Generics: Inference & Accommodation

Greg Restall

CONSTRUCTING SOCIAL HIERARCHY 2 · MIT · 6 DECEMBER 2019
My Aim

To give an account of norms governing our uses of generics, and our inferring, showing how phenomena of accommodation can help explain the behaviour of generic judgements and what we can do with (and to) them.
My Plan

Motivation & Background

Generics & Inference

Accommodation & Inference

Options for Critique & Reform
MOTIVATION & BACKGROUND
Problem 1: Generics

Birds lay eggs.
Problem 1: Generics

Birds lay eggs.

Logic talks are boring.
Problem 1: Generics

Birds lay eggs.

Logic talks are boring.

Mosquitos transmit Ross River Fever.
Problem 1: Generics

Birds lay eggs.

Logic talks are boring.

Mosquitoes transmit Ross River Fever.

Cows are food.
Problem 1: Generics

Birds lay eggs.

Logic talks are boring.

Mosquitoes transmit Ross River Fever.

Cows are food.

Men are aggressive.
Problem 1: Generics

Birds lay eggs.

Logic talks are boring.

Mosquitos transmit Ross River Fever.

Cows are food.

Men are aggressive.

Muslims are terrorists.
Fs are Gs
Fs are Gs

... are pervasive.
Fs are Gs

... are pervasive.

... are basic.
Fs are Gs

... are pervasive.

... are basic.

... behave very strangely.
Mosquitoes transmit *RRF* — what does this mean?
Mosquitos transmit RRF — what does this mean?

All mosquitos transmit RRF.
Mosquitos transmit RRF — what does this mean?

All mosquitos transmit RRF.

Some don’t.
Mosquitos transmit RRF — what does this mean?

All mosquitos transmit RRF.
Some don’t.

Some mosquitos transmit RRF.
Mosquitos transmit RRF — what does this mean?

All mosquitos transmit RRF.

Some don’t.

Some mosquitos transmit RRF.

True, but some mosquitos *don’t*, and we won’t say “Mosquitos *don’t* transmit RRF.”
Mosquitos transmit RRF — what does this mean?

All mosquitos transmit RRF.

Some don’t.

Some mosquitos transmit RRF.

True, but some mosquitos *don’t*, and we won’t say “Mosquitos *don’t* transmit RRF.”

Most mosquitos transmit RRF.
Mosquitoes transmit RRF — what does this mean?

All mosquitoes transmit RRF.
Some don’t.

Some mosquitoes transmit RRF.
True, but some mosquitoes don’t, and we won’t say “Mosquitoes don’t transmit RRF.”

Most mosquitoes transmit RRF.
Most don’t.
Mosquitos transmit RRF — what does this mean?

\textbf{All} mosquitos transmit RRF.

Some don’t.

\textbf{Some} mosquitos transmit RRF.

True, but some mosquitos \textit{don’t}, and we won’t say “Mosquitos \textit{don’t} transmit RRF.”

\textbf{Most} mosquitos transmit RRF.

Most don’t.

\textbf{Normal} mosquitos transmit RRF.
Mosquitoes transmit RRF — what does this mean?

\textbf{All} mosquitos transmit RRF.

Some don’t.

\textbf{Some} mosquitos transmit RRF.

True, but some mosquitos don’t, and we won’t say “Mosquitoes don’t transmit RRF.”

\textbf{Most} mosquitos transmit RRF.

Most don’t.

\textbf{Normal} mosquitos transmit RRF.

Male mosquitos don’t. They aren’t normal?
Mosquitos transmit RRF — what does this mean?

All mosquitos transmit RRF.
Some don’t.

Some mosquitos transmit RRF.
True, but some mosquitos *don’t*, and we won’t say “Mosquitos *don’t* transmit RRF.”

Most mosquitos transmit RRF.
Most don’t.

Normal mosquitos transmit RRF.
Male mosquitos don’t. They aren’t normal?

Mosquitos *are the kind of thing* that transmit RRF.
Mosquitos transmit RRF — what does this mean?

All mosquitos transmit RRF.
Some don’t.

Some mosquitos transmit RRF.
True, but some mosquitos *don’t*, and we won’t say “Mosquitos *don’t* transmit RRF.”

Most mosquitos transmit RRF.
Most don’t.

Normal mosquitos transmit RRF.
Male mosquitos don’t. They aren’t normal?

Mosquitos are the kind of thing that transmit RRF.
They’re also the kind of thing that doesn’t—e.g. males, or those in Africa.
Background 1: “Inferentialism”, broadly construed
Background 1: “Inferentialism”, broadly construed

INFERENTIALISM: an approach to semantics that takes meaning to centre on *norms of inference.*
Background 1: “Inferentialism”, broadly construed

- **INFERENTIALISM**: an approach to semantics that takes meaning to centre on *norms of inference*.

- **NORMATIVE PRAGMATICS**: an approach to semantics that takes semantics to centre on *norms of use* (perhaps including inference, perhaps not).
Background 1: “Inferentialism”, broadly construed

- **INFERENTIALISM**: an approach to semantics that takes meaning to centre on *norms of inference*.

- **NORMATIVE PRAGMATICS**: an approach to semantics that takes semantics to centre on *norms of use* (perhaps including inference, perhaps not).

- My recent research concentrates on the connections between *normative pragmatics* and logic, via *proof theory*.
An inferentialist analysis of pejorative predicates:
An inferentialist analysis of pejorative predicates:

\[
\frac{x \text{ is German}}{x \text{ is } Boche}
\]
An inferentialist analysis of pejorative predicates:

\[\text{x is German} \quad \rightarrow \quad \text{x is Boche} \]

\[\text{x is Boche} \quad \rightarrow \quad \text{x is cruel} \]
An inferentialist analysis of pejorative predicates:

\[
\begin{align*}
\text{\(x\) is German} & \quad \text{\(x\) is \(Boche\)} \\
\hline
\text{\(x\) is \(Boche\)} & \quad \text{\(x\) is cruel}
\end{align*}
\]

Using \(Boche\) in this way encodes a substantial connection between being German, and being cruel.
An inferentialist analysis of pejorative predicates:

\[\begin{align*}
\text{x is German} & \quad \text{x is Boche} \\
\text{x is Boche} & \quad \text{x is cruel}
\end{align*} \]

Using *Boche* in this way encodes a substantial connection between being German, and being cruel.

What does *Boche* mean, when it’s used like this?
This isn’t restricted to pejorative expressions. People can use *standard* expressions pejoratively, too.
This isn’t restricted to pejorative expressions. People can use *standard* expressions pejoratively, too.

\[
\begin{align*}
\text{\(x\) is a talk on proof theory} & \quad \text{\(x\) is a logic talk} \\
\hline
\text{\(x\) is a logic talk} & \quad \text{\(x\) is boring}
\end{align*}
\]
This isn’t restricted to pejorative expressions. People can use standard expressions pejoratively, too.

\[
x \text{ is a talk on proof theory} \quad \text{and} \quad x \text{ is a logic talk}
\]

\[
x \text{ is a logic talk} \quad \text{and} \quad x \text{ is boring}
\]

Are these inferences a part of the meaning of the pejorative expression?
Background 2: Semantics, Metasemantics and Practice

SEMANTICS: accounts of the meanings of particular expressions.
SEMANTICS: accounts of the meanings of particular expressions.

METASEMANTICS: an account of the space of possible meanings, and the different ways expressions can get their meanings.
Background 2: Semantics, Metasemantics and Practice

- **SEMANTICS**: accounts of the meanings of particular expressions.

- **METASEMANTICS**: an account of the space of possible meanings, and the different ways expressions can get their meanings.

- **PRACTICE**: Metasemantics, in particular, can be a partner for clarificatory and emancipatory possibilities for revising our languages and our practices.
GENERICS & INFEERENCE
There are many accounts of the truth conditions of the generic

Ks are F
There are many accounts of the truth conditions of the generic

Ks are F

Any adequate account is very complicated.
An example, from Sarah-Jane Leslie

circumstances in which generics are true or false. Though there may be a further refinement or two needed, we can describe the circumstances under which a generic of the form ‘Ks are F’ is true as follows:

The counterinstances are negative, and:
If F lies along a characteristic dimension for the Ks, then some Ks are F, unless K is an artifact or social kind, in which case F is the function or purpose of the kind K;
If F is striking, then some Ks are F and the others are disposed to be F;
Otherwise, almost all Ks are F.

I would suggest that these worldly truth specifications—these descriptions of how the world must be for the sentence to be true—should not be mistaken for semantically derived truth conditions, however. To illus-

Sarah-Jane Leslie “Generics: Cognition and Acquisition,”
The Approach I’ll Explore

We don’t understand a generic by first grasping its truth conditions.
The Approach I’ll Explore

We don’t understand a generic by first grasping its truth conditions.

We learn to use generics by learning norms for how to use them.
I take it that this sort of account makes sense of how we understand modal terms like *possibly* and *necessarily*.
I take it that this sort of account makes sense of how we understand modal terms like possibly and necessarily.

“Possibly p” and “Necessarily p” have truth conditions expressed in terms of possible worlds, but we don’t learn the concepts of possibility and necessity by way of some prior access to possible worlds.
To say that a state of affairs obtains is just to say that something is the case; to say that something is a possible state of affairs is just to say that something could be the case; and to say that something is the case ‘in’ a possible state of affairs is just to say that the thing in question would necessarily be the case if that state of affairs obtained, i.e. if something else were the case...

We understand ‘truth in states of affairs’ because we understand ‘necessarily’; not vice versa.

But what *do* they mean?

The problem remains:

What are the norms governing generics?

How do we understand them?
Let’s change tack for a moment.
Inferring is an action

Consider the difference:

Tweety is a bird. Tweety flies.
Tweety is a bird.
So, Tweety flies.

Inference is a difference between making two assertions, and making one assertion to give a reason for another.
Inferring is an action

Consider the difference:

Tweety is a bird. Tweety flies.

Tweety is a bird.

So, Tweety flies.

Inference is a difference between making two assertions, and making one assertion to give a reason for another.
Inferring is an action

Consider the difference:

Tweety is a bird. Tweety flies.
Inferring is an action

Consider the difference:

Tweety is a bird. Tweety flies.

Tweety is a bird. So, Tweety flies.
Inferring is an action

Consider the difference:

Tweety is a bird. Tweety flies.

Tweety is a bird. So, Tweety flies.

There is a difference between making two assertions, and making one assertion to give a reason for another.
Reason giving appears in question answering
Reason giving appears in question answering

Tweety is a bird. So, Tweety flies.
Tweety is a bird. So, Tweety flies.

ABELARD: Does Tweety fly?
ELOISE: Yes, she’s a bird.
Reason giving appears in question answering

Tweety is a bird. So, Tweety flies.

ABELARD: Does Tweety fly?
ELOISE: Yes, she’s a bird.

This is beef. So, this is food.
Tweety is a bird. So, Tweety flies.

ABELARD: Does Tweety fly?
ELOISE: Yes, she’s a bird.

This is beef. So, this is food.

ABELARD: Is this food?
ELOISE: Yes, it’s beef.
ABELARD: Does she have stripes?
ELOISE: Yes, she’s a zebra.
Reason giving can go in both directions

ABELARD: Does she have stripes?
ELOISE: Yes, she’s a zebra.

ABELARD: Is she a zebra?
ELOISE: Yes, she has stripes.
Reason giving can go in *both directions*

ABELARD: Does she have stripes?
ELOISE: Yes, she’s a zebra.

ABELARD: Is she a zebra?
ELOISE: Yes, she has stripes.

Each direction can make sense, given an appropriate context.
So can explanation

ELOISE: She has stripes.
ABELARD: Why?
ELOISE: She’s a zebra.
So can *explanation*

ELOISE: She has stripes.

ABELARD: Why?

ELOISE: She’s a zebra.

ELOISE: She’s a zebra.

ABELARD: Why?

ELOISE: She has stripes.
So can explanation

ELOISE: She has stripes.
ABELARD: Why?
ELOISE: She’s a zebra.

ELOISE: She’s a zebra.
ABELARD: Why?
ELOISE: She has stripes.

Each direction can make sense, given an appropriate context.
What is inference?

... or rather, what are we *doing* when we infer or explain?
What is inference?

... or rather, what are we doing when we infer or explain?

I won’t commit myself to any particular analysis of the norms governing inference and explanation. (c.f. Brandom, in Making it Explicit, and his view of the relationship between inference, commitment and entitlement.)
What is inference?

... or rather, what are we *doing* when we infer or explain?

- I won’t commit myself to any particular analysis of the norms governing inference and explanation. (c.f. Brandom, in *Making it Explicit*, and his view of the relationship between inference, commitment and entitlement.)

- These are *speech acts*, like *assertion*.

 (I can *infer B from A* despite believing B *before* believing A. Inferring, in this sense, isn’t *believing on the basis of*. The same goes for explaining or justifying.)
What is inference?

... or rather, what are we doing when we infer or explain?

I won’t commit myself to any particular analysis of the norms governing inference and explanation. (c.f. Brandom, in *Making it Explicit*, and his view of the relationship between inference, commitment and entitlement.)

These are *speech acts*, like *assertion*.

(I can *infer* B from A despite believing B *before* believing A. Inferring, in this sense, isn’t *believing on the basis of*. The same goes for explaining or justifying.)

Making an inference is also not to be identified with offering a deductively valid argument, or taking yourself to do so.
Reason giving is *defeasible*, or *non-monotonic*:

Tweety is a bird. So, Tweety flies.
Reason giving is *defeasible*, or non-monotonic:

Tweety is a bird. So, Tweety flies.

Tweety is a bird. *Tweety is a penguin*. So, Tweety flies.
Why infer?

Why *(do we/should we)* care about how our claims relate to one another?
Why infer?

Why *do we/should we* care about how our claims relate to one another?

Why not just care about whether A and B are true, and ignore whether A is *a reason* for B?
Why infer?

Why (do we/should we) care about how our claims relate to one another?

Why not just care about whether A and B are true, and ignore whether A is a reason for B?

(Or, why do children ask why instead of just asking whether?)
Why infer?

Why *(do we/should we)* care about how our claims relate to one another?

Why not just care about whether A and B are true, and ignore whether A is *a reason* for B?

(Or, why do children ask *why* instead of just asking *whether*?)

Why attempt to keep track of how claims relate to one another?
Two reasons for having practices of inferring and explaining

If we find a zebra...

Is this a zebra?

Suppose that... had been a zebra. Suppose that's actually a zebra.

Options for action
Options for belief

Subjunctive
Indicative

"Metaphysical"
"Epistemic"

It is hard to see how we could act on the basis of shared views without some kind of reason-giving practice.
Two reasons for having practices of inferring and explaining

PLANNING AND CONTINGENCY
Two reasons for having practices of inferring and explaining

PLANNING AND CONTINGENCY

THEORISING AND UNCERTAINTY
Two reasons for having practices of inferring and explaining

PLANNING AND CONTINGENCY

If we find a zebra…

THEORISING AND UNCERTAINTY
Two reasons for having practices of inferring and explaining

<table>
<thead>
<tr>
<th>PLANNING AND CONTINGENCY</th>
<th>THEORIZING AND UNCERTAINTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>If we find a zebra...</td>
<td>Is this a zebra?</td>
</tr>
</tbody>
</table>
Two reasons for having practices of inferring and explaining

PLANNING AND CONTINGENCY

If we find a zebra...
Suppose that had been a zebra

THEORISING AND UNCERTAINTY

Is this a zebra?
Two reasons for having practices of inferring and explaining

<table>
<thead>
<tr>
<th>PLANNING AND CONTINGENCY</th>
<th>THEORISING AND UNCERTAINTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>If we find a zebra…</td>
<td>Is this a zebra?</td>
</tr>
<tr>
<td>Suppose that had been a zebra</td>
<td>Suppose that’s actually a zebra</td>
</tr>
</tbody>
</table>
Two reasons for having practices of inferring and explaining

PLANNING AND CONTINGENCY

If we find a zebra...
Suppose that *had been* a zebra
Options for action

THEORIZING AND UNCERTAINTY

Is this a zebra?
Suppose that’s *actually* a zebra
Two reasons for having practices of inferring and explaining

<table>
<thead>
<tr>
<th>PLANNING AND CONTINGENCY</th>
<th>THEORISING AND UNCERTAINTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>If we find a zebra…</td>
<td>Is this a zebra?</td>
</tr>
<tr>
<td>Suppose that had been a zebra</td>
<td>Suppose that’s actually a zebra</td>
</tr>
<tr>
<td>Options for action</td>
<td>Options for belief</td>
</tr>
</tbody>
</table>

Greg Restall
Generics: Inference & Accommodation
27 of 59
Two reasons for having practices of inferring and explaining

PLANNING AND CONTINGENCY

If we find a zebra...
Suppose that *had been* a zebra
Options for action
 Subjunctive

THEORISING AND UNCERTAINTY

Is this a zebra?
Suppose that’s *actually* a zebra
Options for belief

Options for action

Greg Restall
Generics: Inference & Accommodation
Two reasons for having practices of inferring and explaining

<table>
<thead>
<tr>
<th>PLANNING AND CONTINGENCY</th>
<th>THEORISING AND UNCERTAINTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>If we find a zebra…</td>
<td>Is this a zebra?</td>
</tr>
<tr>
<td>Suppose that had been a zebra</td>
<td>Suppose that’s actually a zebra</td>
</tr>
<tr>
<td>Options for action</td>
<td>Options for belief</td>
</tr>
<tr>
<td>Subjunctive</td>
<td>Indicative</td>
</tr>
</tbody>
</table>
Two reasons for having practices of inferring and explaining

PLANNING AND CONTINGENCY

If we find a zebra…
Suppose that *had been* a zebra
Options for action
 Subjunctive
 "Metaphysical"

THEORISING AND UNCERTAINTY

Is this a zebra?
Suppose that’s *actually* a zebra
Options for belief
 Indicative
Two reasons for having practices of inferring and explaining

PLANNING AND CONTINGENCY

If we find a zebra...
Suppose that *had been* a zebra
Options for action
Subjunctive
“Metaphysical”

THEORIZING AND UNCERTAINTY

Is this a zebra?
Suppose that’s *actually* a zebra
Options for belief
Indicative
“Epistemic”

Options for action
Options for belief
Subjunctive
Indicative
Two reasons for having practices of inferring and explaining

PLANNING AND CONTINGENCY

If we find a zebra...
Suppose that *had been* a zebra
Options for action
 Subjunctive
 “Metaphysical”

THEORISING AND UNCERTAINTY

Is this a zebra?
Suppose that’s *actually* a zebra
Options for belief
 Indicative
 “Epistemic”

It is hard to see how we could *act* on the basis of *shared views* without some kind of reason-giving practice.
Claim 1: Generics make inferential transitions explicit

Tweety is a bird. So, Tweety flies.
Claim 1: Generics make inferential transitions explicit

Tweety is a bird. So, Tweety flies.

— Birds fly.
Claim 1: Generics make inferential transitions explicit

Tweety is a bird. So, Tweety flies.

— Birds fly.

She’s a zebra. So, she has stripes.
Claim 1: *Generics make inferential transitions explicit*

Tweety is a bird. So, Tweety flies.

— *Birds fly.*

She’s a zebra. So, she has stripes.

— *Zebras have stripes.*
Claim 1: *Generics make inferential transitions explicit*

Tweety is a bird. So, Tweety flies.

— *Birds fly.*

She’s a zebra. So, she has stripes.

— *Zebras have stripes.*

She has stripes. So, she’s a zebra.
Claim 1: Generics make inferential transitions explicit

Tweety is a bird. So, Tweety flies.

— Birds fly.

She’s a zebra. So, she has stripes.

— Zebras have stripes.

She has stripes. So, she’s a zebra.

— Striped things are zebras.
Claim 1: Generics make inferential transitions explicit

Tweety is a bird. So, Tweety flies.
— Birds fly.

She’s a zebra. So, she has stripes.
— Zebras have stripes.

She has stripes. So, she’s a zebra.
— Striped things are zebras.
— Striped horses are zebras.
I can make explicit my preparedness to infer Gx from Fx by saying

Fs are Gs.
I can *make explicit* my preparedness to infer G_x from F_x
 or to *explain* G_x by way of F_x
 by saying

Fs are Gs.
This explains many of the distinctive features of generics

- **Exceptions:** *Birds fly.* (Yes! Despite penguins.)
This explains many of the distinctive features of generics

- Exceptions: **Birds fly**. *(Yes! Despite penguins.)*
 - **Tweety is a bird** is a good reason for **Tweety flies**, even if this does not apply to all birds.

- Low rate generics with striking properties:
 - Mosquitos transmit /r.sc/r.sc/f.sc.

- Given that reason giving does admit exceptions, in the case of striking/dangerous properties, it is much better to err on the side of **false positives** than **false negatives**.
 - At the very least, we are happy to **explain** this transmits /r.sc/r.sc/f.sc by granting **this is a mosquito**.
This explains many of the distinctive features of generics

- **Exceptions:** *Birds fly.* (Yes! Despite penguins.)
 - Tweety is a bird is a good reason for Tweety flies, even if this does not apply to all birds.

- **Failure of weakening of the consequent:** *Birds lay eggs.* (Yes!) *Birds are female.* (No!)

- Low rate generics with striking properties: Mosquitos transmit...
This explains many of the distinctive features of generics

- Exceptions: **Birds fly**. *(Yes! Despite penguins.)*
 - **Tweety is a bird** is a good reason for **Tweety flies**, even if this does not apply to all birds.

- Failure of weakening of the consequent: **Birds lay eggs**. *(Yes!)** Birds are female. *(No!)*
 - Does Tweety lay eggs? **Yes, Tweety is a bird.** *(Good!)*
This explains many of the distinctive features of generics

- **Exceptions**: *Birds fly*. (Yes! Despite penguins.)
 - *Tweety is a bird* is a good reason for *Tweety flies*, even if this does not apply to all birds.

- **Failure of weakening of the consequent**: *Birds lay eggs*. (Yes!) *Birds are female*. (No!)
 - Does *Tweety lay eggs*? Yes, *Tweety is a bird*. (Good!)
 - Is *Tweety female*? Yes, *Tweety is a bird*. (???)
This explains many of the distinctive features of generics

- **Exceptions:** *Birds fly.* (Yes! Despite penguins.)
 - **Tweety is a bird** is a good reason for *Tweety flies*, even if this does not apply to all birds.

- **Failure of weakening of the consequent:** *Birds lay eggs.* (Yes!) *Birds are female.* (No!)
 - Does Tweety lay eggs? Yes, *Tweety is a bird.* (Good!)
 - Is Tweety female? Yes, *Tweety is a bird.* (????)
 - Or, *Tweety lays eggs* since *Tweety is a bird.* (Good!)
 - *Tweety is female* since *Tweety is a bird.* (????)
This explains many of the distinctive features of generics

- **Exceptions:** **Birds fly.** (Yes! Despite penguins.)
 - **Tweety is a bird** is a good reason for **Tweety flies**, even if this does not apply to all birds.

- **Failure of weakening of the consequent:** **Birds lay eggs.** (Yes!) **Birds are female.** (No!)
 - Does Tweety lay eggs? Yes, **Tweety is a bird.** (Good!)
 - Is Tweety female? Yes, **Tweety is a bird.** (????)
 - Or, **Tweety lays eggs** since **Tweety is a bird.** (Good!)
 - **Tweety is female** since **Tweety is a bird.** (???)

- **Low rate generics with striking properties:** **Mosquitos transmit RRF.**
This explains many of the distinctive features of generics

- **Exceptions:** Birds fly. (Yes! Despite penguins.)
 - Tweety is a bird is a good reason for Tweety flies, even if this does not apply to all birds.

- **Failure of weakening of the consequent:** Birds lay eggs. (Yes!) Birds are female. (No!)
 - Does Tweety lay eggs? Yes, Tweety is a bird. (Good!)
 - Is Tweety female? Yes, Tweety is a bird. (????)
 - Or, Tweety lays eggs since Tweety is a bird. (Good!)
 - Tweety is female since Tweety is a bird. (???)

- **Low rate generics with striking properties:** Mosquitos transmit RRF.
 - Given that reason giving does admit exceptions, in the case of striking/dangerous properties, it is much better to err on the side of false positives than false negatives.
This explains many of the distinctive features of generics

- **Exceptions:** *Birds fly.* (Yes! Despite penguins.)
 - *Tweety is a bird* is a good reason for *Tweety flies*, even if this does not apply to all birds.

- **Failure of weakening of the consequent:** *Birds lay eggs.* (Yes!) *Birds are female.* (No!)
 - Does Tweety lay eggs? Yes, *Tweety is a bird.* (Good!)
 - Is Tweety female? Yes, *Tweety is a bird.* (????)
 - Or, *Tweety lays eggs* since *Tweety is a bird.* (Good!)
 - *Tweety is female* since *Tweety is a bird.* (???)

- **Low rate generics with striking properties:** *Mosquitos transmit RRF.*
 - Given that reason giving *does* admit exceptions, in the case of striking/dangerous properties, it is much better to err on the side of *false positives* than *false negatives.* At the very least, we are happy to explain *This transmits RRF* by granting *this is a mosquito.*
Why *this* form?

We can infer from any A to any B.

Why are generics, of the form Fs *are* Gs, so prevalent?
Why this form?

We can infer from any A to any B.

Why are generics, of the form Fs are Gs, so prevalent?

In dialogue or in planning, the focus of inquiry is often fixed.

So, inferences of the from suitable for explication by a generic (from Fx to Gx) are widespread.
Why make inference explicit?
Why make inference explicit?

To teach ...
Why make inference explicit?

To teach . . .

. . . and to refine.
Training for Inference
We communicate and coordinate on inferences: if you’ve learned that birds fly, you’ll accept “x is a bird” as a reason to conclude “x flies,” or to explain “x flies” by appeal to “x is a bird.”
The information conveyed can be local.

Consider a zoo enclosure with a range of horse-like creatures: I might say “striped ones are zebras”.
You can object to my inference

F a. So, G a.

in three different (related) ways:
You can object to my inference

Fa. So, Ga.

in three different (related) ways:

(1) Deny Fa. (2) Deny Ga. (3) Deny the So.
Refining Inference

You can object to my inference

Fa. So, Ga.

in three different (related) ways:

(1) Deny Fa. (2) Deny Ga. (3) Deny the So.

We have words for (1) and (2).

How do you voice objection (3)?
You can object to my inference

Fa. So, Ga.

in three different (related) ways:

(1) Deny Fa. (2) Deny Ga. (3) Deny the So.

We have words for (1) and (2).

How do you voice objection (3)?

Making inferences explicit gives us a way to argue about them.
What is it to *deny* that birds fly?
What is it to *deny* that birds fly?

Birds *don’t* fly?
This is subtle

What is it to deny that birds fly?

Birds don’t fly?

Fs are non-Gs not (Fs are Gs)

The grammar of generics makes denying them difficult.

We often move to more explicit quantification: many birds don’t fly, or not all birds fly.
The inferential analysis of generics explains this, too

Resisting the inference from F_x to G_x does not, by itself, offer an alternative inference.
The inferential analysis of generics explains this, too

Resisting the inference from F_x to G_x
does not, by itself, offer an alternative inference.

Neither does it make much of a claim at all, by itself.
Resisting the inference from Fx to Gx does not, by itself, offer an alternative inference.

Neither does it make much of a claim at all, by itself.

We’ll return to this topic later.
ACCOMMODATION & INFERENCES
The COMMON GROUND of a conversation at any given time is the set of propositions that the participants in that conversation at that time mutually assume to be taken for granted and not subject to (further) discussion.

— Kai von Fintel

“What is Presupposition Accommodation, Again?”

Philosophical Perspectives, 2008.
One way to enter the common ground

When uttered assertively, sentences are meant to update the common ground. If a sentence is accepted by the participants, the proposition it expresses is added to the common ground.

― Kai von Fintel

“What is Presupposition Accommodation, Again?”

Philosophical Perspectives, 2008.
Another way to enter the common ground

If there are drinks after the seminar, my son will come.

When I say this, the proposition that I have a son (and perhaps that I have only one son) is added to the common ground.
Another way to enter the common ground

If there are drinks after the seminar, my son will come.

When I say this, the proposition that I have a son (and perhaps that I have only one son) is added to the common ground.

This phenomenon is called *presupposition accommodation*.
Another way to enter the common ground

If there are drinks after the seminar, my son will come.

When I say this, the proposition that I have a son (and perhaps that I have only one son) is added to the common ground.

This phenomenon is called presupposition accommodation.

(The details of how—and which—presuppositions are accommodated is a matter of debate and active research.)
Rae Langton explores the ethical contours of accommodation phenomena in *Accommodating Injustice*.
Rae Langton explores the ethical contours of accommodation phenomena in *Accommodating Injustice*.

Sometimes we find ourselves committed to substantial claims we never explicitly considered. We have *accommodated* them.
Claim 2: Inference and the Common Ground

If you make the inference
\(F \alpha, \text{ therefore } G \alpha, \)
If you make the inference \(F_\alpha, \) therefore \(G_\alpha, \)

and you meet with no objection,
If you make the inference \(F_a, \ there\ therefore \ G_a, \)
and you meet with no objection,
then not only are \(F_a \) and \(G_a \) added to the common ground,
If you make the inference Fa, therefore Ga,
and you meet with no objection,
then not only are Fa and Ga
added to the common ground,
but so is the generic: Fs are Gs.
Of course …

This could be highly *local*.

Recall: *she has stripes, so she’s a zebra.*
Of course …

This could be highly *local*.

Recall: *she has stripes, so she’s a zebra*.

Striped things (here) are zebras.
This isn’t *presupposition* accommodation

The speech act of inference is *explicit*. It can be rejected, just as an assertion can.
This isn’t presupposition accommodation

The speech act of inference is explicit. It can be rejected, just as an assertion can.

I can reject the inference Fa, so Ga, while accepting Fa and Ga.
The speech act of inference is *explicit*. It can be rejected, just as an assertion can.

I can *reject* the inference $F\alpha$, so $G\alpha$, while *accepting* $F\alpha$ and $G\alpha$.

Whether the inference is accepted or rejected should make *some* difference in the common ground.
The speech act of inference is *explicit*. It can be rejected, just as an assertion can.

I can *reject* the inference Fa, so Ga, while *accepting* Fa and Ga.

Whether the inference is accepted or rejected should make *some* difference in the common ground.

If the inference is made explicit by a *generic* this can do the job.
This commitment (Fs are Gs) goes beyond the explicit subject matter (the object a) under discussion.
Consequences

- This commitment (Fs are Gs) goes beyond the explicit subject matter (the object a) under discussion.

- Since generics are *generic*, they can persist, even after the details fade from attention.
Consequences

- This commitment (Fs are Gs) goes beyond the explicit subject matter (the object a) under discussion.

- Since generics are *generic*, they can persist, even after the details fade from attention.

- We can find ourselves accepting generics (and perhaps, *believing* them) without ever having explicitly considered them.
OPTIONS FOR CRITIQUE & REFORM
Mosquitos transmit RRF.

Logic talks are boring.
Mosquitos transmit RRF.

Logic talks are boring.

Muslims are terrorists.
Mosquitos transmit RRF.

Logic talks are boring.

Muslims are terrorists.

These are hard to uproot, or to argue against.
Striking properties and generics

Mosquitos transmit RRF.

Logic talks are boring.

Muslims are terrorists.

These are hard to uproot, or to argue against.

Not *all* mosquitos. Not *all* logic talks. Not *all* Muslims.
To reject or deny Fs are Gs, you need to undercut the inference from Fa to Ga and the practice of explaining Ga in terms of Fa.
How to deny a generic

In a controlled environment, we can undercut the generic by being more specific, by moving to explicitly stated quantifiers.
In a controlled environment, we can undercut the generic by being more specific, by moving to explicitly stated quantifiers.

- Are all Fs Gs? Are most? How many?
How to deny a generic

- In a controlled environment, we can undercut the generic by being more specific, by moving to explicitly stated quantifiers.
 - Are all Fs Gs? Are most? How many?
- This can work, but it is hard to resist forming generic judgements. Syntactic discipline takes work.
How to deny a generic

When G is a striking property, it’s not enough to say that many or most Fs are not Gs.
How to deny a generic

When G is a striking property, it's not enough to say that many or most Fs are not Gs.

(After all, most mosquitos *don’t* carry RRF.)
How to deny a generic

One way to undercut the inference from Fa to Ga is to institute a practice in which the question of whether something is G or not doesn’t arise.
How to deny a generic

When we *care* about the property G, we won’t want to revise the concept away. So another approach is to find an *alternate* explanation for Ga, other than Fa.
How to deny a generic

- When we *care* about the property G, we won’t want to revise the concept away. So another approach is to find an *alternate* explanation for Ga, other than Fa.
 - If not all species or genus of mosquito carry RRF, then we could refine our generic to the more specific one, that *Mosquitos of genus Culex carry RRF*, while agreeing that mosquitoes outside that genus *don’t carry* RRF.
How to deny a generic

- When we *care* about the property G, we won’t want to revise the concept away. So another approach is to find an *alternate* explanation for $G\alpha$, other than $F\alpha$.
 - If not all species or genus of mosquito carry RRF, then we could refine our generic to the more specific one, that Mosquitos of genus *Culex* carry RRF, while agreeing that mosquitos outside that genus *don’t* carry RRF.
 - Explanations of this shape might undercut the generic Muslims are terrorists, by replacing them with better explanations — such as research showing that domestic violence is a much stronger predictor of involvement in terrorism.
In any case, denying a generic requires changing not only our explicit *theory*, but our dispositions to *infer*.

These dispositions are expressed not just in the claims we make. They are revealed in how we string those claims together.
The strange behaviour of generic judgements can be explained by their grounding in our inferential practice.

This helps us understand the difficulties and some of the possibilities for reforming and revising those practices and the views they represent.
THANK YOU!
Thank you!

SLIDES: http://consequently.org/presentation/

FEEDBACK: @consequently on Twitter,
or email at restall@unimelb.edu.au