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Abstract: Last century, Michael Dummett argued that the principles of intuitionistic logic are semantically 
neutral, and that classical logic involves a distinctive commitment to realism. The ensuing debate over 
realism and anti-realism and intuitionistic logic has now receded from view. The situation is reversed in 
mathematics: constructive reasoning has become more popular in the 21st century with the rise of proof 
assistants based on constructive type theory. In this paper, I revisit Dummett’s concerns in the light of these 
developments, arguing that both constructive and classical reasoning are recognisable and coherent 
assertoric and inferential practices. 

* * * 

In his presentation to this Society 65 years ago, Michael Dummett (1959) took his initial steps on 
what became a 50-year exploration of the connections between truth, logic, the foundations of 
semantics and fundamental issues in metaphysics. Dummett’s work on realism and anti-
realism was at the centre of active debate from the 1970s to the 1990s. Dummett’s revisionary 
view of fundamental logical principles is at the heart of this discussion (Dummett 1977, 1991). 

According to Dummett, many logical principles are self-justifying on neutral semantic grounds, 
without prejudging the debate between the realist and the anti-realist.2 However, not all 

 
1 Thanks to my Arché colleagues, including Franz Berto, Aaron Cotnoir, Viviane Fairbank, Sandy Goldberg, 
Sophie Nagler, Sabina Domínguez Parrado, Stephen Read and Crispin Wright, for helpful comments, 
questions and discussion on earlier presentations of this material, and many of the ideas discussed here. 
Thanks, too, to the audience at the Aristotelian Society for discussion, and to Jessica Leech and Shawn 
Standefer for helpful comments on the text. 

2 We do not need to go into the details, but here is the general idea: For a given logical concept such as the 
conditional, we can treat the rule introducing a judgement as its definition. (For the conditional, the 
introduction rule says that we can infer 𝐴 → 𝐵 when we can derive 𝐵 given the supposition of 𝐴). Its 
corresponding elimination rule should be in harmony with the introduction rule, allowing us to infer from the 
judgement only what we could use to deduce it in the first place (so, with 𝐴 → 𝐵 you may utilise this in 
deduction by deducing 𝐵 when you have already deduced 𝐴). See Dummett’s Logical Basis of Metaphysics, 
Chapter 11 (1991), for details. There has been much discussion of this criterion of logicality (Steinberger 2011). 
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principles pass muster. In particular, double negation elimination (the step from ¬¬𝑝 to 𝑝) is 
not so harmless. To adopt it involves a metaphysical commitment that skews debate in favour 
of the realist—or so the story goes. The neutral logical perspective, acceptable to all sides, would 
be to accept only intuitionistic logic, whose constructive reasoning principles can be justified 
independent of the debate over realism concerning any subject matter. 

The debate over realism and anti-realism and the status of intuitionistic logic reached its peak 
in the 1980s and early 1990s (Taylor 1987, Wright 1992. See also Green 2002). Fashions change in 
logic as much as elsewhere, and this disagreement has receded from view. Since the heyday of 
this debate, philosophical logic has turned to different issues, including vagueness, 
contextualism and assessment sensitivity, paradox, logical pluralism, whether logic is in any 
way exceptional among the sciences, and more. Even in Oxford—ground zero for the debate over 
Dummettian anti-realism—the scene is now dominated by higher-order modal logic, and the 
whole host of metaphysical concerns that arise (Williamson 2013, Bacon 2023, Fritz and Jones 
2024). Almost everywhere, Dummettian concerns are sidestepped, rather than addressed head 
on.3 

This is reversed in the world of mathematics. In Dummett’s day, the call to adopt intuitionistic 
logic fell mostly on deaf ears. The tradition of constructive mathematics, in which mathematics is 
refounded on intuitionistic principles, was, in the second half of the 20th Century, in the 
minority (Bishop and Bridges 1985, Bridges et al. 2023). 

Things are different today, as intuitionistic logic has gained a new foothold in mathematical 
practice, not directly through the arguments or the example of philosophical logicians, but with 
the rise of proof assistants (Avigad 2024). A proof assistant acts as a proof checker. It provides both 
a formal language in which natural language proofs are encoded, and a system of checking that 
the supplied proof is correct (Avigad et al. 2023).  

As mathematicians rush to formalise mathematical results in the proof assistants like Agda 
(Bove et al. 2009) and Lean (Avigad et al. 2023), the most fundamental and basic logical 
principles in formalised mathematics are the principles Dummett advocated as metaphysically 

 
Dummett’s argument to the conclusion that the distinctively classical laws are not so justified depends on an 
account of the structural rules governing the proofs in which these definitions are given. Different rules 
governing the assumption contexts give rise to different logical systems as self-justifying, including classical 
logic (Restall 2023), but the details of that argument are beside the point here. 

3 See Williamson’s “Must Do Better” (2006) for a vivid and opinionated account of why this debate was 
sidestepped. I say almost everywhere, because there are exceptions. Dummettian concerns are still in view in 
recent work on inferentialism and proof-theoretic semantics (Incurvati and Schlöder 2023, Kürbis 2019, 
Peregrin 2014, Rumfitt 2015, Tennant 2017), though even there, the debate between realism and anti-realism 
and the issue of the neutrality of intuitionistic logic, has receded from centre stage. 
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neutral. Popular proof assistants like Agda and Lean are, at their core, constructivists, 
reasoning intuitionisticially, while being prepared to countenance additional classical 
principles as an additional commitment you might make only when needed (see, e.g., Avigad et 
al. 2023, Section 3.5). So, the widespread use of constructive reasoning methods in formalised 
mathematics is a prompt to revisit decades-old discussions in philosophical logic, with the 
insight we can gain from this unexpected development. 

The questions raised here have wider philosophical interest. The use of proof assistants in 
mathematics is one example among many of the use of machines as a part of our cognitive 
activities. Semantics is not just a matter of ascribing meanings to our thoughts and words—it 
matters at the human/machine interface. How should we understand computational systems’ 
role in our own practices of explanation, inference and justification? There is scope to revisit 
Dummett’s concerns about meaning, truth and realism, broadening our perspective to take in 
the role that computational devices play. 

The upshot of all this will not be an argument for anti-realism over realism (or vice versa), or for 
one logic over another. As a logical pluralist (Beall and Restall 2006), I am inclined to try to 
understand the kinds of practices we might engage in, and what we can do by taking part in 
those practices, without necessarily taking practice as somehow correct while the others are 
incorrect. How do the different things that we do when we reason and argue—and that our 
devices do when we co-opt them in that process—manage to mean things, and make claims on 
the world and on each other? 

* * * 

There is nothing in the abstract notion of a proof assistant that favours one way of 
understanding valid proof over another. A formalist about proof could specify some arbitrary 
system of “proof rules”, and a proof assistant programmed to check those rules could check that 
any given string of symbols supplied to it satisfies whatever the constraints the “proof” checker 
was designed to check. Contemporary proof assistants are not formalists in this sense. Proof 
assistants such as Agda (Bove et al. 2009) and Lean (Avigad et. al. 2023) are more opinionated 
about what kind of thing a proof is, and this is why it turns out that the logic of proof assistants 
is, at heart, constructive. 

Agda and Lean treat proofs as functions, where a valid argument from some premises to a 
conclusion is represented as a function using grounds for the premises to supply grounds for the 
conclusion. The ground for a conjunction of two propositions consists of a pair, the first 
element of which is a ground for the first conjunct, the second, a ground for the second 
conjunct. The ground for a conditional statement (𝐴 → 𝐵) is a function that transforms 
grounds from the antecedent 𝐴 to grounds for the consequent 𝐵. The ground for a universally 
quantified judgement of the form “all 𝐹s are 𝐺s” is also a function, which, given an object (of 
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the relevant type) and a ground for the claim that this object has type 𝐹, is able to provide a 
ground for the claim that the object has type 𝐺. The negation of 𝐴 is understood as 𝐴 →⊥ where 
⊥ is a given contradictory proposition that never has a ground. So, a ground for the negation of 
𝐴 is a function which can provide, for any ground given for 𝐴, per impossibile, a ground for ⊥. So, 
we can ground the negation of 𝐴 only when 𝐴 can have no ground. 

This sounds straightforward, at least for anyone familiar with logical vocabulary. 
Straightforward enough, that is, except for the unspecified notion of ground. What is a ground? 
A philosopher is interested in this question (Prawitz 2012), but the designer of proof assistants 
need not take a stand on metaphysics or the epistemology of grounds. As far as logic goes, 
proofs are functions that combine grounds and supply new grounds from old in regular ways. 
When it comes to mathematics, the definitions of the basic concepts will tell us what we need to 
know, structurally, about the grounds of atomic judgements. In fact, in type theory, 
propositions are just a special instance of the more general class of types, and proofs are a 
special instance of terms inhabiting those types. Constructive type theory is a general account 
of types and terms, some of which are propositions and proofs. A proof 𝜋 from 𝐴 to 𝐵 and a 
function 𝑓 from ℝ to ℕ are the same kind of thing (Martin-Löf 1985). 

The principles arising naturally in type theory are familiar from intuitionistic logic (Dummett 
1977, Heyting 1956, Rathjen 2023), and Agda and Lean implement of Martin-Löf’s dependent type 
theory (1984). Since this framework takes the construction of proofs to be a specific case of 
constructing functions, functional programming languages provide a useful framework for 
developing of proof assistants. So, as mathematicians labour to encode their definitions and 
proofs in the vocabulary of proof assistants like Agda and Lean, they are learning to express 
their results in the language of dependent type theory (Escardó and collaborators 2024, Lean 
community 2024). 

Mathematics encoded in this way is constructive. A proof of 𝐴 ∨ 𝐵 (from an appropriately 
determinate background context) may be transformed into a proof of one of the disjuncts, 𝐴, or 
𝐵. A proof of ∃𝑥 𝜙(𝑥) may be transformed into an algorithm supplying a witness term 𝑡 where 
we can prove 𝜙(𝑡). Such results are impossible in classical logic, since 𝑝 ∨ ¬𝑝 is a classical 
tautology, but we cannot prove an arbitrary 𝑝 or ¬𝑝.4 Classical mathematical theories can tell us 
that 𝑓 is a continuous function where 𝑓(0) < 0 and 𝑓(1) > 0, and so, that there is some 
number 𝑟 between 0 and 1 where 𝑓(𝑟) = 0 (this is the intermediate value theorem), but we may be 
in no position to find 𝑟. 

 
4 ¬¬(𝑝 ∨ ¬𝑝), on the other hand, is provable. We can refute ¬(𝑝 ∨ ¬𝑝), since this entails both ¬𝑝 and ¬¬𝑝, 
an obvious contradiction. So, in an important sense (discussed further below), 𝑝 ∨ ¬𝑝 is constructively 
undeniable. 
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Mathematicians nonetheless regularly make use of classically valid principles, and proof 
assistants allow for this by permitting proofs where classicality is an added assumption (Avigad 
et al. 2023, Section 3.5). The situation parallels Dummettian semantic anti-realism where 
constructive reasoning principles are the neutral agreed-upon core, and distinctively classical 
principles are an optional extra, to be adopted when the metaphysics asks for it. 

However, adding classical principles is optional, and distinctively constructive mathematics is 
possible, where classical assumptions are avoided.5 The resulting theorems not only have the 
distinctive computational properties mentioned above, they also apply to a wide range of 
mathematical structures, which are of independent interest whether you start out as 
committed to intuitionistic logic or not.6 

This well established, if still minority, practice of constructive mathematical theorising raises a 
question. How are we to understand the relation between constructive and classical 
mathematics? A relatively standard account of the difference is illustrated in Bishop and 
Bridges’ 1987 monograph on constructive analysis: 

…take the assertion that every bounded non-void set 𝐴 of real numbers has a least 
upper bound. (The real number 𝑏 is the least upper bound of 𝐴 if 𝑎 ≤ 𝑏 for all 𝑎 in 𝐴, 
and if there exist elements of 𝐴 that are arbitrarily close to 𝑏.) … If this assertion were 
constructively valid, we could compute 𝑏, in the sense of computing a rational 
number approximating 𝑏 to within any desired accuracy… (Bishop and Bridges 1987, 
p. 7) 

Here, the thought is that we can prove less when we reason constructively than when we reason 
classically. Constructive mathematics is a restriction on classical mathematics. 

However, we need not think of constructive mathematics as a restriction. Consider, for 
contrast: 

…constructive logic is stronger (more expressive) than classical logic, because it can 
express more distinctions (namely, between affirmation and irrefutability), and 

 
5 The online repository TypeTypology of Martín Escardó and collaborators (2024) is an example of the depth 
and breadth of distinctively constructive mathematical results. 

6 The “internal logic” of cartesian closed categories is intuitionistic (Lambek and Scott 1986). This is another 
way to understand the functional interpretation proofs and types: a conjunction 𝐴 ∧ 𝐵 is understood as the 
cartesian product 𝐴 × 𝐵 and the conditional 𝐴 → 𝐵 is the space of functions from 𝐴 to 𝐵. Different cartesian 
closed categories provide natural examples of “spaces” governed by an intuitionistic logic (e.g. Hyland 1982). 
So, constructive results apply in a range of different “mathematical universes.” Bauer (2016) gives an account 
of what it is like to learn to do constructive mathematics by attending to the different spaces in which these 
results apply. 
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because it is consistent with classical logic. Proofs in constructive logic have 
computational content: they can be executed as programs, and their behaviour is 
described by their type. Proofs in classical logic also have computational content, but 
in a weaker sense than in constructive logic. Rather than positively affirm a 
proposition, a proof in classical logic is a computation that cannot be refuted. (Harper 
2016, p. 104) 

Here, constructive mathematics is seen as an expansion of classical mathematics, because more 
distinctions can be drawn, and the constructive mathematician has more expressive power. For 
the classical reasoner, ¬¬(𝑝 ∨ ¬𝑝) and 𝑝 ∨ ¬𝑝 say the same thing, while the constructivist 
takes them to have different content. 

What should we say? Is constructive practice a restriction or an expansion of classical reasoning? 
In the remainder of this paper, I will attempt to clarify what is at stake in either of these 
perspectives, by paying attention to proof assistants, and what we do with them. 

* * * 

Let’s start with an analogy. Consider the calculator—a device that plays an essential role in 
giving us knowledge that we might not otherwise have: when a calculator says that 345 ×
678 = 233,910, I thereby learn that 345 times 678 is 233,910. How does the calculator do this? 
A calculator is more than an abacus or a pencil and paper, which each serve as a memory aid 
when we do our sums. We use calculators to do sums for us. 

We acquire our knowledge of basic facts of arithmetic by way of an education involving counting 
things, adding collections together, and so, learning about addition of numbers, generalising to 
multiplication, while also learning some kind of notational system for numbers and methods 
for doing elementary arithmetic exploiting those representational systems. The details of 
people’s training will differ, but at root it is difficult to see how someone could learn arithmetic 
without knowing how to count. 

Calculators do not count things. They manipulate patterns—states of the computational 
system—in ways that we recognise as representing numbers in regular ways. It is enough for 
our purposes for it to serve as a reliable intermediary and a tool in our counting and calculating 
practice. It does not need to be able to count five things, any more than an abacus does. But it is 
necessary that the regularities observed in the action of the calculator can be read by a user as a 
part of a mathematical explanation, if we want the calculator’s action to play a role in a 
demonstration that 345 × 678 = 233,910. 

Exactly what regularities are required for the actions of a calculator to count as reliably doing 
arithmetic? The simple answer is that it needs to get arithmetic right. That is true, but since 
there are infinitely many different arithmetic statements, it is an infinite set of requirements, 
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and one that is, if we leave it in this form, not feasible either to impose in the first place as we 
build a machine, or to check for compliance once a machine is built.7 We can check this 
infinitely large (or even, just a stupendously large finite) collection of constraints by verifying 
that the calculator’s output matches the content of some theory, which can be finitely specified.8 

What theory might we use? There is more than one candidate, because arithmetic (and our 
counting practices) can be made rigorous in more than one way. Peano Arithmetic is one familiar 
scheme. Here, there are three axioms governing the notion of zero and the successor function, 
which supplies for each number 𝑥 its successor 𝑠𝑥.9 

• 𝑠𝑥 ≠ 0 
• 𝑠𝑥 = 𝑠𝑦 → 𝑥 = 𝑦 
• 𝑥 ≠ 0 → ∃𝑦 𝑥 = 𝑠𝑦 

Then, arithmetic functions on the natural numbers, like addition and multiplication, can be 
defined recursively: 

• 𝑥 + 0 = 𝑥 

• 𝑥 + 𝑠𝑦 = 𝑠(𝑥 + 𝑦) 

• 𝑥 × 0 = 0 

• 𝑥 × 𝑠𝑦 = (𝑥 × 𝑦) + 𝑥 

Since the natural numbers are only those numbers found by starting with zero and taking 
successive applications of the successor function, we add the principle of induction, according 
to which if zero has a feature 𝜙 and whenever a number has 𝜙 so does its successor, then all 
numbers have that feature. 

• L𝜙(0) ∧ ∀𝑥O𝜙(𝑥) → 𝜙(𝑠𝑥)PQ → ∀𝑥𝜙(𝑥) 

If the output of our calculator agrees with the judgements of Peano Arithmetic, it is reliably 
doing finite arithmetic, no matter how it does this. Such a calculator could be understood as 

 
7 Traditional pocket calculators can represent numbers only up to some finite bound. However, more 
sophisticated calculating devices can work with natural numbers of arbitrary size, limited only by available 
time and memory, where the available memory of the device can be expanded as needed. 

8 This raises concerns about rule-following considerations, which are clearly salient to this discussion. 
However, nothing here will rely on any controversial claim about what might be involved in rule following, so 
I leave this matter here. 

9 Any unbound variables are implicitly universally quantified. 𝑠𝑥 ≠ 0 can be understood as ∀𝑥 𝑠𝑥 ≠ 0; 𝑠𝑥 =
𝑠𝑦 → 𝑥 = 𝑦 as ∀𝑥∀𝑦(𝑠𝑥 = 𝑠𝑦 → 𝑥 = 𝑦), etc. 
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calculating. The theory of Peano Arithmetic is a well-understood regularisation and 
formalisation of our arithmetical practice, even though it does not involve any notion of 
counting or enumerating. 

Other formalisations of arithmetic do make some kind of use of a notion of counting. Neo-
Fregean formalisations of arithmetic introduce arithmetical concepts by way of a notion of 
predicate abstraction. For any unary predicate 𝐹, we have a singular term ♯𝐹, to be read as “the 
number of 𝐹’s”, and the key principle governing ♯ is Hume’s Principle (Wright 1983), 

• ♯𝐹 = ♯𝐺 ↔ ∃𝑓(𝑓: 𝐹 ↔ 𝐺) 

which, using the resources of second-order logic, states that the number of 𝐹s is the number of 
𝐺s if and only if there is a bijection between the 𝐹s and the 𝐺s. Neo-Fregean arithmetic more 
explicitly corresponds with the conception of numbers as involving counting. With the help of 
abstraction,10 we can introduce the finite numbers using the notion of identity: 

• 0 =!" ♯𝜆𝑥 𝑥 ≠ 𝑥 
• 1 =!" ♯𝜆𝑥 𝑥 = 0 
• 2 =!" ♯𝜆𝑥(𝑥 = 0 ∨ 𝑥 = 1) 
• 3 =!" ♯𝜆𝑥(𝑥 = 0 ∨ 𝑥 = 1 ∨ 𝑥 = 2), etc. 

We can define addition by first settling ♯𝐹 + ♯𝐺 to be ♯𝜆𝑥(𝐹𝑥 ∨ 𝐺𝑥) when nothing is both 𝐹 
and 𝐺 (corresponding to the naïve idea of addition as counting two disjoint collections), and 
continuing from there.  

If our calculator’s output agrees with a neo-Fregean theory, it would also count as recognisably 
doing arithmetic. 

There are more formal theories for arithmetic than just these: any theory is an account of 
possible patterns in which our practices can run. A calculator might implement a neo-Fregean 
arithmetic, or a Peano Arithmetic, or something else besides. For it to be intelligible as doing 
arithmetic is, there must be some translation between what it is doing and some recognisable 
arithmetic practice. The same holds for you and for me and for anyone else who uses arithmetic 
vocabulary. 

These counting practices agree on a great deal, but disagree at the margins. Ask yourself: Is 
there a number 𝑛 where 𝑛 = 𝑛 + 1? The answer is no for someone whose concept of arithmetic 

 
10 If 𝜙(𝑥) is a formula in which the variable 𝑥 may occur free, then 𝜆𝑥 𝜙(𝑥) is a one-place predicate, where for 
any singular term 𝑡 (that is free for 𝑥 in 𝜙(𝑥)), 𝜆𝑥 𝜙(𝑥) holds of 𝑡 if and only if 𝜙(𝑡). So, 𝜆𝑥 𝑥 ≠ 𝑥 is a ‘non-
identity predicate’ which holds of 𝑡 if and only if 𝑡 ≠ 𝑡, i.e., it holds never. 
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complies with the conditions of Peano Arithmetic,11 and the answer is yes in a neo-Fregean 
arithmetic, since the number ♯ℕ of finite natural numbers satisfies ♯ℕ = ♯ℕ + 1, since we can 
put the natural numbers in bijection with the natural numbers plus one extra thing (recall 
Hilbert’s Hotel). 

It would not be a surprise for a competent user of arithmetic vocabulary to find that their own 
concept of number simply does not settle the issue as to whether a number can be its own 
successor. On some precisifications of the number-concept (finite ordinal numbers, modelled 
in Peano Arithmetic), no number is its own successor. On others (cardinal numbers, modelled 
in a neo-Fregean arithmetic), there are numbers, like ♯ℕ, the number of naturals, that equal 
their own successor. Everyday mathematical practice need not settle on one way of 
understanding the concept “number”, and we get away with not distinguishing these concepts 
in our everyday arithmetical life. We tend not to concern ourselves with abstract 
generalisations about numbers. Our practices are settled enough, and the general rules are 
nailed down only when our aims require it—such as when we build an exact arithmetic 
calculator, start doing abstract mathematics, or get into an argument in the playground about 
whether there is a biggest number. When we stray into those areas, we need to become more 
rigorous and define our terms well enough for the task at hand. 

So, is it correct to say that there is some number 𝑛 where 𝑛 = 𝑛 + 1? To get a useful answer to 
that question, we must be more specific about how we will interpret the word “number” in the 
question, and our practice is unsettled enough to allow for different ways to settle this issue. 

So, suppose I come across a neo-Fregean calculator, which can solve elementary equations. I 
ask it to solve the equation 𝑥 = 𝑥 + 1, and it returns an answer, 𝑥 = ♯ℕ, rather than saying 
there is no solution. Should I conclude, then, that there is some amount of money I could have 
in my bank account such that adding one pound makes literally no difference to my balance? 
Not unless there is some bank that allows for a literally infinite balance. To interpret the results 
of such a neo-Fregean calculator, we must attend to what such results mean. In neo-Fregean 
arithmetic, two predicates have the same number if and only if they are equinumerous and the 
only numbers so defined that are equal to their own successors are infinite. To interpret the 
findings of such a calculator, we appeal to the the patterns that it instantiates, and use those 
patterns to understand the significance of the results the calculator produces. 

* * * 

What goes for understanding the counting and calculating functions of devices can also serve 
for interpreting the function of proof assistants. Just as a calculator does not literally count 

 
11 It is immediate that 0 ≠ 0 + 1 by the first axiom, and it is also that 𝑛 ≠ 𝑛 + 1 → 𝑠(𝑛) ≠ 𝑠(𝑛 + 1) by the 
second. So, by induction, no number is its own successor. 
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anything, neither does a proof assistant assert anything. As we have seen, in a proof assistant 
implementing a dependent type theory, a proof represents a function that takes grounds for the 
premises and delivers a ground for the conclusion. I will argue that such a type theory—
instantiated by a proof assistant system—stands to our everyday assertoric and inferential 
practice, as a particular formal theory of arithmetic—instantiated by some particular 
calculating system—stands to our everyday practice of counting and calculating. 

To start, we should consider what we do when we assert. It is no surprise that there are many 
proposals for how to understand assertion (Brown and Cappelen 2011), but for our purposes it 
is enough to briefly consider two different kinds of approaches—those describing the function 
of assertion at the point of production (speaker norms), and those at the point of reception (hearer 
norms).12 Speaker norms govern the one who asserts: e.g., assert only what you know (the 
knowledge norm); or assert only what is true (the truth norm), or assert only what you believe 
with justification, etc., while reception norms govern what the hearer can do: e.g., to assert 𝑝 
entitles the hearer to (a) ask for a justification of the assertion and (b) to reassert 𝑝, handing 
back the request for justification to the original speaker. 

Here it is not hard to see13 how the inferential structure instantiated in proofs as represented in a 
proof assistant can play a role in allowing the deliverances of proof assistants to satisfy these 
assertion norms. The proof function shows how grounds of the premises of an argument may 
be used to produce grounds for the conclusion (Prawitz 2012). For the human who wants to 
assert the conclusion, given a context in which the premises have been granted (and thereby are 
supposed to have grounds), the proof is available to show how the conclusion follows from the 
premises (Restall 2024). So, something proved by a proof assistant becomes apt for assertion, 
provided that having such a ground is sufficient for knowledge, and therefore, truth, and 
justified belief. 

So, using the proof to produce grounds, production norms for assertion may be satisfied. 
Further, the proof of a proposition can be used to fulfil a justification request for the assertion, 
and thereby there is something to answer the hearer who asks for a justification request, or who 
refers to the proof assistant to justify their re-assertion of the claim, should it be questioned. To 

 
12 There are also norms governing the shared space between the speaker and hearers, reflecting the role 
assertion has on the common ground in conversation. There is no space to discuss these norms here. 

13 I do not have space to consider how the representations in the code of the proof assistant can be read as 
sentences of a natural language that a user might understand, in just the same way that the inputs/outputs of 
a calculator can be read as denoting numbers. This is a non-trivial requirement. 
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represent a theorem in a proof assistant is taken as an epistemic achievement, reassuring us 
that the proof is complete, and so it can play the justificatory role when called upon.14 

In the context of our attempt to understand the difference between constructive and classical 
logic, we cannot stop here. Our point of contention is not primarily about what can be proved 
with the aid of a proof assistant, but what cannot be so proved. When we learn that some 
result—such as the intermediate value theorem, mentioned above—cannot be given a proof in 
a proof assistant without making explicit classicality assumptions, does this have any 
significance? To answer this question, we should return to what, precisely, the proof assistant is 
doing, in the same way that if a calculator tells us that there is some number 𝑥 where 𝑥 = 𝑥 + 1, 
we should attend to what theory the calculator is encoding. What is the corresponding account 
of the constructive invalidity of the intermediate value theorem?15 It is that there is no function 
that supplies, for each continuous 𝑓: [0,1] → ℝ where 𝑓(0) < 0 and 𝑓(1) > 0 a ground for the 
claim that there is some 𝑥 ∈ (0,1) where 𝑓(𝑥) = 0. Further, there are different constructive 
mathematical “universes” inside which this formulation of the intermediate value theorem can 
be refuted, while there are other models (including classical spaces) inside which the theorem 
holds. 

This result has epistemic significance, if the standards of evidence appropriate in the discussion 
are appropriately high. When we do constructive mathematics, the standard of evidence asks 
for constructive grounds, and proof assistants using dependent type theory model such 
grounds.16 So, if a claim fails to have those grounds, it may be rejected as out of bounds for not 
having met the appropriate standard of assertion. A bald assertion of an instance of the law of 
the excluded middle 𝑝 ∨ ¬𝑝 in the context of a constructive proof may ruled out, since no 
grounds can in general be provided, since any such ground brings with it means to ground 𝑝, or 
to ground ¬𝑝, and there is no way to do this in general. 

 
14 See Section 2 of Jeremy Avigad’s explanation of the role of proof assistants (2024) for an account of the 
epistemic safeguarding role, which can serve as a kind of “double-checking” (see Woodard 2022). The form of 
this double-checking is twofold: not only do proofs involve complicated reasoning steps where it is easy to 
slip up on any one step; many proofs are so large and formed of components with disparate origins, so it is 
also reassuring to have verification that these parts are fitted together coherently, and that terms are not 
used inconsistently across the proof.  

15 Note, though, that there is a reformulation of the intermediate value theorem that is constructively 
provable: if 𝑓: [0,1] → ℝ is continuous and for every 𝑥 ∈ [0,1] either 𝑓(𝑥) < 0 or 𝑓(𝑥) > 0, then for either 
for every 𝑥 ∈ [0,1], 𝑓(𝑥) < 0 or for every 𝑥 ∈ [0,1], 𝑓(𝑥) > 0 (Bauer 2017, Theorem 5.3). 

16 The higher standard of evidence in criminal legal proceedings compared to civil court in mind is an apt 
analogy. 
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So, constructive mathematics is recognisably a kind of assertoric and inferential practice, in 
which claims are made, and constructive proof is the coin by which assertions are justified. 
With proof assistants based on dependent type theory, many mathematicians are becoming 
fluent in constructive proof, and the practice is emerging into the mainstream of mathematics. 

Note that nothing in this explanation of the rise of constructive mathematics leads inexorably to 
favouring mathematical anti-realism over realism. The importance and usefulness of the 
constructive practice is motivated on internal mathematical grounds, and not by any view of 
the metaphysics of mathematics (Bauer 2017). 

* * * 

However, constructive mathematics is not the only way that the norms of mathematical proof 
are made precise. The majority tradition in mathematical reasoning remains classical. A lot of 
everyday mathematical reasoning appeals to the law of the excluded middle and to other 
nonconstructive reasoning principles. These principles are found everywhere, both in 
mathematics and in philosophy. Consider this recent philosophical monograph: 

It is unclear whether there is here a genuine disagreement between Gadamer and 
Davidson. It is undeniable that someone may lack a concept that others have, and that 
we now have many concepts that no one had three hundred years ago. New concepts 
are continually introduced. They cannot always be defined in the existing language, 
but they can be explained by means of it; a study of how we acquire concepts, such as 
the concept of infinity, that could not even be expressed before their introduction 
would be highly illuminating. It is also undeniable that we can now recognize, of 
certain concepts that were used in some previous age, that they were incoherent or 
confused. (Emphasis mine.) 

Here, the author is treating it is undeniable that as an intensifier, twice in quick succession. It 
would be a strange thing, in the context of this discussion, were one to agree with the author 
and continue: “yes, I cannot deny that someone may lack a concept that others have… but I do 
not see why it follows that I should grant it.” Yet, the claim that it is undeniable that 𝑝 is a form of 
double negation, since the denial, ¬𝑝, is ruled out. The natural reading is to take the author to 
be committed to the inference, here, from ¬¬𝑝 to 𝑝.17 

We need not treat this as a mistake: it is appropriate, in the given context. Here is one way to 
understand that context. It is very natural to think that there is a certain kind of discourse in 
which we seek to settle issues. We want to know whether 𝑝 holds or not, and to rule out one of 
these options out is to leave the other. In this course of reasoning, the author asks us whether 

 
17 This is a cheeky example, since it is an extract from The Nature and the Future of Philosophy, by Michael 
Dummett (2010, p. 94). Such reasoning is ubiquitous in philosophy and elsewhere. 
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someone may lack a concept that others have … or not. The no case is ruled out, and so, only yes 
remains. It wins by being the last option standing, not necessarily because it has been given any 
positive (constructive) ground. This move—according to which showing that something is 
undeniable is enough to show that it is true—is at the heart of a certain kind of deductive 
reasoning,18 and we this move make time and again in our thought and our talk, even if we also 
practice constructive mathematics, in which we refrain from applying double negation 
elimination.19 

Rather than asking whether the classical practice of inference is correct or not, let’s consider 
what this practice is good for, and what it isn’t—by analogy with the fact we are doing different 
things when we use cardinal numbers and when we use ordinals. 

“Issue settling” discourse is fundamentally bilateral (taking yes and no, or assertion and denial, 
on a par).20 Since 𝑝 ∨ ¬𝑝 is undeniable (as we saw above) it follows that we have grounds for 𝑝 ∨
¬𝑝. We have not suddenly been able to ground one disjunct of 𝑝 ∨ ¬𝑝 or the other—we have 
settled it only because it is undeniable, and not necessarily because we have any positive ground 
for 𝑝 or for ¬𝑝. Restricting ourselves to classical inference (and imposing the bilateral 
inference norms) means that we might be in a position to assert a disjunction without 
possessing a ground for either disjunct. Similarly, we may categorically classically prove 
∃𝑥𝜙(𝑥) without thereby finding some term 𝑡 where we can prove 𝜙(𝑡), but rather by showing 
that ∃𝑥𝜙(𝑥) is undeniable. 

 
18Not every sense of “undeniable” suffices for truth, of course. We might say that some claim for which we 
have neither any evidence for nor against is undeniable in the weaker sense that denying it goes beyond our 
evidence. This does not suffice for truth. Equally, this is not the sense of “undeniable” that we are considering 
here.  

19 If you start off as a committed constructivist, you can understand the family of settleable issues as given by 
the negations of propositions. The inference from ¬¬¬𝑝 to ¬𝑝 is constructively valid, and so, if we restrict 
attention to the constructive universe of negative propositions, we see that it behaves classically. 

20 There is more to say about the form of bilateralist inference, and the literature has a number of different 
proposals (Incurvati and Schlöder 2023, Restall 2005, Rumfitt 2000). The most direct way to understand the 
shift from constructive to classical proof is to expand our language to include a primitive speech act of denial 
alongside assertion (write the denial of 𝑝 as ‘𝑝’), with two structural rules connecting them: (1) from 𝐴 and 𝐴 
the contradiction ⊥ follows, and (2) if we can derive a contradiction from the assumption 𝐴 (that is, if 𝐴 is 
undeniable) then we can derive the conclusion 𝐴, discharging that assumption (Restall 2023). Given this 
background context, the harmonious proof rules Dummett takes to be semantically neutral behave 
classically: since 𝑝 ∨ ¬𝑝 is undeniable, we can now prove it, without having to revise the inference rules for 
any of the connectives. We have expanded what counts as a proof (since we are more generous toward counts 
as ground for an assertion) and so, without changing the rules of any connective, more can be proved. 
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What we lose in terms of the constructive power of assertion, when adopting classical 
reasoning principles, we gain in the ability to express denial. Consider some domain of 
constructive mathematics, and some proposition 𝐴 where we have no ground for 𝐴 ∨ ¬𝐴, and 
furthermore, we know that we have no ground. Then someone asks us the question: is it the case 
that 𝐴? What can we say? We cannot answer yes (since 𝐴 has no ground) and I cannot answer no 
(since ¬𝐴 has no ground). Our constructive theory will have some models where 𝐴 holds (since 
¬𝐴 fails, 𝐴 is at least consistent with our theory), and some models where ¬𝐴 holds (since 𝐴 fails, 
¬𝐴 is consistent with our theory), but the fact that my theory has two extensions, one where 𝐴 
holds and another where ¬𝐴 holds, does not mean that our indecision about 𝐴 ∨ ¬𝐴 is a matter 
of ignorance, to be settled with more information. Such ignorance is consistent with a classical 
theory, in which 𝐴 ∨ ¬𝐴 is true, but our theory does not decide on which disjunct holds. The 
constructive reasoner wants to be able to rule 𝐴 out, without going so far as to say that ¬𝐴 is 
true. But to do this, constructively speaking, requires semantic ascent—we can say 𝐴 is not 
proved, or 𝐴 is not known, or some such thing.21 But this, it seems, changes the subject from 
whatever it was we were talking about when asking whether 𝐴 holds. We have not answered the 
question about whether 𝐴 or not, we have only said something about our state of knowledge, or 
of our theory. If I restrict myself to constructive reasoning about some domain, I can only go so 
far in describing what is going on with the phenomena at hand. 

So, proof assistants based on dependent type theory—and their uptake by the mathematical 
community—show that there is a recognisable and intelligible assertoric and inferential 
practice that is essentially constructive. Yet, this does not mean that classical mathematical 
practice is to be left behind, any more than the existence of ordinal numbers means that we 
should no longer use cardinal numbers, or vice versa. 

* * * 

We return, then, to the divide between realism and anti-realism, which was Dummett’s original 
concern. Some classical mathematicians express their preference for classical mathematics in 
realist terms: their theory says that 𝐴 ∨ ¬𝐴 and they would like to discover which disjunct is 
true, because the mathematics is really one way or the other. They are studying the numbers (the 
sets, the topological spaces, or whatever else…) and the success criterion is whether those 
descriptions are correct, not whether we are able to construct grounds for our claims. 

There is something to this intuition: if we picture the phenomena in this way, we implicitly 
treat each issue as in fact settled and so, treating all our claims as issues that may be settled one 

 
21 Or we can say that the statement 𝐴 is a constructive taboo: a principle which is not false, but which violates 
the spirit of constructive mathematics (see, e.g. Rathjen 2023, Section 1.2.1). Typically, taboo statements are 
true in classical models of a theory, but fail in other models of the theory which have useful constructive 
features. 
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way, or the other is appropriate. Realism motivates classical reasoning. To restrict the grounds 
for our reasoning to what can be explicitly and positively constructed when the phenomena at 
hand might exceed our grasp, is an artificial restriction if the aim is correct description. 
However, you can be as realist as you like about the mathematical universe, and still see the 
value of constructively theorising about that universe. Here, we return to the first of the two 
perspectives on constructive mathematics mentioned above. On this view, we may not be able 
to constructively prove all the classical facts about mathematics: constructive mathematics is a 
restricted subset of classical mathematics, with its own distinctive virtues. 

The reverse connection between realism and classical reasoning is harder to establish. There is 
no reason to think that classically reasoning about a phenomenon involves some implicit realist 
commitment to it, over and above what is incurred in constructive reasoning. It is well known 
that we can take a constructive theory (say, of arithmetic, thought of as a construction of the 
thinking subject, and not the description of some independently existing “realm”), and find 
inside it a perfectly classical theory, if we focus on the settleable issues (the sentences of the form 
¬𝐴).22 When we might say in our native constructive tongue 𝐴 ∨ 𝐵, we instead say the classical 
substitute, ¬(¬𝐴 ∧ ¬𝐵). When we might say ∃𝑥 𝜙(𝑥), we say ¬∀𝑥 ¬𝜙(𝑥), etc. As far as a 
classical semantics of disjunction and the existential quanifier goes, this makes no difference, 
but the result is a constructive vindication of classical reasoning about this domain, at the cost 
of making claims that are weaker than their constructive counterparts. If there was no 
controversial metaphysical commitment before, we have incurred no new commitments, 
because we make no new claims. The constructivist can translate the classical theoretical 
commitments into their own tongue, at no theoretical or metaphysical cost. We have here a 
vindication of the second perspective on constructive mathematics mentioned above: we can 
constructively recover classical theorems, when we isolate the classically behaving propositions 
inside our constructive theory. 

* * * 

So, if all this is correct, when we say 𝑝 ∨ ¬𝑝, is what we have said true? Here this depends on 
how we are taken. To take something to be true is to evaluate it. Speech is communicative, 
requiring speaker and audience. If the audience treats our claim constructively, it may have no 
proof, and thus, fail to meet its mark. Note, though, that to say that it is not the case that 𝑝 ∨ ¬𝑝 
would be to exceed those very same constructive bounds, since we have grounds for ¬(𝑝 ∨ ¬𝑝), 

 
22 This is one way to understand the Gödel–Gentzen double negation translation, which embeds classical 
Peano Arithmetic inside the constructive Heyting Arithmetic (Gödel 1933, Gentzen 1933). If we can justify a 
constructive arithmetic on anti-realist grounds, then classical arithmetic, understood in this way, proves no 
more problematic.  
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either. If we treat the claim 𝑝 ∨ ¬𝑝 as expressing an issue to be settled, with all the classical 
norms of reasoning applying, then the answer is yes. It is true, since it is undeniable. 

Notice, though, that to ask the question of whether 𝑝 ∨ ¬𝑝 is true is just to ask about whether 
(𝑝 ∨ ¬𝑝). The question has been asked, and we are in the business of evaluating it. To evaluate 
it well, it seems best to pay close attention to the norms we apply, and to reflect on whether we 
want them to apply, instead of taking only one set of evaluative norms as given. 
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