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Our Aims

To better understand,
to simplify and to generalise

the ternary relational semantics
for substructural logics.
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Our Plan

Ternary Relational Frames

Multiset Relations

Multiset Frames

Soundness

Completeness

BeyondMultisets
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Ternary Relational Frames for Positive Substructural Logics

〈P,N,⊑, R〉

◮ P: a non-empty set

◮ N ⊆ P

◮ ⊑ ⊆ P × P

◮ R ⊆ P × P × P

1. N is non-empty.

2. ⊑ is a partial order (or preorder).

3. R is downward preserved in the its two
positions and upward preserved in the
third, i.e. if Rx ′y ′z and x ⊑ x ′, y ⊑ y ′,
z ⊑ z ′, then Rxyz ′.

4. y ⊑ y ′ iff (∃x)(Nx∧ Rxyy ′).
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Modal Frames

〈P, R〉

◮ P: a non-empty set

◮ R ⊆ P × P
No conditions!

Binary relations are everywhere.
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Intuitionist Frames

〈P,⊑〉

◮ P: a non-empty set

◮ ⊑ ⊆ P × P

1. ⊑ is a partial order
(or preorder).

Partial orders are everywhere.
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Ternary Relational Frames for Positive Substructural Logics

Where can you find a structure like that?
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One, Two, Three,. . .

〈P,N,⊑, R〉

N ⊆ P ⊑ ⊆ P × P R ⊆ P × P × P
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. . . and more

R2(xy)zw =df (∃v)(Rxyv∧ Rvzw)

R ′2x(yz)w =df (∃v)(Ryzv∧ Rxvw)

R2, R ′2 ⊆ P × P × P × P
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In RW+

and in R+

Rxyz ⇐⇒ Ryxz

R2(xy)zw ⇐⇒ R ′2x(yz)w

Rxxx
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The Behaviour ofN, ⊑ and R

N z x ⊑ z R xyz

◮ The position of an underlined variable is closed downwards along⊑.

◮ The position of an overlined variable is closed upwards along⊑.
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Collection Relations

R z x R z xy R z

X is a finite collection of elements of P; z is in P.
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Collection Relations

X R z

X is a finite collection of elements of P; z is in P.
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What kind of finite collection?

Leaf-Labelled Trees Lists Multisets Sets more . . .

Rxyz ⇐⇒ Ryxz

R2(xy)zw ⇐⇒ R ′2x(yz)w
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multiset
relations



(Finite) Multisets

[1, 2] [1, 1, 2] [1, 2, 1] [1] [ ]
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Finding our Target

R ⊆ M(P)× P

R generalises⊑.

So, it should satisfy analogues of reflexivity and transitivity.
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Reflxivity

[x] R x
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Generalised Transitivity

(

X R x

∧ [x] ∪ Y R y) ⇒ X ∪ Y R y

X ∪ Y R y ⇒ (∃x)(X R x ∧ [x] ∪ Y R y)
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Generalised Transitivity

(∃x)(X R x∧ [x] ∪ Y R y) ⇔ X ∪ Y R y
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Left to Right
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Right to Left
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Compositional Multiset Relations

R ⊆ M(P)× P is compositional iff for each X, Y ∈ M(P) and y ∈ P

• [y] R y

• (∃x)(X R x∧ [x] ∪ Y R y) ⇐⇒ X ∪ Y R y
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Examples onM(ω)×ω

X R y iff . . .

sum y = ΣX (where Σ[ ] = 0)

product y = ΠX (whereΠ[ ] = 1)

some sum for some X ′ ≤ X, y = ΣX ′

some prod. for some X ′ ≤ X, y = ΠX ′

maximum y = max(X) (where max [ ] = 0)
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Sum

X R y iff y = ΣX

refl. n = Σ[n]

trans. y = Σ(X ∪ Y) = ΣX+ ΣY = Σ([ΣX] ∪ Y).
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Some Product

X R y iff for some X ′ ≤ X, y = ΠX ′

refl. n = Π[n]

trans. Z ≤ X ∪ Y iff for some X ′ ≤ X and Y ′ ≤ Y,Z = X ′ ∪ Y ′,
so X ∪ Y R y iff for some X ′ ≤ X and Y ′ ≤ Y, y = Π(X ′ ∪ Y ′).
ButΠ(X ′ ∪ Y ′) = ΠX ′ × ΠY ′ = Π([ΠX ′] ∪ Y ′), and X R ΠX ′.
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Membership?

X R y iff y ∈ X

refl. n ∈ [n]

trans. Left to right: If x ∈ X and y ∈ ([x] ∪ Y), then y ∈ X ∪ Y.

Right to left: Suppose y ∈ X ∪ Y. Is there some x ∈ Xwhere
y ∈ [x] ∪ Y?
If X is non-empty, sure: pick y if y ∈ X, and an arbitrary member
otherwise.
But this fails when X = [ ].

Membership is a compositional relation onM ′(ω)×ω,
on non-emptymultisets.
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Between?

min (X) ≤ y ≤ max(X)

This is also compositional onM ′(ω)×ω.
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multiset frames



Order

Consider the binary relation⊑ on P
given by setting x ⊑ y iff [x] R y.

This is a preorder on P.

[x] R x

If [x] R y and [y] R z,
then since [x] R y and [y] ∪ [ ] R z,

we have [x] R z, as desired.
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R respects order

X R y
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Propositions

If x ⊩ p and [x] R y then y ⊩ p
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Truth Conditions

◮ x ⊩ A∧ B iff x ⊩ A and x ⊩ B.

◮ x ⊩ A∨ B iff x ⊩ A or x ⊩ B.

◮ x ⊩ A → B iff for each y, zwhere [x, y]Rz, if y ⊩ A then z ⊩ B.

◮ x ⊩ A ◦ B iff for some y, zwhere [y, z]Rx, both y ⊩ A and z ⊩ B.

◮ x ⊩ t iff [ ]Rx.

This models the logic RW+.

Our frames automatically satisfy
the RW+ conditions:

[x, y]Rz ⇔ [y, x]Rz

(∃v)([x, y]Rv∧ [v, z]Rw) ⇔ (∃u)([y, z]Ru∧ [x, u]Rw)
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Ternary Relational Frames for RW+

〈P,N,⊑, R〉

◮ P: a non-empty set

◮ N ⊆ P

◮ ⊑ ⊆ P × P

◮ R ⊆ P × P × P

1. N is non-empty.

2. ⊑ is a partial order (or preorder).

3. R is downward preserved in the its two
positions and upward preserved in the third.

4. y ⊑ y ′ iff (∃x)(Nx∧ Rxyy ′).

5. Rxyz ⇔ Rxyz

6. (∃v)(Rxyv∧Rvzw) ⇔ (∃u)(Ryzu∧Rxuw)
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Multiset Frames for RW+

〈P, R〉

◮ P: a non-empty set

◮ R ⊆ M(P)× P

1. R is compositional. That is, [x] R x and
(∃x)(X R x∧ [x] ∪ Y R y) ⇔ X ∪ Y R y
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soundness



Soundness Proof

Standard argument, by induction on the length of a proof.

It is straightforward in a natural deduction sequent system for RW+.

Show that if Γ ! A is derivable, then for any model, if x ⊩ Γ then x ⊩ A.

Extend⊩ to structures by setting

x ⊩ ε iff [ ] R x

x ⊩ Γ, Γ ′ iff x ⊩ Γ and x ⊩ Γ ′

x ⊩ Γ ; Γ ′ iff for some y, zwhere [y, z] R x, y ⊩ Γ and y ⊩ Γ ′
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completeness



Completeness Proof

The canonical RW+ frame is a multiset frame.
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beyond multisets



Non-Empty Multisets

Membership, Betweenness, . . .

(∃x)(X R x∧ [x] ∪ Y R y) ⇔ X ∪ Y R y

If Y(x) is a multiset containing x and X is a multiset, Y(X) is the multiset
found by replacing x in Y(x) by X, in the natural way.

e.g., if Y(x) is [1, 2, 3, x] then Y([3, 4]) is [1, 2, 3, 3, 4].
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Frames on non-empty multisets model RW+ without t.

There are no normal points.

They model entailment but not logical truth.

(Sequents Γ ! Awith a non-empty right hand side.)
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Sets

R ⊆ P fin(P)× P

{x} R x

(∃x)(X R x∧ Y(x) R y) ⇔ Y(X) R y
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Contraction

Since {x} R x, we have {x, x} R x.

Set frames are models of R+.

open question: Is the logic of set frames exactly R+?
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Lists, Trees

We can take collections to be lists (order matters)
or leaf-labelled binary trees (associativity matters),

and the generalisation works well.

We can model the Lambek Calculus (lists),

or the basic substructural logic B+ (trees).

The empty list is straightforward and natural.

The empty tree is less straightforward.

(To get the logic B+ take the empty tree to be a left but not a right identity.)
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Finite Structures

There is a general mathematical theory of finite structures.
(The theory of species.)

What other finite structures give rise
to natural logics like these?
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The Upshot

◮ The collection of conditions onN,⊑, R in ternary frames are not ad hoc, but
arise out of a single underlying phenomenon, the compositional relation.

◮ Identifying compositional relations on structures is a way to look for natural
models of substructural logics.

◮ Different logics are found by varying the collections being related, whether sets,
multisets, lists, leaf-labelled binary trees or something else.
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thank you!


