from the rules at hand. First, we can reconstruct the

⊗ introduction rule by combining two elimination steps with one introduction:

Π1

A

Π2

B ⊗I
A⊗ B

[A→ ¬B]1
Π1

A
→E

¬B

Π2

B
¬E

]
¬I1

¬(A→ ¬B)

14



Dually, the job of the ⊗ elimination rule can be performed by two introduction

steps with one elimination, combined with one storage and one retrieval:

Π1

A⊗ B

[A]i, [B]j

Π2

C
⊗Ei,j

C

Π1

¬(A→ ¬B)

[A]i, [B]j

Π2

C [C ]k
↑

]
¬Ij

¬B →Ii
A→ ¬B

¬E
]
↓k

C

So, addingmuliplicative conjunctiongivesusno increase in expressivepower, over

and above the rules already at hand.
5

* * *

So, what of the other kind of conjunction, the additive conjunction, which is found

whenwe start with Prawitz’s elimination rule? Here the elimination rules are triv-

ial, but the corresponding introduction rule is harder to find. At the level of se-

quents the target rules are straightforward:

X,A � C, Y
∧L

X,A∧ B � C, Y
X, B � C, Y

∧L
X,A∧ B � C, Y

X � A, Y X � B, Y
∧R

X � A∧ B, Y

�e left rules correspond to the expected elimination rules for conjunction: if we

can prove something from A we could have proved it from A ∧ B instead—and

the same goes if we could have proved it fromB. �e right rule, on the other hand,

is hard to model in natural deduction. �e intended behaviour is that if we can

proveA and prove B from the same context of assumptions (whether positive or nega-

tive), thenwe can prove the conjunctionA∧B from that same context of assump-

tions. �is is hard tomodel in the usual tree structure of natural deduction proofs.

Consider the usual introduction rule:

Π1

A

Π2

B
∧I

A∧ B

5
We do not have space to consider normalisation of proofs here, but indeed, the expected nor-

malisation behaviour for ⊗I/E detours follows from the normalisation rules for the other connec-

tives, together with ↑ and ↓. Cut elimination for the linear sequent calculus is very easy to show
(in the absence of contraction, each cut reduction shrinks a derivation), and cut elimination for the

extensions with contraction or weakening follows from standard techniques [8, 13]. Parigot shows

strong normalisation for his classical natural deduction calculus (which differs slightly in structural

rules from the calculus presented here, in ways that make no difference in the presence of contrac-

tion and weakening), and a close analysis of the reduction steps in Parigot’s argument can apply

in the four natural deduction systems presented here [9, 11]. However, a detailed consideration of

normalisation must wait for another occasion.
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Here, the rule combines the assumptions from fromΠ1 andΠ2 into the larger col-

lection of assumptions for the new proof. �is does not have the desired effect, in

the linear context.

One option, explored by Ernst Zimmermann [23], is to constrain∧I in such a

way as to require that the contexts inΠ1 andΠ2 are identical, but to then choose

one side to discharge all assumptions in the context at the application of∧I:

X

Π1

A

[X]i

Π2

B
∧Ii

A∧ B

A rule of this form certainly has the desired shape: if we can proveA and prove B

from the same context, then the result will be a proof ofA∧B from the very same

context. However, the rule has one structural shortcoming, and this is that proofs

no longer compose. �at is, the following two proofs are acceptable:

p∧ q
∧E

p

p [p]1
∧I1

p∧ p

However, we cannot compose these twoproofs to formaproof fromp∧q top∧p.

p∧ q
∧E

p [p]1
∧I1

p∧ p

�is isnot aproof, since the conjunction introduction rule isno longer a correct ap-

plication in context, since the proofs of p no longer come from the same context.
6

So, while Zimmermann’s discharging rule for additive conjunction is ingenious, I

will set it aside for another option.

* * *

It will help to return to the discussion of structural rules from the first section,

and to pay closer attention to the behaviour of assumptions in natural deduction

proofs. An assumption class is a collection of occurrences of assumptions (of the

same formula) in a proof, which are discharged together in one inference steps [6].

In our linear natural deduction system for→ and ¬, assumption classes are al-

ways single formula occurrences. In the presence of multiple discharge, we allow

6
Notice that the corresponding sequent derivation with a Cut, composing the derivation of p ∧

q � pwith that of p � p∧ p is unproblematic.

p � p
∧L

p∧ q � p

p � p p � p
∧R

p � p∧ p
Cut

p∧ q � p∧ p
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for larger assumption classes, and in the presence of vacuous discharge, we allow

for assumption classes to be empty. In proofs, we indicate assumption classes,

where necessary, by superscript numerals. To treat additive conjunction—and

to give a more detailed analysis of the behaviour of the structural rules—we will

more closely examine this behaviour, by splitting the treatment of multiple dis-

charge into two distinct phases. �efirst is themerging of two assumption classes

into one, and the second is the discharge of that single assumption class. In this

way, we will have the intermediate phase of the single assumption class occurring

undischarged at two places in the proof. Since we indicate discharge with a no-

tation with two components (the brackets and the superscript), we will use one

component (the superscript) to indicate the assumption class, and the other (the

brackets) to indicate discharge. With this notation inmind, consider the following

two proofs, which differ only in one respect:

p→ (p→ q) p
→E

p→ q p
→E

q

p→ (p→ q) p1

→E
p→ q p1

→E
q

In the first, the two occurrences of p occur in different assumption classes. In

the second, the two occurrences are members of the same assumption class. In

this second proof, the one act of assumption (an assumption thatp) has been used

twice in two separate→E inferences. In the first proof, the two assumptionspmay
have been assumed in two separate acts, or they may be justified by two separate

processes.
7
�e first proof is for the sequent p → (p → q), p, p � q, while the

second is for p → (p → q), p � q, since there is only a single assumption class
forp in use. �e lacunamentioned inSection 1 concerning contraction andnatural

deduction is now dealt with in a new way, using assumption classes.

One key feature of this treatment of assumption classes is their interaction

with proof composition. If I compose my proof from p → (p → q), p to q with

another proof, say, from p∧ r to p, the composition should be a proof from p →
(p → q), p ∧ r to q, since we replace the assumption of p by the proof of p from

the new assumption p∧ r. Writing out the whole proof, we get this:

p→ (p→ q)

p∧ r1
∧E

p
→E

p→ q

p∧ r1
∧E

p
→E

q

Here, the tree format requires that we insert the new proof at two places, and now

the two occurrences of the new assumption p∧ r come from a single assumption

class. In this way, we can compose proofs naturally, and without restriction.

7
In a type theory, in which all formulas are types of terms, the difference is recorded by the iden-

tity or difference of variables used in assumptions. In thefirst proof, the formulap types twodistinct

variables, while in the latter, it types one variable, occurring twice in the proof.
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With the addition of our explicit treatment of assumption classes, we need to

revisit the formulation of each of our rules. �e introduction rules→I, ¬I and

the retrieve rule ↓make use of assumption classes directly. In each case, each for-
mula occurrence (unslashed assumptions in the case of the introduction rules, and

slashed alternatives in the case of the retrieve rule) in a single assumption class is

discharged, while the remaining assumption classes in the proof are undisturbed.

[A]i

Π
B

→Ii
A→ B

[A]j

Π
]

¬Ij

¬A

[A ]k

Π
]
↓k

A

In addition, in the→E rule or a ¬E, in which two proofs are combined into one,

if contraction is not in use, the assumption classes in the context of both proofs are

kept separate. For example, a proof from X and Y to A → B, combined with a

proof fromX ′ and Y ′ toA, using a→E step, gives us a proof fromX,X ′ and Y, Y ′
to B. �e assumption classes are not combined. If we are allowing contraction,

in our proof we allow for somemerging of assumption classes, as we have seen in

the proof from p → (p → q), p to q, in which two assumption occurrences of p

aremerged into the one assumption class. To represent this operation on assump-

tion classes, let us useC andC ′ as natural deduction contexts (of assumptions and
alternatives, grouped into classes). �ese inference steps take the form:

C
Π

A→ B

C ′

Π ′

A→E
B

C
Π

¬A

C ′

Π ′

A
¬E

]

Here, the context of the whole proof has the form C + C ′ where this is the disjoint
union of context classes in the case of linear natural deduction. If contraction is

allowed, the requirement that this be a disjoint union is dropped: an arbitraryunion

is allowed.

With this treatment of assumption classes in hand, we can return to the addi-

tive conjunction rules. �e rules take this format:

C
Π1

A

C
Π2

B
∧I

A∧ B

Π
A∧ B

∧E
A

Π
A∧ B

∧E
B

where the condition in the introduction rule is that the assumption classes in Π1

and Π2 are identical, and after the ∧I step, the assumption classes are combined,

so that the assumption class for the whole proof remains C. (Rules for additive

connectives in substructural natural deduction of this form are given by Sara Ne-

gri [7], but the discussion of the behaviour in terms of assumption classes and dis-

tinguishing the phases of identification and discharge is original to this paper.)
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Here is an example proof, from the premise (p→ q)∧ (p→ r) to the conclu-

sion p→ (q∧ r).

(p→ q) ∧ (p→ r)1

∧E
p→ q [p]2

→E
q

(p→ q) ∧ (p→ r)1

∧E
p→ r [p]2

→E
r

∧I
q∧ r

→I2
p→ (q∧ r)

In this proof, at the∧I step, we have two subproofs, each from (p→ q)∧(p→ r)

and p, and the assumption classes of both of these subproofs are combined, us-

ing the labels 1 and 2. So the rule is appropriately applied, and in addition, we

discharge the single assumption class for p to derive p→ (q∧ r) in the last infer-

ence step.

We have considered how assumption classes can be combined in the presence

of contraction. It remains to consider the role of weakening. In the simple nat-

ural deduction proof from p to q → p, with one→I inference, zero instances of
q are discharged. �is means that in proofs with weakening, we must allow as-

sumption classes to be empty. Once assumption classes can be empty, there will be

manymoreways for different proofs to come from the same context. Consider the

following sequent derivation, using weakening, to derive p, q � p∧ q.

p � p
KL

p, q � p
q � q

KL

p, q � q
∧R

p, q � p∧ q

What proof might correspond to this sequent derivation? �e proof we might ex-

pect should have the shape

p q
∧I

p∧ q

but for this to be a correct proof, we must understand the sense in which the two

subproofs (the atomic proofs ofp and ofq) have the same context. In the presence

of weakening, the atomic proof of p is indeed a proof of p from that occurrence of

p, but it is also a proof of p from p, q, where the assumption class for q is empty,

while the assumption class forphas one inhabitant. In thepresence ofweakening,

a proof is not only a proof from a single context C, but also any extension of C by

any finite number of empty assumption classes. In this way, an atomic proof p

correspondsnot only to the sequentp � p, butp, q � p (adding the emptypositive
assumption classq),p � p, r (adding the empty class of occurrences of r ), and any
other sequent of the formX, p � p, Y forfiniteX andY. �eeffect of this condition

in natural deduction proofs is twofold: first, in the discharging inferences→I,
¬I and ↓, in which an empty class of occurrencs may be discharged, as expected.
Second, as we have seen in the above example, it may also play a role in the ∧I

rule, which can apply even when the non-empty assumption classes occurring in
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[A]i

Π
B →Ii

A→ B

C
Π

A→ B

C ′

Π ′

A→E
B

[A]j

Π
]

¬Ij

¬A

C
Π

¬A

C ′

Π ′

A
¬E

]

C
Π
A A

↑
]

[A ]k

Π
]
↓k

A

C
Π1

A

C
Π2

B
∧I

A∧ B

C
Π

A∧ B
∧E

A

C
Π

A∧ B
∧E

B

Figure 1: �e Natural Deduction Rules

the proofs ofA andofB are not identical, sincewe can add extra empty assumption

classes to either proof, until the contexts match.

Figure 1 compiles the rules for our natural deduction system. �ese rules can

be read in four different ways, depending on the presence or absence of contrac-

tion and weakening.

• If contraction is absent, the contexts C and C ′ in the→E and ¬E rules are

required to be disjoint. If contraction is present, at each→E and ¬E step,

some assumption classes are permitted to bemerged.

• If weakening is absent, the assumption classes in discharge rules are non-

empty, and each proof has a unique context, of non-empty classes appearing

in the leaves of the proof. If weakening is present, each proof has not only a

minimal context C of formula occurrences present in the leaves, but is also

a proof from any wider context C ′ with empty assumption classes added.
As a result, any two proofs can be combined in a∧I inference, by the addi-

tionof empty assumption classes to each side, to ensure that the assumption

classes match.

5 Soundness and Completeness

It remains to show that this system of natural deduction with alternatives corre-

sponds tightly with the traditional sequent calculi, and it is to this result that we

turn. For clarity,wewill split this result into two cases. First, for the linear calculus,

and then we will end with the result for calculi with structural rules.

fact 2 �ere is a linear natural deduction proof with alternatives, from the premisesX and

alternativesY to the conclusionC if and only if there is a derivation of the sequentX � C, Y
in the classical linear sequent calculus.
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fact 3 �ere isanaturaldeductionproofwithalternatives (a)usingduplicatedischarge,

or (b) using vacuous discharge from the premisesX and alternatives Y to the conclusion

C if and only if there is a derivation of the sequentX � C, Y in the classical linear sequent
calculus with the addition of (a) contraction, or (b)weakening.

To verify both of these facts, it is useful to draw out a simple lemma, which has

the effect that we treat natural deduction proofs as representing sequents of the

form X � Y, in which we disregard which formula is in focus, since focus can be
moved freely.

lemma 4 [focus shift] �ere is a proof fromassumptionsX and alternativesY to conclu-

sionA iff there is a proof from assumptions X and alternativesA, Y to conclusion ]. (�e
second proof uses vacuous discharge or duplicate discharge if and only if the first proof does.)

Similarly, there is a proof fromX andA, Y toB iff there is a proof fromX andB, Y toA.

Proof: �is is an immediate application of the store and retrieve rules. Any proof

fromX and Y toA, extended with one ↑ step is a proof fromX andA, Y to ]. Con-
versely, any proof from X andA, Y to ], extended with one ↓ step, is a proof from
X and Y toA. If we have a proof fromX andA, Y toB, on one ↑ step this is a proof
fromX andA,B, Y to ], which in one ↓ steop is a proof fromX and B, Y toA.

With the Focus Shift Lemma at hand, we can complete the proof of Fact 2. �is

proof follows the structure of the proof of Fact 1 (see page 5) directly, except we

allow for the presence of alternatives (on the proof side) and sequents with more

than one formula on the right (on the derivation side) andwe add cases for the new

rules in each system.

Proof: �e left-to-right direction is an induction on the construction of the proof

fromX and Y toC. �e base case is unchanged from our earlier reasoning: a proof

of A corresponds to the identity derivation A � A. For the induction steps, we

suppose we are generating a new proof, by some inference step, from proofs for

which the induction hypothesis holds. For the connective rules for the conditional

and negation, the argument is exactly the same as in our earlier reasoning, except

we have to verify that the derivation steps corresponding to natural deduction in-

ferences are correct in the presence of proofs with alternatives. Consider the case

for→E. �is step is applied in a natural deduction proof when we have a proof

from X and Y toA → B and a proof from X ′ and Y ′ toA, which we combine, to
produce a proof from X,X ′ and Y, Y ′ to B. �e induction hypothesis ensures we

have derivations of X � A → B, Y and X ′ � A, Y ′. Using Cut and→L we can
construct the desired derivation ofX,X ′ � B, Y, Y ′ like this:

X � A→ B, Y

X ′ � A, Y ′
Id

B � B
→L

X ′, A→ B � B, Y ′
Cut

X,X ′ � B, Y, Y ′
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�e cases for the other rules for the conditional and negation follow in just the

same manner as this, making the obvious changes to allow for sequents with a

more general rhs.

Next, consider the rules for additive conjunction. If we extend our proof with

a ∧E step, we extend a proof from X, Y to A ∧ B to a proof from the same con-

text to the conclusion A (or B). �e induction hypothesis ensures that we have a

derivation of X � A ∧ B, Y. �is can be extended to derivations of X � A, Y and
X � B, Y straightforwardly:

X � A∧ B, Y

Id

A � A
∧L

A∧ B � A
Cut

X � A, Y
X � A∧ B, Y

Id

B � B
∧L

A∧ B � B
Cut

X � B, Y

If our proof ends in a∧I inference, with conclusionA∧B, from contextX, Y, then

we have two proofs, one toA and the other, toB, from the same contextX, Y. �is

means we have two derivations, one of X � A, Y, and the other, of X � B, Y. �ey

can be extended like this

X � A, Y X � B, Y
∧R

X � A∧ B, Y

to give us the derivation we need. So, we have completed the cases for the connec-

tive rules for the left-to-right part of our fact. It remains to consider the structural

store and retrieve rules. If our proof ends in a store (↑) step, we convert a proof from
X and Y to A to a proof from X and A, Y to ]. �e induction hypothesis delivers

us a derivation of X � A, Y, and we want a derivation corresponding to our new
proof from X andA, Y to ], which is also a derivation from X � A, Y, so the store
rule is inert at the level of sequent derivations without focus. (�is is one lesson

of the focus shift lemma.) So, too, is the retrieve (↓) rule, which simply reverses the
effect of a store step. So, with this noted, we complete the proof of the left-to-right

direction of our fact.

For the right-to-left direction of the equivalence, we show how we can construct

a proof from context X, Y to C, given a derivation of X � C, Y (whether C is a

formula or ]). As before, if our derivation is a simple appeal to Id (A � A) we have
the atomic proof featuring the assumptionA standing alone as both assumption

and conclusion. Or, given thatA � A is a derivation corresponding to a proof of ]
from the contextA andA, this derivation also corresponds to the proof

A A ↑
]

consisting of a single store inference. Notice that this proof is found by a simple

modification of the original identity proof ofA. We could, here, appeal to the focus

shift lemma instead, rather than explicitly constructing every focus variant of our

first proof.

22



For the other structural rule,Cut, we have derivations ofX � A, Y andX ′, A �
Y ′. By the induction hypothesis, we have a proof from contextX and Y toA, and a

proof from contextX ′, A and Y ′ to ].8Wepaste these proofs together to construct
the combined proof fromX,X ′ and Y, Y ′ to ], going throughA as an intermediate
step, just as we did in the proof of Fact 1.

X ′ Y ′

X Y

Π1

A

Π2

]

For the proofs corresponding to the remaining focusings of the sequent X,X ′ �
Y, Y ′, we appeal to the focus shift lemma.

As before, the connective rules on the left and right correspond neatly to the

corresponding applications of the elimination and introduction rules. For→L,
suppose we already have a proofΠ1 fromX and Y toA and a proofΠ2 fromX

′, B
and Y ′ toC. We construct a proof fromX,X ′, A→ B and Y, Y ′ toC like this:

X ′ Y ′
A→ B

X Y

Π1

A→E
B

Π2

C

(Again, if we wished to construct a proof of a different conclusion, shifting the

focus, we appeal to the focus shift lemma.) Similarly, given a proof fromX,A and

Y to B, we can discharge that assumption class of instances A in one→I step to
construct a proof from X toA → B. �e reasoning for the negation rules has the

same shape, so it remains only to consider the additive conjunction rules. For∧L,

we have a derivation of X,A � Y (and so, a proof of ] from X,A and Y), and we

extend this to a derivation ofX,A∧B � Y. So, wewant a proof of ] fromX,A∧B

to Y. �is is trivial, since we can extend our proof by replacing every instance A

in the indicated assumption class by∧E inference fromA∧B toA, being careful

to merge each assumptionA∧ B into one assumption class. �e result is a proof

fromX,A∧ B and Y to ], as desired:

X Y

A∧ B
∧E

A

Π
]

�e same goes for a derivation from X,B � Y to X,A∧ B � Y, using the∧E step

fromA ∧ B to B. (�e focus shift lemma deals with the proofs corresponding to

different selections of the conclusion from the context.)

8
We could pick out a given formula from the family Y ′ of alternatives, if Y ′ is non-empty, but

allowing the focus to remain on ] is the general case, so we use this case here.
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Our final case is the conjunction right rule, for which we have derivations of

X � A, Y and of X � B, Y, which we extend into a derivation of X � A∧ B, Y. By

hypothesis, we have proofs ofA from X and Y and of B from the same context, X

and Y. So, we can extend these in one∧I step, in whichwe identify the assumption

classes, pairing each assumption class from the context of the proof ofAwith ex-

actly one assumption class from the context of the proof ofB. �e result is a proof

ofA∧B from exactly the same contextX and Y as desired, andwe can declare our

proof complete, modulo another appeal to the focus shift lemma.

�e only remaining item is to prove Fact 3, which requires attention to the condi-

tions for contraction and weakening in proofs and in sequent derivations.

Proof: Weextend the reasoningof thepreviousproof, first by consideringwhat ad-

ditions we need to make to account for contraction, and then, for weakening. First,

let’s consider contraction. For the left-to-right direction, we wish to constuct a se-

quent derivation (perhaps using the contraction rule) of X � A, Y from a natural

deductionproof ofA fromthe contextXandY inwhichweallow for themergingof

assumption classes in the inferences→E and¬E.�e reasoning for atomic proofs

is the same as before, since no contraction can take place with only one formula in

the context. Take a proof ending in a→E step in which some classes are merged.
We have a proof fromX and Y toA→ B and another, fromX ′ and Y ′ toA, and by
induction hypothesis, we have a derivation ofX � A→ B, Y and ofX ′ � A, Y ′. As
in the proof of the previous fact, we have a derivation ofX,X ′ � B, Y, Y ′, byway of
a→L inference and a Cut. �e context X,X ′ and Y, Y ′ is too large, because this is
the disjoint combination of the two contexts. �e application of some contraction

steps is enough to pare down the context so there is a member of the multiset on

the lhs and that on the rhs for each assumption class in the proof. �is is the only

change required to produce a sequent derivation using contraction, and we can

declare the left-to-right direction of this part of our proof complete.

For the right-to-left case, we show that from any derivation of X � Y we can
construct a proof of ] from the context X and Y, as well as any focus shift of that

proof. Notice that contraction steps can occur at any point of a derivation, not only

at the steps immediately before→E and¬E inferences. To take account of that, we

prove a more general fact, that from any derivation of X � Y we can construct a
proof of ] from the context X and Y as well as any contraction of that context (in

which assumption classes are merged), as well as any focus shift of such a proof.

�e base case, corresponding to the sequent A � A corresponds to the atomic

proof ofA and the proof of ] fromA, A , neither of which may be contracted.
For the other structural rule,Cut, we have derivations ofX � A, Y andX ′, A �

Y ′. By the induction hypothesis, we have a proof from context X and Y toA (and

of any contractionX∗ and Y∗ of that context), and a proof from contextX ′, A and
Y ′ to ] (and from any contraction X∗′, A and Y∗′ of that context). We paste these
proofs together to construct the combined proof fromX∗, X∗′ and Y∗, Y∗′ to ], go-
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ing throughA as an intermediate step, just as we did in the proof of Fact 2.

X∗′ Y∗′

X∗ Y∗

Π1

A

Π2

]

Perhaps thenewcontextX∗, X∗′ andY∗, Y∗′maybe contracted further. If so, there
is a point in the proof (either in an inference inΠ1 or an inference inΠ2) where the

two distinct assumption classes to be contracted first enter the proof. �is must

be in either a→E step or a ¬E step, because in the other inference steps, we do

not join proofs with different assumption classes. At this inference, then, we can

contract the desired assumption classes, to ensure that in thewhole proof we have

contracted the context to the desired extent. �e reasoning in the Cut rule can

apply to the other steps in a derivation where different contexts are combined.

�ese rules are→L and¬L, and the corresponding proofs have→E and¬E steps,

at which we can contract the corresponding assumption classes, as desired. With

this modification, contractions in our derivations can be dealt with directly. If

our derivation moves to X,A � Y from X,A,A � Y, the induction hypothesis

ensures that we have a proof of ] from X,A,A and Y and any contraction of this

context. �ismeans it is immediate that we have a proof of ] fromX,A and Y and
any contraction of this context, too. �e same reasoning applies to contraction on

the left, and we can declare the right-to-left case for contraction complete.

Now consider proofs with the weakening conditions in force. To confirm the

left-to-right direction of our fact, we wish to construct, for any C from context

X and Y, a derivation of X � C, Y. �e atomic case of a proof consisting of the

lone assumptionA now counts as a proof ofA from the contextX,A and Y for any

finiteX and Y. We have a derivation ofX,A � A, Y in our sequent calculus by ap-
plying weakening on the left and the right the appropriate number of times from

the identity sequentA � A. With the atomic case dealt with, the remaining proof
steps are straightforward. �eonlymodificationsneeded for our earlier argument

(whether the linear calclulus, or the calculuswith contraction) is to note thatwe al-

low for discharging of empty assumption classes in the→I, ¬I and ↓ inferences.
So for the connective rules, at the corresponding→R, and¬R steps in the sequent

calculus wemust weaken in the vacuously discharged formula before applying the

rule. For the structural rule ↓, a vacuous application corresponds in the sequent
calculus to an explicit step of weakening on the right. Finally, consider the∧I in-

ference. Suppose we have a proof of A from the context C and a proof of B from

the same context, with theweakening conditions in play, andwe extend this proof

to concludeA∧B from the same context. �ismeans we have some derivation of

a sequentX � A, Y and another derivation of a sequentX ′ � B, Y ′ where the con-
texts X, Y and X ′, Y ′ are the assumption classes explicitly appearing in the proof.
However, we add new empty assumption classes to both contexts, sufficient to al-

low the contexts to match. �at is, we have the wider context C = X ′′, Y ′′ where
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X ′′ subsumes bothX andX ′, and similarly, Y ′′ subsumesY andY ′. By hypothesis,
we have derivations for X ′′ � A, Y ′′ and X ′′ � B, Y ′′, and so, by∧R this may be

extended to a derivation for X ′′ � A ∧ B, Y ′′ as desired. �e reasoning for the

other rules works in the same way.

For the right-to-left reasoning, we wish to show that for any derivation of a

sequent X � Y (using the structural rule of weakening) we have a natural deduc-
tion proof (using the weakening conditions) of ] from the contextX and Y, as well

as any focus shift of that proof. Here, the proof is quick because we have defined

natural deduction proofswithweakening in such away that ifwe have a derivation

of some conclusion from the context X, Y it counts as a proof from any weakened

context, too. So, any appeal to the structural rule of weakening in the derivation

is inert at the level of the natural deduction proof. (�e atomic proofA counts as a

proof fromA toA as well as a proof fromA,B toA in which the B is unused.) It

is straightforward to check that the process for defining a natural deduction proof

from a sequent derivation will— if we simply do not attempt to translate the ap-

peals toweakening into the application of any particular rule—generate a natural

deduction proof inwhich theweakening conditions are applied, andwith that, we

can declare this result proved.

So, with this result established, we can see thatwith the shift froma unilateral con-

textX (of things positivelygranted) to a bilateral contextX andY (where some things

have been ruled in and others ruled out) we have a simple extension of Gentzen–

Prawitz-style natural deduction, sufficient to give an account not only of classical

proof, but of proof in classical flavours of linear, relevant and affine logic, too.
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