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Our Aims

To better understand,
to simplify and to generalise
the ternary relational semantics
for substructural logics.



Our Plan

Ternary Relational Frames
Multiset Relations
Multiset Frames
Soundness
Completeness

Beyond Multisets
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(P,R)

» P:anon-empty set

o
» RCPxP No conditions!

Binary relations are 6’1)6’7'_)’10196‘7‘6.
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(R, C)

> P:anon-empty set 1. C isa partial order

» CCPxP (or preorder).

Partial orders are everywhere.
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Ternary Relational Frames for Positive Substructural Logics

Where can you find a structure like thar?
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CCPxP RCPxPxP
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... and more

R?(xy)zw =g (Iv)(Rxyv A Rvzw)
R2x(yz)w =4 (Iv)(Ryzv A Rxvw)

RER?CPxPxPxP



In RW*

Rxyz <= Ryxz
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In RW' and in RT

Rxyz <= Ryxz
R?(xy)zw & R'*x(yz)w

Rxxx



The Behaviour of N, C and R
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The Behaviour of N, = and R

Rz X RZ xy Rz

» The position of an underlined variable is closed downwards along .

» The position of an overlined variable is closed upwards along C.
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Collection Relations

X Rz

X is a finite collection of elements of P; zisin P.
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What kind of finite collection?

Leaf-Labelled Trees  Lists ~ Multisets ~ Sets  more ...

Rxyz <<= Ryxz
R?(xy)zw <= R*x(yz)w
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(Finite) Multisets

2 L2l 2y nl [
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Finding our Target

RC M(P)xP

R generalises C.

So, it should satisfy analogues of reflexivity and transitiviry.
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Generalised Transitivity

(XRxAxXJUYRyYy)=XUYRYy

XUYRyYy = (Ix)(XRx A [x]UYRYy)



Generalised Transitivity

(IX)(XRxAX]UYRyYy) & XUY Ry
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Compositional Multiset Relations

R C M(P) x P is compositional ifffor each X, Y € M(P)andy € P

e [y Ry
o (IX)XRxAX]JUYRYy) < XUYRYy
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Examples on M(w) x w

X Ryiff...
suM Yy = XX (where Z[] = 0)
prRODUCT Y = [TX (where TT[] = 1)
somE suM forsome X' < X,y = X’
somE PROD. forsome X' < X,y = TTX’

MAXIMUM Y = max(X) (where max [] = 0)
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Sum

X Ryiffy = XX

REFL. N = X[n]
TRANS. Yy = Z(XUY)=EZX+ LY =Z([ZX]UY).
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Some Product

X Ry ifffor some X' < X,y =TIX’

REFL. N = I1[n]
TRANS. Z < XU Yiffforsome X' < XandY’' <Y, Z=X'UY/,
so XU Y R yifffor some X’ < Xand Y’ <Y,y =TI(X'UY’).
Bue TI(X' U'Y') = TIX! x TTY/ = TT([TTX/] U'Y'), and X R TIX".
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Membership?

X Ryiffy € X

REFL. N € [n]
TRANS. Left toright: If x € Xandy € ([x] UY), theny € XUY.

Right to left: Supposey € X U Y. Is there some x € X where
yexluy:

If X is non-empty, sure: pick y if y € X, and an arbitrary member
otherwise.

But this fails when X = [ ].

Membership is a compositional relation on M’ (w) x w,
on non-empty multisets.
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Between?

min (X) <y < max(X)

This is also compositional on M'(w) x w.
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Order

Consider the binary relation C on P

given by setting x T y iff[x] R y.

This is a preorder on P.

[x] R x

If [x] Ryand [y] R z,
then since [x] Ryand [y]U[] R z,
we have [x] R z, as desired.



R respects order



Propositions

Ifx IFpand[x] Rytheny lFp
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vV v v vy

Truth Conditions

x IF AABiffx |- Aand x IF B.

x IF AV Biffx - Aorx |- B.

x |- A — Bifffor eachy, z where [x,y|Rz, if y |- A then z |- B.
x Ik A o B ifffor some y, z where [y, z]Rx, bothy I A and z IF B.
x |- tiff[ ]Rx.

This models the logic RWT.

Our frames automatically satisty
the RW™ conditions:

[x,ylRz & [y, x]Rz
(Fv) (Ix, yIRv A [v, z]JRw) & (Fu)([y, z]Ru A [x, u]Rw)



Ternary Relational Frames for RW™

(BN, L, R)

. N is non-emprty.
» P:anon-empty set 1. N is non-empty.

2. L isa partial order (or preorder).

> N C P 3. Risdownward preserved in the its two
positions and upward preserved in the third.
»CCPxP 4.y Cy iff (3x) (Nx A Rxyy’).

5. Rxyz & Rxyz

» RCPXxPxP 6. (Iv)(RxyvARvzw) & (Fu)(Ryzu/ARxuw)



Multiset Frames for RW™

(P,R)

» P:anon-empty set ] N ,
1. Ris compositional. Thatis, [x] R x and
I)XRxAXJUYRY) & XUYR
> RC M(P) x P (5 v) Y
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Soundness Proof

Standard argument, by induction on the length of a proof.
It is straightforward in a natural deduction sequent system for RWT.
Show thatif I' > A is derivable, then for any model, if x I " then x I- A.

Extend I to structures by setting

xIFeiff []Rx
x IF LT iffx IF Tand x I T

x Ik T, T ifffor some y, z where [y,z] Rx,y IF Tandy IF T’



COMPLETENESS



Completeness Proof

The canonical RW™ frame is a multiset frame.
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Non-Empty Multisets

Membership, Betweenness, . . .

(IX)(XRxAY(x) Ry) & Y(X) Ry

If Y(x) is a multiset containing x and X is a multiset, Y(X) is the multiset
found by replacing x in Y(x) by X, in the natural way.

e.g.,if Y(x)is [1,2,3,x] then Y([3,4])is [1,2,3,3,4].
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Frames on non-empty multisets model RW™ without t.

There are 7o normal points.

They model entailment but not logical truth.

(Sequents I' > A with a non-empty right hand side.)
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Sets

R C P™P) xP

{x} Rx

(Ix)(XRxAY(x)Ry) & Y(X) Ry
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Contraction

Since {x} R x, we have {x, x} R x.

Set frames are models of R™.

OPEN QUESTION: Is the logic of set frames exactly R ?
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Lists, Trees

We can take collections to be /ists (order matters)
or leaf-labelled binary trees (associativity matters),
and the generalisation works well.

We can model the Lambek Calculus (lists),

or the basic substructural logic B (trees).

The empty list is straightforward and natural.
The empty tree is less straightforward.

(To get the logic BT take the empty tree to be a left but not a right identity.)
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Finite Structures

There is a general mathematical theory of finite structures.

(The theory of species.)

What other finite structures give rise
to natural logics like these?
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The Upshot

» The collection of conditions on N, C, R in ternary frames are not ad hoc, but
arise out of a single underlying phenomenon, the compositional relation.

» Identifying compositional relations on structures is a way to look for natural
models of substructural logics.

» Different logics are found by varying the collections being related, whether sets,
multisets, lists, leaf-labelled binary trees or something else.



THANK YOU!



