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* * * 

In his presentation to this Society 65 years ago, Michael Dummett (1959) took his initial steps on 
what became a 50-year exploration of the connections between truth, logic, the foundations of 
semantics and fundamental issues in metaphysics. Dummett’s work on realism and anti-
realism was at the centre of fervid discussion and active debate from the 1970s to the 1990s. At 
the centre of Dummett’s programme was revisionary view of fundamental principles in logic 
(Dummett 1977, 1991). 

According to Dummett, many of the principles of logic can be shown to be self-justifying on 
neutral semantic grounds, without prejudging the debate between the realist and the anti-
realist about any domain.2 However, not all traditional logical principles pass muster. In 

 
1 Heartfelt thanks to my Arché colleagues, including Franz Berto, Aaron Cotnoir, Viviane Fairbank, Sandy 
Goldberg, Sophie Nagler, Sabina Domínguez Parrado, Stephen Read and Crispin Wright, for helpful 
comments, questions and discussion on earlier presentations of this material, and many of the ideas 
discussed here. 

2 We do not need to go into the details here, but the general idea goes as follows: For a given logical concept 
such as conjunction, the conditional or the quantifiers, we can treat the rule introducing a judgement as its 
definition. (For the conditional, the introduction rule says that we can infer 𝐴 → 𝐵 when we can make a 
deduction from the supposition of 𝐴 to the conclusion 𝐵). Its corresponding elimination rule should be in 
harmony with the introduction rule, allowing us to infer from the judgement only what we could use to 
deduce it in the first place (so, with a conditional 𝐴 → 𝐵 you may utilise this in deduction by deducing 𝐵 
when you have already deduced 𝐴). See Dummett’s Logical Basis of Metaphysics, Chapter 11 (1991), for more 
details on the approach. There has been much discussion on whether Dummett’s criterion can be defended 
and exactly how it is to be understood (Steinberger 2011). Dummett’s argument to the conclusion that the 
distinctively classical laws are not so justified depends on an account of the general rules governing the proofs 
in which the rules are given. Different rules governing the assumption contexts in which a proof may be 
constructed give rise to different logical systems as self-justifying, including classical logic, or even a relevant 
logic, or a number of other non-classical logics (Restall 2023), but the details of that argument are beside the 
point here. 
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particular, the inference of double negation elimination (the step from ¬¬𝑝 to 𝑝) is not as 
harmless as other principles. To adopt it involves a metaphysical commitment that skews 
debate in favour of the realist—or so the story goes. The philosophically neutral logical 
perspective, acceptable to all sides, would be to accept only intuitionistic logic, whose 
constructive reasoning principles can be justified on grounds independent of the debate over 
realism or anti-realism concerning any subject matter. 

The debate over whether Dummett is right, and whether intuitionistic logic is the neutral 
foundation for semantic and metaphysical theory reached its peak in the 1980s and early 1990s 
(Taylor 1987, Wright 1992. See Green 2002, for a retrospective view). Fashions change in 
philosophical logic as much as anywhere else, and this disagreement has, by-and-large, receded 
from view in contemporary philosophical logic. Since the heyday of the debate between realism 
and anti-realism, philosophical logic turned its attention to many different issues, including 
vagueness, contextualism and assessment sensitivity, paradox and paraconsistency, pluralism 
and monism, whether logic is in any way exceptional among the sciences, and much more 
besides. Even when we narrow our focus to philosophical logic in Oxford, which was ground 
zero for the debate over Dummettian anti-realism, the current scene could not be more 
different. Oxford philosophical logic is now dominated by discussions of higher-order modal 
logic, and the whole host of metaphysical concerns that arise (Williamson 2013, Bacon 2023, 
Fritz and Jones 2024). Almost everywhere, Dummettian concerns are sidestepped, rather than 
addressed head on.3 

A rather curious fact is that the situation is almost exactly reversed in the world of mathematics. 
In Dummett’s own day, the clarion call to adopt intuitionistic logic—with its revisionary 
treatment of the law of the excluded middle, double negation elimination, and other classical 
inference principles—fell largely on deaf ears. The tradition of constructive mathematics, in which 
mathematics is refounded on properly intuitionistic principles, was, in the second half of the 
20th Century very much in the minority, despite Dummett’s attempts to spread the 
intuitionistic good news (Bishop and Bridges 1985, Bridges et al. 2023). 

Things look different in mathematics today, as intuitionistic logic and the distinctive forms of 
reasoning involved in doing mathematics constructively has gained a significant new foothold 
in mathematical practice, not directly through the arguments or the example of philosophical 
logicians like Dummett, but with the rise of proof assistants (Avigad 2024). As mathematicians 
rush to formalise mathematical results in the language of proof assistants like Agda (Bove et 

 
3 See Williamson’s “Must Do Better” (2006) for a vivid and opinionated account of why this debate was 
sidestepped. I say almost everywhere, because there are exceptions. Dummettian concerns are still in view in 
recent work on inferentialism and proof-theoretic semantics (Incurvati and Schlöder 2023, Peregrin 2014, 
Tennant 2017, Rumfitt 2015), though even there, the debate between realism and anti-realism and the issue of 
the neutrality of intuitionistic logic, has receded from centre stage. 
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al. 2009) and Lean (Avigad et al. 2023), the most fundamental and basic logical principles in 
formalised mathematics turn out to be those principles Dummett advocated as metaphysically 
neutral. Popular proof assistants such as Agda and Lean are, at their core, Dummettian 
constructivists, reasoning intuitionisticially, while being prepared to countenance additional 
classical principles as an additional commitment you might make when needed (see, e.g., 
Avigad et al. 2023, Section 3.5). So, the advent of wide-scale use of constructive reasoning 
methods in formalised mathematics is a prompt to revisit these decades-old discussions in 
philosophical logic, with the new insight we can gain from this unexpected development. 

The questions raised by this development are of concern to more than just specialists in 
philosophy of mathematics and logic—they have broader philosophical interest. The use of 
proof assistants in mathematics is one example among many of the use of machines as a part of 
our cognitive activities. Semantics is not just a matter of ascribing meanings to our own 
thoughts and words—semantics matters at the human/machine interface too. How should we 
understand the role that computational systems play in our own practices of explanation, 
inference, and justification? There is scope to revisit Dummett’s concerns about meaning, truth 
and reality, broadening our field of view to take in the role that computational devices play in 
our thought and talk and action. 

The upshot of all this will not be an argument for anti-realism over realism (or vice versa), or for 
one logic over another. As a logical pluralist (Beall and Restall 2006), I am inclined to try to 
better understand the kinds of practices we might engage in, and what we can do by taking part 
in those practices, without attempting to isolate one practice somehow correct while the others 
are incorrect. How do the different things that we do when we think and talk and reason and 
argue—and that our devices do when we co-opt them in that process—manage to mean things, 
and make claims on the world and on each other? 

* * * 

Computers have changed the face of mathematical research in many different ways, from the 
revolution in publishing provided by the internet and preprint servers, the use of calculators 
and computers to eliminate routine and mundane arithmetic calculation, to the possibilities 
afforded by high-performance computation in running simulations of large-scale dynamical 
systems — the practice of mathematics has changed significantly from the days of Euclid, or of 
Euler, or even since the post-war growth of mathematical research in the middle of the 20th 
Century. The rise of proof assistants is another significant change in mathematical practice. 

A proof assistant is not primarily an artificial theorem prover—it does not construct 
mathematical proofs for you—it acts as a patient research assistant, checking your work, 
making sure that your statements are consistent with your definitions, and checking that the 
proof that you write out is correct (Avigad et al. 2023). There is nothing in the abstract notion of 
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a proof assistant that would favour one way of understanding valid proof over another. A 
formalist about proof could specify some arbitrary system of “proof rules”, and a proof assistant 
programmed to check those rules could check that any given string of symbols supplied to it 
satisfies whatever the constraints the “proof” checker was designed to check. Contemporary 
proof assistants are not formalists in this sense. Proof assistants such as Agda (Bove et al. 2009) 
and Lean (Avigad et. al. 2023) are more opinionated about what kind of thing a proof is, and this 
is why it turns out that the logic of proof assistants is at heart, constructive. 

Proof assistants like Agda and Lean treat proofs as functions, where a valid argument from some 
premises to a conclusion is represented as a function that transforms grounds for the premises 
into grounds for the conclusion. The ground for a conjunction of two propositions consists of a 
pair, the first element of which is a ground for the first conjunct, the second, a ground for the 
second conjunct. The ground for a conditional statement (𝐴 → 𝐵) is a function that transforms 
grounds from the antecedent 𝐴 to grounds for the consequent 𝐵. The ground for a universally 
quantified judgement of the form “all 𝐹s are 𝐺s” is also a function, which, given an object (of 
the relevant type) and a ground for the claim that this object has type 𝐹, is able to provide a 
ground for the claim that the object has type 𝐺. We should define negation, since it is important 
when distinguishing constructive reasoning from classical logic: The negation of 𝐴 is 
understood as 𝐴 →⊥ where ⊥ is a given contradictory proposition that never has a ground. So, a 
ground for the negation of 𝐴 is a function which can provide, for any ground given for 𝐴, per 
impossibile, a ground for ⊥. So, we can ground the negation of 𝐴 only when 𝐴 can have no 
ground. 

So much sounds relatively straightforward, at least for anyone familiar enough with logical 
vocabulary. Straightforward enough, that is, except for the unspecified notion of ground. What 
is a ground, in general? The philosopher is interested in this question (Prawitz 2012), but the 
designer of proof assistants need not worry about the metaphysics or the epistemology of 
grounds. As far as the logic goes, proofs are functions that combine grounds and supply new 
grounds from old in regular ways. When it comes to mathematics, the definitions of the basic 
concepts will tell us what we need to know, structurally, about the grounds of atomic 
judgements. In fact, in type theory, propositions are just a special instance of the more general 
class of types, and proofs are a special instance of terms inhabiting those types. Constructive type 
theory is a general account of types and terms, inside which proofs and propositions. A proof 𝜋 
from 𝐴 to 𝐵 and a function 𝑓 from ℝ to ℕ are exactly the same kinds of thing (Martin-Löf 1985). 

The reasoning principles arising naturally in type theory are familiar from intuitionistic logic 
(Dummett 1977, Heyting 1956, Rathjen 2023), and proof assistants like Agda and Lean are 
implementations of Martin-Löf’s dependent type theory (1984). Since this framework takes the 
construction of proofs to be a specific case of constructing functions, functional programming 
languages provide a useful framework for developing of proof assistants. So, as 
mathematicians labour to encode their definitions and proofs in the vocabulary of proof 
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assistants like Agda and Lean, they are learning to express their results in the language of 
dependent type theory (Escardó and collaborators 2024, Lean community 2024). 

Mathematics encoded in this way is, at its core, constructive. A proof of a disjunction 𝐴 ∨ 𝐵 (from 
an appropriately determinate background context) may be transformed into a proof of one of 
the disjuncts, 𝐴, or 𝐵. A proof of an existentially quantified statement ∃𝑥 𝜙(𝑥) may be 
transformed into an algorithm supplying a witness term 𝑡 where we can prove 𝜙(𝑡). Such 
results are impossible in classical logic, since 𝑝 ∨ ¬𝑝 is a classical tautology, but we cannot 
expect to prove an arbitrary 𝑝 or ¬𝑝.4 Classical mathematical theories can tell us that 𝑓 is a 
continuous function where 𝑓(0) < 0 and 𝑓(1) > 0, and so, that there is some number 𝑟 
between 0 and 1 where 𝑓(𝑟) = 0 (this is the intermediate value theorem), but we may be in no 
position to find such a number 𝑟. 

Mathematicians nonetheless regularly make use of classically valid principles, and proof 
assistants allow for this, by allowing for the development of proofs where classicality is an 
added assumption (Avigad et al. 2023, Section 3.5). The situation is strikingly similar to 
Dummettian semantic anti-realism where constructive reasoning principles are the neutral 
agreed-upon core, and distinctively classical principles are an optional extra, to be adopted 
when the metaphysics—or the mathematical theory—asks for it. 

However, the addition of classical principles is optional, and distinctively constructive 
mathematics is possible, in which classical assumptions are avoided.5 The resulting 
mathematical results do not only have the distinctive computational properties mentioned 
above, they also apply to a wide range of mathematical structures, which are of independent 
interest whether you start out as committed to intuitionistic logic or not.6 

This well established, if still minority, practice of constructive mathematical theorising raises a 
significant question. How are we to understand the relation between constructive mathematics 

 
4 ¬¬(𝑝 ∨ ¬𝑝), on the other hand, is provable. It is straightforward to refute ¬(𝑝 ∨ ¬𝑝) (since this entails 
both ¬𝑝 and ¬¬𝑝), an obvious contradiction. So, in an important sense (discussed further below), 𝑝 ∨ ¬𝑝 is 
constructively undeniable. 

5 The online repository TypeTypology of Martín Escardó and collaborators (2024) is a good example of the kind 
of depth and breadth of distinctively constructive mathematical results. 

6 The “internal logic” of cartesian closed categories is intuitionistic (Lambek and Scott 1986). (This is another 
way to understand the functional interpretation proofs and types mentioned above: a conjunction 𝐴 ∧ 𝐵 is 
understood as the cartesian product 𝐴 × 𝐵 and the conditional 𝐴 → 𝐵 is the function space from 𝐴 to 𝐵.) 
Different kinds of cartesian closed categories provide natural examples of “spaces” which are governed by an 
intuitionistic logic (e.g. Hyland 1982). So, constructively proved mathematical results apply in a range of 
different “mathematical universes.” Andrej Bauer (2016) gives an account of what it is like to learn to do 
mathematics constructively by way of attending to the different spaces in which these results can apply. 
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and classical mathematics? A relatively standard account of the difference is illustrated in 
Bishop and Bridges’ 1987 monograph on constructive analysis: 

…take the assertion that every bounded non-void set 𝐴 of real numbers has a least 
upper bound. (The real number 𝑏 is the least upper bound of 𝐴 if 𝑎 ≤ 𝑏 for all 𝑎 in 𝐴, 
and if there exist elements of 𝐴 that are arbitrarily close to 𝑏.) … If this assertion were 
constructively valid, we could compute 𝑏, in the sense of computing a rational 
number approximating 𝑏 to within any desired accuracy… (Bishop and Bridges 1987, 
p. 7) 

Here, the thought is that we can prove less when we reason constructively than when we reason 
classically. Something that we might be able to classically prove we might not be able to 
constructively prove. Constructive mathematics is a restriction on classical mathematics. 

However, we need not think of constructive mathematics as a restriction. Consider this, for 
contrast: 

…constructive logic is stronger (more expressive) that classical logic, because it can 
express more distinctions (namely, between affirmation and irrefutability), and 
because it is consistent with classical logic. Proofs in constructive logic have 
computational content: they can be executed as programs, and their behaviour is 
described by their type. Proofs in classical logic also have computational content, but 
in a weaker sense than in constructive logic. Rather than positively affirm a 
proposition, a proof in classical logic is a computation that cannot be refuted. (Harper 
2016, p. 104) 

From this contrary standpoint, constructive mathematics is an expansion of classical 
mathematics, because more distinctions can be drawn, and the constructive mathematician has 
more expressive power. For the classical reasoner, ¬¬(𝑝 ∨ ¬𝑝) and 𝑝 ∨ ¬𝑝 say the same thing, 
while the constructivist takes them to have different content. 

What should we say? Is constructive practice a restriction, or an expansion of classical reasoning? 
In the remainder of this paper, I will attempt to clarify what is at stake in either of these 
perspectives, by paying attention to proof assistants, and what we do with them. 

* * * 

I will start with an analogy. Consider the humble calculator—a device that plays an essential 
role not only in giving answers to arithmetical questions, but in giving us knowledge that we 
would not otherwise have: when a calculator says that 345 × 678 = 233,910, we thereby learn 
that 345 times 678 is 233,910. How does the calculator perform this task? A calculator is more 
than an abacus or a pencil and paper, which serve as an extension of our memory when we are 
doing our sums. Calculators are devices that we use to do calculation for us. 
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We acquire our knowledge of basic facts of arithmetic by way of an education involving counting 
things, adding collections together, and so, learning about addition of numbers, generalising to 
multiplication, while at the same time, learning some kind of notational system for numbers, 
and methods for doing elementary arithmetic exploiting features of those representational 
systems. The details of different people’s training will differ, but at root, it is difficult to see how 
someone could learn arithmetic without knowing how to count things. 

Calculators do not count things. They manipulate patterns—states of the computational 
system—in ways that we recognise as representing numbers, in regular ways. It is enough for 
our purposes for it to serve as a reliable intermediary and a tool in our counting and calculating 
practice. It does not need to be able to count five things, any more than an abacus does. But it 
does need to be doing things such that the regularities observed in the action of the calculator 
can be read by a user as a part of a mathematical explanation. That much seems necessary if we 
want the calculator to play a role in a demonstration that 345 × 678 = 233,910. 

Exactly what regularities are required for the actions of a calculator to count as reliably doing 
arithmetic? The simple answer is that it needs to get arithmetic right. That is fair enough, but 
since there are infinitely many different arithmetic statements, put this way, it is an infinite set 
of requirements, and one that is, if we leave it in this form, not feasible either to impose in the 
first place as we build a machine, or to check for compliance, once a machine is built.7 We can 
check this infinitely large (or even, just a stupendously large finite) collection of constraints by 
verifying that the calculator’s output matches the content of some formal theory, which can be 
finitely specified. 

What theory might we use? Here, there is more than one candidate, because arithmetic (and 
our counting practices) can be made rigorous in more than one way. A familiar formalisation of 
arithmetic is in the axioms of Peano Arithmetic. Here, there are three axioms governing the 
notion of zero and the successor function, which supplies, for each number 𝑥 its successor 𝑠𝑥.8 

• 𝑠𝑥 ≠ 0 
• 𝑠𝑥 = 𝑠𝑦 → 𝑥 = 𝑦 
• 𝑥 ≠ 0 → ∃𝑦 𝑥 = 𝑠𝑦 

Then, familiar arithmetic functions on the natural numbers, like addition and multiplication, 
can be defined recursively in familiar ways 

 
7 Traditional pocket calculators can represent numbers only up to some finite bound. However, more 
sophisticated calculating devices can work with natural numbers of arbitrary size, limited only by available 
time and memory, where the available memory of the device can be expanded as needed. 

8 Here, as always, any unbound variables are implicitly universally quantified. 𝑠𝑥 ≠ 0 can be understood as 
∀𝑥 𝑠𝑥 ≠ 0; 𝑠𝑥 = 𝑠𝑦 → 𝑥 = 𝑦 as ∀𝑥∀𝑦(𝑠𝑥 = 𝑠𝑦 → 𝑥 = 𝑦), and so on. 
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• 𝑥 + 0 = 𝑥 

• 𝑥 + 𝑠𝑦 = 𝑠(𝑥 + 𝑦) 

• 𝑥 × 0 = 0 

• 𝑥 × 𝑠𝑦 = (𝑥 × 𝑦) + 𝑥 

We represent the idea that the natural numbers are only those numbers found by starting with 
zero and taking successive applications of the successor function by adding the principle of 
induction, according to which if zero has a feature 𝜙 and whenever a number has 𝜙 so does its 
successor, then all numbers have that feature. 

• L𝜙(0) ∧ ∀𝑥O𝜙(𝑥) → 𝜙(𝑠𝑥)PQ → ∀𝑥𝜙(𝑥) 

If the output of our calculator agrees with the judgements of Peano Arithmetic, it is reliably 
doing finite arithmetic, no matter how it does this. Such a calculator could be understood as 
calculating. The theory of Peano Arithmetic is a well-understood regularisation and 
formalisation of our arithmetical practice, even though it does not involve any notion of 
counting or enumerating. 

Other formalisations of arithmetic do make some kind of use of a notion of counting. Neo-
Fregean formalisations of arithmetic introduce arithmetical concepts by way of a notion of 
predicate abstraction. For any one-place predicate 𝐹, we have a singular term ♯𝐹, to be read as 
“the number of 𝐹’s”, and the key principal governing this term-forming operator is Hume’s 
Principle (Wright 1983), 

• ♯𝐹 = ♯𝐺 ↔ ∃𝑓(𝑓: 𝐹 ↔ 𝐺) 

which, using the resources of second-order logic, states that the number of 𝐹s is the number of 
𝐺s if and only if there is a bijection between the 𝐹s and the 𝐺s. Neo-Fregean arithmetic more 
explicitly corresponds with the general conception of numbers as involving counting things. 
With the help of lambda abstraction,9 we can introduce the finite numbers using the notion of 
identity: 

• 0 =!" ♯𝜆𝑥 𝑥 ≠ 𝑥 
• 1 =!" ♯𝜆𝑥 𝑥 = 0 
• 2 =!" ♯𝜆𝑥(𝑥 = 0 ∨ 𝑥 = 1) 
• 3 =!" ♯𝜆𝑥(𝑥 = 0 ∨ 𝑥 = 1 ∨ 𝑥 = 2), etc. 

 
9 If 𝜙(𝑥) is a formula in which the variable 𝑥 may occur free, then 𝜆𝑥 𝜙(𝑥) is a one-place predicate, where for 
any singular term 𝑡 (that is free for 𝑥 in 𝜙(𝑥)), 𝜆𝑥 𝜙(𝑥) holds of 𝑡 if and only if 𝜙(𝑡). So, 𝜆𝑥 𝑥 ≠ 𝑥 is a ‘non-
identity predicate’ which holds of 𝑡 if and only if 𝑡 ≠ 𝑡, i.e., it holds, never. 
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We can define addition by first settling ♯𝐹 + ♯𝐺 to be ♯𝜆𝑥(𝐹𝑥 ∨ 𝐺𝑥) when nothing is both 𝐹 
and 𝐺 (corresponding to the naïve idea of addition as counting up two disjoint collections), and 
continuing from there. If our calculator’s output agreed with a neo-Fregean theory, it would 
also count as recognisably doing arithmetic. 

There are more formal theories for arithmetic than just these: any formal theory is an account 
of possible patterns in which our many and varied practices can run, and these can be more or 
less complex.10 

A calculator might, under-the-hood, implement a neo-Fregean arithmetic, or a Peano 
Arithmetic, or be doing something else besides. What is required for it to be intelligible as doing 
arithmetic is that there is some translation between what it is doing with some recognisable 
arithmetic practice. And the same holds for you and for me and for anyone else who uses 
arithmetic vocabulary. 

Now, these counting practices agree on a great deal, but disagree at the margins. Ask yourself 
(or ask someone with competence in elementary school arithmetic) this: Is there a number 𝑛 
where 𝑛 = 𝑛 + 1? The answer is no for someone whose concept of arithmetic complies with the 
conditions of Peano Arithmetic,11 where, and the answer is yes in a neo-Fregean arithmetic, 
since the number ♯ℕ of finite natural numbers satisfies ♯ℕ = ♯ℕ + 1, since we can put the 
natural numbers in bijection with the natural numbers plus one extra thing (recall Hilbert’s 
Hotel). 

It would not be a surprise for a competent user of arithmetic vocabulary to find that their own 
concept of number simply does not settle the issue as to whether a number can be its own 
successor. On some precisifications of the number-concept (finite ordinal numbers, as 
modelled in Peano Arithmetic), no number is its own successor. On others (cardinal numbers, 
as modelled in a neo-Fregean arithmetic), there are numbers, like ♯ℕ, the number of finite 
naturals, that equal their own successor. Everyday mathematical practice need not settle on one 
way of understanding the concept “number”, and we get away with not distinguishing these 
concepts in our everyday arithmetical life. We tend not to concern ourselves with abstract 
generalisations about numbers. Our practices are settled-enough to get by, the general rules are 
nailed down only when our aims require it—such as when we build an exact arithmetic 
calculator, start doing abstract mathematics, or get into an argument in the playground about 

 
10 The formal theory of arithmetic in Whitehead and Russell’s Principia Mathematica (1925, 1927) did a lot of 
heavy lifting before deriving the simple arithmetic truth that 1 + 1 = 2 at ∗110·04. 

11 It is immediate that 0 ≠ 0 + 1 by the first axiom of Peano Arithmetic (since 𝑠(𝑥) = 𝑥 + 1), and it is also 
immediate that 𝑛 ≠ 𝑛 + 1 → 𝑠(𝑛) ≠ 𝑠(𝑛 + 1) by the second axiom. So, by induction, no number is its own 
successor. 
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whether there is a biggest number. When we stray into those areas, we need to become more 
rigorous and define our terms well-enough for the task at hand. 

So, is it correct to say that there is some number 𝑛 where 𝑛 = 𝑛 + 1? To get a useful answer to 
that question, we must be more specific about how we will interpret the word “number” in the 
question. Our everyday practice is unsettled enough to allow for different ways of settling this 
issue. 

So, suppose I come across a neo-Fregean calculator, which is able to solve elementary 
equations. I ask it to solve the equation 𝑥 = 𝑥 + 1, and it returns an answer, 𝑥 = ♯ℕ, rather 
than saying there is no solution. Should I conclude, then, that there is some amount of money I 
could have in my bank account such that adding one pound makes literally no difference to my 
balance? Not unless there is some bank that allows for a literally infinite balance. To interpret the 
results of such a calculator (which, by hypothesis, proves whatever is derivable in second order 
logic supplemented with Hume’s Principle), we must attend to what such results mean. In neo-
Fregean arithmetic, two predicates have the same number if and only if they are equinumerous 
and the only numbers so-defined that are equal to their own successors are infinite. To interpret 
the findings of such a calculator, we appeal to the the patterns that it instantiates, and use those 
patterns to understand the significance of the results the calculator produces. 

* * * 

What goes for understanding the counting and calculating functions of devices can also serve 
for interpreting the assertoric and inferential processes instantiated in proof assistants. Just as a 
calculator does not literally count anything, neither does a proof assistant assert anything. As we 
have seen, in a proof assistant implementing a dependent type theory, a proof represents a 
function that can take grounds for the premises as input, and delivers a ground for the 
conclusion as its output. I will argue that the structure of such a type theory—instantiated by a 
proof assistant system—stands to our everyday assertoric and inferential practice, as a 
particular formal theory of arithmetic—instantiated by some particular calculating system—
stands to our everyday practice of counting and calculating. 

To start, we should consider what we do when we assert and infer. It is no surprise that there 
are many proposals for how to understand assertion (Brown and Cappelen 2011), but for our 
purposes it is enough to briefly consider two different kind of approaches—those describing 
the function of assertion at the point of production (speaker norms), those at the point of 
reception (hearer norms).12 Speaker norms: e.g. assert only what you know (the knowledge norm); 

 
12 There are also norms governing the shared space between the speaker and hearers (conversational norms), 
reflecting the role assertion has on the common ground in conversation. These are also important, but there is 
no space to discuss them here. 
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or assert only what is true (the truth norm), etc. Reception norms: to assert 𝑝 entitles the hearer to 
(a) ask for a justification of the assertion and (b) to reassert 𝑝, handing back the request for 
justification to the original speaker. 

Here it is not hard to see13 how the inferential structure instantiated in proofs as represented in a 
proof assistant can play a role in allowing the deliverances of proof assistants to playing a role 
in assertion. The proof function shows how grounds of the premises of an argument may be 
used to produce grounds for the conclusion (Prawitz 2012). For the human who wants to assert 
the conclusion, given a context in which the premises have been granted, the proof is available 
to show how the conclusion follows from the premises (Restall to appear). So, something proved 
by a proof assistant becomes apt for assertion, provided that having such a ground is sufficient 
for knowledge, and therefore, truth. 

So, using the proof as a means to produce grounds, production norms for assertion may be 
satisfied. Further, the proof of a proposition can be used to fulfil a justification request for the 
assertion, and thereby, so there is something to answer the hearer who asks for a justification 
request, or who refers back to the proof assistant to justify their re-assertion of the claim, should 
it be questioned. To represent a theorem formally in a proof assistant is taken as an epistemic 
achievement, reassuring the audience that indeed the proof is complete, and so, it can play the 
justificatory role when called upon.14 

In the context of our attempt to understand the difference between constructive and classical 
logic, it is not sufficient to stop here. Our point of contention is not primarily about what can be 
proved with the aid of a proof assistant, but what cannot be so proved. When we learn that some 
result—such as the intermediate value theorem, mentioned above—cannot be given a proof in 
a proof assistant without making explicit classicality assumptions, does this have any 
significance? To answer this question, we should return to what, precisely, the proof assistant is 
doing, in the same way that if a calculator tells us that there is some number 𝑥 where 𝑥 = 𝑥 + 1, 
we should attend to what theory the calculator is encoding. If this is a calculator solving 
equations in a neo-Fregean account of cardinalities (including infinite cardinalities), then all is 
well and good. If this is a calculator programmed to solve equations in the finite ordinals, then 
something has gone wrong somewhere. What is the corresponding account of the constructive 

 
13 In this brief discussion, I do not have space to consider the issues arising concerning how the 
representations in the code of the proof assistant can be read as sentences of a natural language that a user 
might understand, in just the same way that the inputs/outputs of a calculator can be read as denoting 
numbers. This is a non-trivial requirement, but not one I have time to discuss here. 

14 See Section 2 of Jeremy Avigad’s explanation of the role of proof assistants (2024) for an account of this 
epistemic safeguarding role. The rest of that paper recounts other advantages of using proof assistants. 
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invalidity of the intermediate value theorem?15 It is that there is no function that supplies, for 
each continuous 𝑓: [0,1] → ℝ where 𝑓(0) < 0 and 𝑓(1) > 0 to provide a ground for the claim 
that there is some 𝑥 ∈ (0,1) where 𝑓(𝑥) = 0. Further, there are different constructive 
mathematical “universes” inside which this formulation of the intermediate value theorem can 
be refuted, while there are other models (including classical spaces) inside which the theorem 
nonetheless holds. 

This result has epistemic significance, if the standards of evidence in operation in the discussion 
are appropriately high. When we are doing constructive mathematics, the standard of evidence 
asks for constructive grounds, and proof assistants using dependent type theory are designed 
to model such grounds.16 So, if a claim fails to have those grounds, it may be rejected as out of 
bounds, for not having met the standard of assertion appropriate when doing mathematics 
constructively. A bald assertion of an instance of the law of the excluded middle 𝑝 ∨ ¬𝑝 in the 
context of a constructive proof may ruled out, since no grounds can in general be provided, 
since any such ground must bring with it the means to ground 𝑝, or to ground ¬𝑝, and there is 
no way to do this, in general. 

Constructive mathematics is recognisably a kind of assertoric and inferential practice, in which 
claims are made, and constructive proof is the coin by which assertions are justified. With the 
advent of proof assistants based on dependent type theory, many mathematicians are 
becoming fluent in constructive proof, and the practice is emerging into the mainstream of 
mathematics. 

Note that nothing in this explanation of the rise of constructive mathematics leads inexorably to 
favouring mathematical anti-realism over realism. The importance and usefulness of the 
constructive practice is motivated on internal mathematical grounds, and not by any particular 
view of the metaphysics of mathematics (Bauer 2018). 

* * * 

All that being said, constructive mathematics is not the only way that the norms of 
mathematical proof are made precise. The majority tradition in mathematical reasoning 
remains classical. A great deal of everyday mathematical reasoning appeals to the law of the 
excluded middle, to double negation elimination, and to other nonconstructive reasoning 

 
15 Note, though, that there is a reformulation of the intermediate value theorem that is constructively 
provable: if 𝑓: [0,1] → ℝ is continuous and for every 𝑥 ∈ [0,1] either 𝑓(𝑥) < 0 or 𝑓(𝑥) > 0, then for either 
for every 𝑥 ∈ [0,1], 𝑓(𝑥) < 0 or for every 𝑥 ∈ [0,1], 𝑓(𝑥) > 0 (Bauer 2018, Theorem 5.3). 

16 The higher standard of evidence in criminal legal proceedings compared to civil court is a useful analogy to 
keep in mind. 
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principles. These nonconstructive reasoning principles are found everywhere, both in 
mathematics, and in philosophy. Consider this relatively recent philosophical monograph: 

It is unclear whether there is here a genuine disagreement between Gadamer and 
Davidson. It is undeniable that someone may lack a concept that others have, and that 
we now have many concepts that no one had three hundred years ago. New concepts 
are continually introduced. They cannot always be defined in the existing language, 
but they can be explained by means of it; a study of how we acquire concepts, such as 
the concept of infinity, that could not even be expressed before their introduction 
would be highly illuminating. It is also undeniable that we can now recognize, of 
certain concepts that were used in some previous age, that they were incoherent or 
confused. (Emphasis mine.) 

Here, the author is treating it is undeniable that as an intensifier, twice in quick succession. It 
would be a very strange thing, in the context of this discussion, were one to agree with the 
author and continue “yes, I cannot deny that someone may lack a concept that others have… but 
I do not see why it follows that I should grant it.” Yet, the claim that it is undeniable that 𝑝 is a 
form of double negation, since the denial, ¬𝑝, is ruled out. The natural reading of this passage 
to take the author to be committed to the inference, here, from ¬¬𝑝 to 𝑝.17 

We need not treat this as a mistake—it is appropriate, in the given context. Here is one way to 
understand that context. It is very natural to think that there is a certain kind of discourse in 
which we seek to settle issues. We would like to know whether 𝑝 holds or not, and to rule out one 
of these options out is to leave the other. In this course of reasoning, the author asks us whether 
someone may lack a concept that others have … or not. The no case is ruled out, and so, only yes 
remains. It wins by being the last option standing, not necessarily because it has been given any 
positive (constructive) ground. This move—according to which, showing that something is 
undeniable is enough to show that it is true—is at the heart of a certain kind of deductive 
reasoning, and it is one that we make, time and again in our thought and our talk, even if we 
also practice constructive mathematics, in which we refrain from applying double negation 
elimination.18 

Rather than asking whether the classical practice of inference is correct or not, let’s consider 
what it practice is good for, and what it isn’t—by analogy with the idea that different and 

 
17 This is a cheeky example, since it is an extract from The Nature and the Future of Philosophy, by Michael 
Dummett (2010, p. 94). Such reasoning is ubiquitous in philosophy, and elsewhere. 

18 If you start off as a committed constructivist, you can understand the family of settleable issues as given by 
the negations of propositions. The inference from ¬¬¬𝑝 to ¬𝑝 is constructively valid, and so, if we restrict 
attention to the constructive universe of negative propositions, we see that it behaves classically. 
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diverging counting practices might in an important sense be equally correct, and can be seen to 
be so when we understand that we are doing different things when we use cardinal numbers 
and when we use ordinals. 

“Issue settling” discourse is fundamentally bilateral (taking yes and no, or assertion and denial, 
on a par).19 Since 𝑝 ∨ ¬𝑝 is undeniable (as we saw above) it follows that we have grounds for 𝑝 ∨
¬𝑝. We have not suddenly been able to ground one disjunct of 𝑝 ∨ ¬𝑝 or the other—we have 
settled it only because it is undeniable, and not necessarily because we have any positive ground 
for 𝑝 or for ¬𝑝. Restricting ourselves to classical inference (and imposing the bilateral 
inference norms) means that we might be in a position to assert a disjunction without 
possessing a ground for either disjunct. Similarly, we may be able to categorically classically 
prove ∃𝑥𝜙(𝑥) without thereby constructing some term 𝑡 where we can prove 𝜙(𝑡). We can 
prove ∃𝑥𝜙(𝑥) on the constructively unacceptable basis of a refutation of ¬∃𝑥𝜙(𝑥). 

What we lose in terms of the constructive power of assertion, when adopting classical reasoning 
principles, we gain with regard to the ability to express denial. Consider some domain of 
constructive mathematics, and some proposition 𝐴 where we have no ground for 𝐴 ∨ ¬𝐴, and 
furthermore, we know that we have no ground. Then someone asks us the question: is it the case 
that 𝐴? What can we say? We cannot answer yes (since 𝐴 has no ground) and I cannot answer no 
(since ¬𝐴 has no ground). Our constructive theory will have some models where 𝐴 holds (since 
¬𝐴 fails, 𝐴 is at least consistent with our theory), and some models where ¬𝐴 holds (since 𝐴 fails, 
¬𝐴 is consistent with our theory), but the fact that my theory is incomplete, and has two 
extensions, one where 𝐴 holds and another where ¬𝐴 holds does not mean that our indecision 
about 𝐴 ∨ ¬𝐴 a matter of ignorance that might be settled with more information. Such 
ignorance is consistent with a classical theory, in which 𝐴 ∨ ¬𝐴 is true, but our theory does not 
decide on which disjunct holds. The constructive reasoner wants to be able to rule 𝐴 out, without 
going so far as to say that ¬𝐴 is true. But to do this, constructively speaking, requires some 
kind of semantic ascent—we can say 𝐴 is not proved, or 𝐴 is not known, or some such thing.20 

 
19 There is more to say about the form of bilateralist inference, and the literature has a number of different 
proposals (Incurvati and Schlöder 2023, Restall 2005, Rumfitt 2000). The most direct way to understand the 
shift from constructive to classical proof is to expand our language to include a primitive speech act of denial 
alongside assertion (write the denial of 𝑝 as ‘𝑝’), with two structural rules connecting them: (1) from 𝐴 and 𝐴 
the contradiction ⊥ follows, and (2) if we can derive a contradiction from the assumption 𝐴 (that is, if 𝐴 is 
undeniable) then we can derive the conclusion 𝐴, discharging that assumption (Restall 2023). Given this 
background context, the harmonious proof rules Dummett takes to be semantically neutral behave 
classically: since 𝑝 ∨ ¬𝑝 is undeniable, we can now prove it, without having to revise the inference rules for 
any of the connectives. We have expanded what counts as a proof (since we are more generous toward counts 
as ground for an assertion) and so, without changing the rules of any connective, more can be proved. 

20 Or we can say that the statement 𝐴 is a constructive taboo: a principle which is not false, but which violates 
the spirit of constructive mathematics (see, e.g. Rathjen 2023, Section 1.2.1). Typically, taboo statements are 
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But this, it seems, is to change the subject from whatever it was we were talking about when 
asking whether 𝐴 holds. We have not answered the question about whether 𝐴 or not, we have only 
said something about our state of knowledge, or of our theory. If I restrict myself to 
constructive reasoning about some domain (whether that be mathematics or something else), I 
can only go so far in describing what is going on with the phenomena at hand. 

* * * 

We return, then, to the divide between realism and anti-realism, which was Dummett’s original 
concern. Some classical mathematicians express their preference for classical mathematics 
over constructive reasoning in realist terms: their theory tells them that 𝐴 ∨ ¬𝐴 and they would 
like to discover which disjunct is true, because the phenomena they study is really one way or 
the other. They are studying the numbers (the sets, the topological spaces, or whatever else…) and 
the success criterion is whether or not those descriptions are correct, not whether we are able to 
construct grounds for our claims. 

There is something to this intuition: if we picture the phenomena in this way, we implicitly 
treat each issue as in fact settled (by Reality, with a capital “R”, I suppose) and so, treating all of 
our claims as we theorise as issues that may be settled one way the another is appropriate. The 
realist picture fits naturally with classical reasoning. To restrict the grounds for our reasoning 
to what can be explicitly and positively constructed when the phenomena at hand might exceed 
our grasp, seems to be an artificial restriction if the aim is correct description. This does not 
mean that the restriction has no point. You can be as realist as you like about the mathematical 
universe, and still see the value of constructively theorising about that universe. Here, we 
return to the first of the two perspectives on constructive mathematics mentioned above. On 
this view, we may not be able to constructively prove all the classical facts about mathematics: 
constructive mathematics is a restricted subset of classical mathematics. 

The reverse connection between realism and classical reasoning, is harder to establish. There is 
no reason to think that classically reasoning about a phenomenon means that there is some 
implicit realist commitment to it, over and above what is incurred in the use of constructive 
reasoning. It is well known that we can take a constructive theory (say, of arithmetic, thought of 
as a construction of the thinking subject, and not the description of some independently 
existing “realm”), and we find inside it, a perfectly classical theory, if we focus on the settlable 
issues in our language (the sentences of the form ¬𝐴).21 When might be tempted to say, in our 

 
true in classical models of a constructive theory, but fail in other interesting models of the theory which have 
useful or interesting constructive features. 

21 This is one way to understand the Gödel–Gentzen double negation translation, which embeds classical 
Peano Arithmetic inside the constructive Heyting Arithmetic (Gödel 1933, Gentzen 1933). If we can justify a 



 

  16 

native constructive tongue 𝐴 ∨ 𝐵, we instead say the classical substitute, ¬(¬𝐴 ∧ ¬𝐵). When 
we might say ∃𝑥 𝜙(𝑥), we say ¬∀𝑥 ¬𝜙(𝑥), and so on. As far as a classical semantics of 
disjunction and the existential quanifier goes, this makes no difference, but the result is a 
constructive vindication of classical reasoning about this domain, at the cost of making claims 
that are weaker than their constructively stronger counterparts. If there was no controversial 
metaphysical commitment before, we have incurred no new commitments, because we make 
made no new claims. The constructivist is able to translate the classical theoretical 
commitments into their own tongue, at no theoretical or metaphysical cost. We have here a 
vindication of the second perspective on constructive mathematics mentioned above: we can 
constructively recover classical theorems, when we isolate the classically-behaving propositions 
inside our constructive theory. 

* * * 

So, if all this is correct, when we say 𝑝 ∨ ¬𝑝, is what we have said true? Here this depends on 
how we are taken. To take something to be true is to evaluate it. Speech is a communicative act, 
and requiring both speaker and audience. If the audience treats our claim constructively, it may 
have no proof, and thus, fail to meet its mark. (It may not meet the standard of evidence 
required for admission in this court). Note, though, that to say that it is not the case that 𝑝 ∨ ¬𝑝 
would be to exceed those very same constructive bounds. It is not as though we have grounds 
for ¬(𝑝 ∨ ¬𝑝), either. 

If we treat the claim 𝑝 ∨ ¬𝑝 as expressing an issue to be settled, with all the classical norms of 
reasoning applying, then the answer is yes. It is true, since it is undeniable. 

Notice, though, that to ask the question of whether 𝑝 ∨ ¬𝑝 is true or not is simply, again, to ask 
about (𝑝 ∨ ¬𝑝). The question has been asked, and we are in the business of evaluating it. To 
evaluate it well, it seems best to pay close attention to the norms we are applying, and to reflect 
on whether we want those to apply, instead of taking one and only one set of evaluative norms 
as given. 
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