## Collection Frames for Substructural Logics





#### LANCOG WORKSHOP ON SUBSTRUCTURAL LOGIC

LISBON  $\diamond$  26 September 2019

Joint work with Shawn Standefer

#### **Our Aims**

To *better understand*, to *simplify* and to *generalise* the ternary relational semantics for substructural logics. Our Plan

**Ternary Relational Frames** Multiset Relations **Multiset Frames** Soundness Completeness Beyond Multisets

## TERNARY RELATIONAL FRAMES

- P: a non-empty set
- $\blacktriangleright$  N  $\subseteq$  P
- $\blacktriangleright \ \sqsubseteq \subseteq P \times P$
- $\blacktriangleright \ R \subseteq P \times P \times P$

- P: a non-empty set I. N is non-empty.
- $\blacktriangleright \ N \subseteq P$
- $\blacktriangleright \sqsubseteq \subseteq P \times P$
- $\blacktriangleright \ R \subseteq P \times P \times P$

## $\langle P, N, \sqsubseteq, R \rangle$

P: a non-empty set

- I. N is non-empty.
- 2.  $\sqsubseteq$  is a partial order (or preorder).

- $\blacktriangleright$  N  $\subseteq$  P
- $\blacktriangleright \sqsubseteq \subseteq P \times P$
- $\blacktriangleright R \subseteq P \times P \times P$

- P: a non-empty set
- ►  $N \subseteq P$
- $\blacktriangleright \sqsubseteq \subseteq \mathsf{P} \times \mathsf{P}$
- $\blacktriangleright R \subseteq P \times P \times P$

- I. N is non-empty.
- 2.  $\sqsubseteq$  is a partial order (or preorder).
- 3. R is downward preserved in the its two positions and upward preserved in the third, i.e. if Rx'y'z and  $x \sqsubseteq x', y \sqsubseteq y',$  $z \sqsubseteq z'$ , then Rxyz'.

- P: a non-empty set
- $\blacktriangleright$  N  $\subseteq$  P
- $\blacktriangleright \sqsubseteq \subseteq \mathsf{P} \times \mathsf{P}$
- $\blacktriangleright \ R \subseteq P \times P \times P$

- I. N is non-empty.
- 2.  $\sqsubseteq$  is a partial order (or preorder).
- 3. R is downward preserved in the its two positions and upward preserved in the third, i.e. if Rx'y'z and  $x \sqsubseteq x', y \sqsubseteq y',$  $z \sqsubseteq z'$ , then Rxyz'.
- 4.  $y \sqsubseteq y' iff(\exists x)(Nx \land Rxyy').$

## $\langle P, R \rangle$

## $\langle P, R \rangle$

- P: a non-empty set
- $\blacktriangleright \ R \subseteq P \times P$

## $\langle P, R \rangle$

P: a non-empty set
R ⊆ P × P

No conditions!

## $\langle P, R \rangle$

P: a non-empty set  $R \subseteq P \times P$  *No conditions*!

## Binary relations are everywhere.

## $\langle \mathsf{P}, \sqsubseteq \rangle$

## $\langle \mathsf{P}, \sqsubseteq \rangle$

P: a non-empty set



## $\langle \mathsf{P}, \sqsubseteq \rangle$

P: a non-empty setI.  $\sqsubseteq$  is a partial order $\Box \subseteq P \times P$ (or preorder).

## $\langle \mathsf{P}, \sqsubseteq \rangle$

P: a non-empty setI.  $\sqsubseteq$  is a partial order $\Box \subseteq P \times P$ (or preorder).

## Partial orders are everywhere.

- P: a non-empty set
- $\blacktriangleright$  N  $\subseteq$  P
- $\blacktriangleright \sqsubseteq \subseteq \mathsf{P} \times \mathsf{P}$
- $\blacktriangleright \ R \subseteq P \times P \times P$

- I. N is non-empty.
- 2.  $\sqsubseteq$  is a partial order (or preorder).
- 3. R is downward preserved in the its two positions and upward preserved in the third, i.e. if Rx'y'z and  $x \sqsubseteq x', y \sqsubseteq y',$  $z \sqsubseteq z'$ , then Rxyz'.
- 4.  $y \sqsubseteq y' iff(\exists x)(Nx \land Rxyy').$

## Where can you find a structure like *that*?

One, Two, Three,...

One, Two, Three,...

## $\langle P, N, \sqsubseteq, R \rangle$

## $N\subseteq P \qquad \sqsubseteq \subseteq P\times P \qquad R\subseteq P\times P\times P$

#### ... and more

## $R^{2}(xy)zw =_{df} (\exists v)(Rxyv \land Rvzw)$ $R'^{2}x(yz)w =_{df} (\exists v)(Ryzv \land Rxvw)$

#### ... and more

# $R^{2}(xy)zw =_{df} (\exists v)(Rxyv \land Rvzw)$ $R'^{2}x(yz)w =_{df} (\exists v)(Ryzv \land Rxvw)$ $R^{2}, R'^{2} \subseteq P \times P \times P \times P$

## $\begin{array}{rcl} \mathsf{R} \mathsf{x} \mathsf{y} z & \Longleftrightarrow & \mathsf{R} \mathsf{y} \mathsf{x} z \\ \mathsf{R}^2(\mathsf{x} \mathsf{y}) z w & \Longleftrightarrow & \mathsf{R}'^2 \mathsf{x}(\mathsf{y} z) w \end{array}$

### In $RW^+$ and in $R^+$

## $\begin{array}{rcl} \mathsf{R} x y z & \Longleftrightarrow & \mathsf{R} y x z \\ \mathsf{R}^2(xy) z w & \Longleftrightarrow & \mathsf{R}'^2 x(yz) w \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

## $N \overline{z}$ $\underline{x} \sqsubseteq \overline{z}$ $R \underline{x} \underline{y} \overline{z}$

## $N \overline{z}$ $\underline{x} \sqsubseteq \overline{z}$ $R \underline{x} \underline{y} \overline{z}$

▶ The position of an *<u>underlined</u>* variable is closed *downwards* along <u></u>.

## $N \overline{z} \qquad \underline{x} \sqsubseteq \overline{z} \qquad R \underline{x} \underline{y} \overline{z}$

▶ The position of an *<u>underlined</u>* variable is closed *downwards* along <u></u>.

• The position of an  $\overline{overlined}$  variable is closed *upwards* along  $\sqsubseteq$ .

## $N \overline{z} \qquad \underline{x} \sqsubseteq \overline{z} \qquad \underline{xy} R \overline{z}$

▶ The position of an *underlined* variable is closed *downwards* along <u></u>.

• The position of an  $\overline{overlined}$  variable is closed *upwards* along  $\sqsubseteq$ .

## $\mathsf{R}\,\overline{z} \qquad \underline{x}\;\mathsf{R}\,\overline{z} \qquad \underline{x}\underline{y}\;\mathsf{R}\,\overline{z}$

▶ The position of an *underlined* variable is closed *downwards* along <u></u>.

• The position of an  $\overline{overlined}$  variable is closed *upwards* along  $\sqsubseteq$ .

#### **Collection Relations**

## R z x R z xy R z

#### **Collection Relations**

## $\rm X \ R \ z$

#### X is a finite *collection* of elements of P; z is in P.

### What kind of finite collection?

## Leaf-Labelled Trees Lists Multisets Sets more ...

### What kind of finite collection?

## Leaf-Labelled Trees Lists Multisets Sets more ...

## $\begin{array}{rcl} \mathsf{Rxy}z & \Longleftrightarrow & \mathsf{Ryx}z \\ \mathsf{R}^2(\mathsf{xy})zw & \Longleftrightarrow & \mathsf{R}'^2\mathsf{x}(\mathsf{y}z)w \end{array}$

### What kind of finite collection?

## Leaf-Labelled Trees Lists Multisets Sets more ...

## $\begin{array}{rcl} \mathsf{R} \mathsf{x} \mathsf{y} z & \Longleftrightarrow & \mathsf{R} \mathsf{y} \mathsf{x} z \\ \mathsf{R}^2(\mathsf{x} \mathsf{y}) z w & \Longleftrightarrow & \mathsf{R}'^2 \mathsf{x}(\mathsf{y} z) w \end{array}$
## MULTISET RELATIONS

#### (Finite) Multisets

#### [1,2] [1,1,2] [1,2,1] [1] []

#### Finding our Target

## $R\subseteq \mathcal{M}(P)\times P$

#### Finding our Target

## $R\subseteq \mathcal{M}(P)\times P$

R generalises  $\sqsubseteq$ .

#### **Finding our Target**

## $R\subseteq \mathcal{M}(P)\times P$

R generalises  $\sqsubseteq$ .

So, it should satisfy analogues of *reflexivity* and *transitivity*.

#### Reflxivity

## [x] R x

### X R x

### $X R x \quad [x] \cup Y R y$

### $X R x [x] \cup Y R y X \cup Y R y$

## $(X \mathsf{R} \mathsf{x} \land [\mathsf{x}] \cup Y \mathsf{R} \mathsf{y}) \Rightarrow X \cup Y \mathsf{R} \mathsf{y}$

## $(X \mathrel{R} x \land [x] \cup Y \mathrel{R} y) \Rightarrow X \cup Y \mathrel{R} y$

 $X \cup Y R y$ 

## $(X R x \land [x] \cup Y R y) \Rightarrow X \cup Y R y$ $X \cup Y R y \qquad X R x$

## $(X R x \land [x] \cup Y R y) \Rightarrow X \cup Y R y$ $X \cup Y R y \qquad X R x \qquad [x] \cup Y R y$

## $(X R x \land [x] \cup Y R y) \Rightarrow X \cup Y R y$ $X \cup Y R y \Rightarrow (\exists x)(X R x \land [x] \cup Y R y)$

## $(\exists x)(X \mathrel{R} x \land [x] \cup Y \mathrel{R} y) \Leftrightarrow X \cup Y \mathrel{R} y$

#### Left to Right



#### **Right to Left**



#### **Compositional Multiset Relations**

 $R\subseteq \mathcal{M}(P)\times P$  is compositional iff for each  $X,Y\in \mathcal{M}(P)$  and  $y\in P$ 

- [y] R y
- $(\exists x)(X \mathrel{R} x \land [x] \cup Y \mathrel{R} y) \Longleftrightarrow X \cup Y \mathrel{R} y$

**SUM** 
$$y = \Sigma X$$
 (where  $\Sigma[] = 0$ )

SUM 
$$y = \Sigma X$$
 (where  $\Sigma[] = 0$ )  
PRODUCT  $y = \Pi X$  (where  $\Pi[] = 1$ )

SUM 
$$y = \Sigma X$$
 (where  $\Sigma[] = 0$ )  
PRODUCT  $y = \Pi X$  (where  $\Pi[] = 1$ )  
SOME SUM for some  $X' \le X, y = \Sigma X'$ 

SUM 
$$y = \Sigma X$$
 (where  $\Sigma[] = 0$ )  
PRODUCT  $y = \Pi X$  (where  $\Pi[] = 1$ )  
SOME SUM for some  $X' \leq X, y = \Sigma X'$   
SOME PROD. for some  $X' \leq X, y = \Pi X'$ 

SUM 
$$y = \Sigma X$$
 (where  $\Sigma[] = 0$ )  
PRODUCT  $y = \Pi X$  (where  $\Pi[] = 1$ )  
SOME SUM for some  $X' \le X, y = \Sigma X'$   
SOME PROD. for some  $X' \le X, y = \Pi X'$   
MAXIMUM  $y = \max(X)$  (where  $\max[] = 0$ )

#### Sum

#### $X \; R \; y \; \text{iff} \; y = \Sigma X$

#### Sum

#### $X \ R \ y \ iff y = \Sigma X$

refl.  $n = \Sigma[n]$ 

#### Sum

#### $X \ R \ y \ iff y = \Sigma X$

refl. 
$$n = \Sigma[n]$$
  
trans.  $y = \Sigma(X \cup Y) = \Sigma X + \Sigma Y = \Sigma([\Sigma X] \cup Y).$ 

#### Some Product

#### X R y iff for some $X' \leq X$ , $y = \Pi X'$

#### Some Product

## X R y iff for some $X' \leq X$ , $y = \Pi X'$

#### refl. $n = \Pi[n]$

#### Some Product

#### X R y iff for some $X' \leq X$ , $y = \Pi X'$ REFL. $n = \Pi[n]$ TRANS. $Z \leq X \cup Y$ iff for some $X' \leq X$ and $Y' \leq Y$ , $Z = X' \cup Y'$ ,

# $\begin{array}{l} X \ R \ y \ \text{iff for some } X' \leq X, y = \Pi X' \\ \\ \text{Refl.} \ n = \Pi[n] \\ \text{TRANS.} \ Z \leq X \cup Y \ \text{iff for some } X' \leq X \ \text{and } Y' \leq Y, Z = X' \cup Y', \\ \\ \text{so } X \cup Y \ R \ y \ \text{iff for some } X' \leq X \ \text{and } Y' \leq Y, y = \Pi(X' \cup Y'). \\ \\ \text{But } \Pi(X' \cup Y') = \Pi X' \times \Pi Y' = \Pi([\Pi X'] \cup Y'), \ \text{and } X \ R \ \Pi X'. \end{array}$

#### $X \mathrel{R} y \mathrel{iff} y \in X$

#### $X \mathrel{R} y \mathrel{iff} y \in X$

refl.  $n \in [n]$ 

#### $X \; R \; y \; \mathrm{iff} y \in X$

refl.  $n \in [n]$ 

TRANS. Left to right: If  $x \in X$  and  $y \in ([x] \cup Y)$ , then  $y \in X \cup Y$ .

#### $X \; R \; y \; \mathrm{iff} y \in X$

refl.  $n \in [n]$ 

**TRANS.** Left to right: If  $x \in X$  and  $y \in ([x] \cup Y)$ , then  $y \in X \cup Y$ . Right to left: Suppose  $y \in X \cup Y$ . Is there some  $x \in X$  where  $y \in [x] \cup Y$ ?

#### $X \mathrel{R} y \mathrel{iff} y \in X$

refl.  $n \in [n]$ 

TRANS. Left to right: If  $x \in X$  and  $y \in ([x] \cup Y)$ , then  $y \in X \cup Y$ .

Right to left: Suppose  $y \in X \cup Y$ . Is there some  $x \in X$  where  $y \in [x] \cup Y$ ?

If X is non-empty, sure: pick y if  $y \in X$ , and an arbitrary member otherwise.

#### $X \mathrel{R} y \mathrel{iff} y \in X$

refl.  $n \in [n]$ 

TRANS. Left to right: If  $x \in X$  and  $y \in ([x] \cup Y)$ , then  $y \in X \cup Y$ .

Right to left: Suppose  $y \in X \cup Y$ . Is there some  $x \in X$  where  $y \in [x] \cup Y$ ?

If X is non-empty, sure: pick y if  $y \in X$ , and an arbitrary member otherwise.

But this fails when X = [ ].
#### Membership?

#### $X \mathrel{R} y \mathrel{iff} y \in X$

refl.  $n \in [n]$ 

TRANS. Left to right: If  $x \in X$  and  $y \in ([x] \cup Y)$ , then  $y \in X \cup Y$ .

Right to left: Suppose  $y \in X \cup Y$ . Is there some  $x \in X$  where  $y \in [x] \cup Y$ ?

If X is non-empty, sure: pick y if  $y \in X$ , and an arbitrary member otherwise.

But this fails when X = [].

Membership is a compositional relation on  $\mathcal{M}'(\omega) \times \omega$ , on *non-empty* multisets.

#### **Between?**

#### $\min{(X)} \leq y \leq max(X)$

#### **Between?**

#### $\min\left(X\right) \leq y \leq \max(X)$

#### This is also compositional on $\mathcal{M}'(\omega) \times \omega$ .

# MULTISET FRAMES

#### Order

# Consider the binary relation $\sqsubseteq$ on P given by setting $x \sqsubseteq y$ iff [x] R y. This is a preorder on P.

#### Order

## Consider the binary relation $\sqsubseteq$ on P given by setting $x \sqsubseteq y$ iff [x] R y. This is a preorder on P.

#### [x] R x

#### Order

# Consider the binary relation $\sqsubseteq$ on P given by setting $x \sqsubseteq y$ iff [x] R y. This is a preorder on P.

#### [x] R x

#### If [x] R y and [y] R z, then since [x] R y and $[y] \cup [] R z$ , we have [x] R z, as desired.

#### **R** respects order

## $\underline{X} \ R \ \overline{y}$

#### Propositions

#### If $x \Vdash p$ and [x] R y then $y \Vdash p$



•  $x \Vdash A \land B$  iff  $x \Vdash A$  and  $x \Vdash B$ .

•  $x \Vdash A \lor B$  iff  $x \Vdash A$  or  $x \Vdash B$ .

- $x \Vdash A \land B$  iff  $x \Vdash A$  and  $x \Vdash B$ .
- $\blacktriangleright x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B.$
- ▶  $x \Vdash A \rightarrow B$  iff for each y, z where [x, y]Rz, if  $y \Vdash A$  then  $z \Vdash B$ .

- $x \Vdash A \land B$  iff  $x \Vdash A$  and  $x \Vdash B$ .
- $\blacktriangleright x \Vdash A \lor B iff x \Vdash A \text{ or } x \Vdash B.$
- ▶  $x \Vdash A \rightarrow B$  iff for each y, z where [x, y]Rz, if  $y \Vdash A$  then  $z \Vdash B$ .
- ▶  $x \Vdash A \circ B$  iff for some y, z where [y, z] Rx, both  $y \Vdash A$  and  $z \Vdash B$ .

- $x \Vdash A \land B$  iff  $x \Vdash A$  and  $x \Vdash B$ .
- $\blacktriangleright x \Vdash A \lor B iff x \Vdash A \text{ or } x \Vdash B.$
- ▶  $x \Vdash A \rightarrow B$  iff for each y, z where [x, y]Rz, if  $y \Vdash A$  then  $z \Vdash B$ .
- ▶  $x \Vdash A \circ B$  iff for some y, z where [y, z] Rx, both  $y \Vdash A$  and  $z \Vdash B$ .
- ▶  $x \Vdash t$  iff[]Rx.

- $x \Vdash A \land B$  iff  $x \Vdash A$  and  $x \Vdash B$ .
- $\blacktriangleright x \Vdash A \lor B iff x \Vdash A \text{ or } x \Vdash B.$
- ▶  $x \Vdash A \rightarrow B$  iff for each y, z where [x, y]Rz, if  $y \Vdash A$  then  $z \Vdash B$ .
- ▶  $x \Vdash A \circ B$  iff for some y, z where [y, z] Rx, both  $y \Vdash A$  and  $z \Vdash B$ .
- ▶  $x \Vdash t$  iff[]Rx.

This models the logic  $RW^+$ .

- $x \Vdash A \land B$  iff  $x \Vdash A$  and  $x \Vdash B$ .
- $\blacktriangleright x \Vdash A \lor B iff x \Vdash A \text{ or } x \Vdash B.$
- ▶  $x \Vdash A \rightarrow B$  iff for each y, z where [x, y]Rz, if  $y \Vdash A$  then  $z \Vdash B$ .
- $x \Vdash A \circ B$  iff for some y, z where [y, z] Rx, both  $y \Vdash A$  and  $z \Vdash B$ .
- ▶  $x \Vdash t$  iff[]Rx.

This models the logic  $RW^+$ .

Our frames *automatically* satisfy the RW<sup>+</sup> conditions:

- $x \Vdash A \land B$  iff  $x \Vdash A$  and  $x \Vdash B$ .
- $\blacktriangleright x \Vdash A \lor B iff x \Vdash A \text{ or } x \Vdash B.$
- ▶  $x \Vdash A \rightarrow B$  iff for each y, z where [x, y]Rz, if  $y \Vdash A$  then  $z \Vdash B$ .
- x ⊨ A ∘ B iff for some y, z where [y, z]Rx, both y ⊨ A and z ⊨ B.
  x ⊨ t iff[]Rx.

This models the logic  $RW^+$ .

Our frames *automatically* satisfy the RW<sup>+</sup> conditions:

[x,y]Rz  $\Leftrightarrow [y,x]$ Rz

- $x \Vdash A \land B$  iff  $x \Vdash A$  and  $x \Vdash B$ .
- $\blacktriangleright x \Vdash A \lor B iff x \Vdash A \text{ or } x \Vdash B.$
- ▶  $x \Vdash A \rightarrow B$  iff for each y, z where [x, y]Rz, if  $y \Vdash A$  then  $z \Vdash B$ .
- x ⊨ A ∘ B ifffor some y, z where [y, z]Rx, both y ⊨ A and z ⊨ B.
  x ⊨ t iff[]Rx.

This models the logic  $RW^+$ .

Our frames *automatically* satisfy the RW<sup>+</sup> conditions:

[x,y]Rz  $\Leftrightarrow [y,x]$ Rz

 $(\exists \nu)([x,y]R\nu \land [\nu,z]Rw) \Leftrightarrow (\exists u)([y,z]Ru \land [x,u]Rw)$ 

#### Ternary Relational Frames for RW<sup>+</sup>

# $\langle P, N, \sqsubseteq, R \rangle$

- P: a non-empty set
- ►  $N \subseteq P$
- $\blacktriangleright \sqsubseteq \subseteq P \times P$
- $\blacktriangleright \ R \subseteq P \times P \times P$

- I. N is non-empty.
- 2.  $\sqsubseteq$  is a partial order (or preorder).
- 3. R is downward preserved in the its two positions and upward preserved in the third.
- 4.  $y \sqsubseteq y' \operatorname{iff}(\exists x)(Nx \land Rxyy').$
- 5.  $Rxyz \Leftrightarrow Rxyz$
- 6.  $(\exists v)(Rxyv \land Rvzw) \Leftrightarrow (\exists u)(Ryzu \land Rxuw)$

Multiset Frames for  $RW^+$ 

# $\langle P, R \rangle$

### P: a non-empty set

 $\blacktriangleright \ R \subseteq \mathcal{M}(P) \times P$ 

I. R is compositional. That is, [x] R x and  $(\exists x)(X R x \land [x] \cup Y R y) \Leftrightarrow X \cup Y R y$ 

## SOUNDNESS

#### Soundness Proof

Standard argument, by induction on the length of a proof. It is straightforward in a natural deduction sequent system for RW<sup>+</sup>.

#### Soundness Proof

Standard argument, by induction on the length of a proof. It is straightforward in a natural deduction sequent system for  $RW^+$ . Show that if  $\Gamma \succ A$  is derivable, then for any model, if  $x \Vdash \Gamma$  then  $x \Vdash A$ .

#### Soundness Proof

Standard argument, by induction on the length of a proof. It is straightforward in a natural deduction sequent system for RW<sup>+</sup>. Show that if  $\Gamma \succ A$  is derivable, then for any model, if  $x \Vdash \Gamma$  then  $x \Vdash A$ . Extend  $\Vdash$  to structures by setting  $x \Vdash \epsilon$  iff [] R x  $x \Vdash \Gamma, \Gamma'$  iff  $x \Vdash \Gamma$  and  $x \Vdash \Gamma'$  $x \Vdash \Gamma; \Gamma'$  iff for some y, z where [y, z] R x, y  $\Vdash \Gamma$  and y  $\Vdash \Gamma'$ 

# COMPLETENESS

#### **Completeness Proof**

#### The canonical $RW^+$ frame is a multiset frame.

# **BEYOND MULTISETS**

Membership, Betweenness, ...

Membership, Betweenness, ...

#### $(\exists x)(X \mathrel{R} x \land [x] \cup Y \mathrel{R} y) \Leftrightarrow X \cup Y \mathrel{R} y$

Membership, Betweenness, ...

#### $(\exists x)(X \mathrel{R} x \land [x] \cup [ \ ] \mathrel{R} y) \Leftrightarrow X \cup [ \ ] \mathrel{R} y$

Membership, Betweenness, ...

#### $(\exists x)(X \mathrel{R} x \land Y(x) \mathrel{R} y) \Leftrightarrow Y(X) \mathrel{R} y$

Membership, Betweenness, ...

#### $(\exists x)(X \mathrel{R} x \land Y(x) \mathrel{R} y) \Leftrightarrow Y(X) \mathrel{R} y$

If Y(x) is a multiset containing x and X is a multiset, Y(X) is the multiset found by *replacing* x in Y(x) by X, in the natural way.
e.g., if Y(x) is [1, 2, 3, x] then Y([3, 4]) is [1, 2, 3, 3, 4].

## Frames on non-empty multisets model $RW^+$ without t. There are *no* normal points.

Frames on non-empty multisets model  $RW^+$  without t. There are *no* normal points.

They model *entailment* but not *logical truth*. (Sequents  $\Gamma \succ A$  with a non-empty right hand side.)

# $R\subseteq \mathcal{P}^{\text{fin}}(\mathsf{P})\times\mathsf{P}$

# $\mathsf{R} \subseteq \mathcal{P}^{\mathrm{fin}}(\mathsf{P}) \times \mathsf{P}$ ${}_{\{x\} \,\mathsf{R} \, x}$
# $R \subseteq \mathcal{P}^{fin}(P) \times P$ $\{x\} R x$

#### $(\exists x)(X \mathrel{R} x \land Y(x) \mathrel{R} y) \Leftrightarrow Y(X) \mathrel{R} y$

#### Contraction

#### Since $\{x\} R x$ , we have $\{x, x\} R x$ .

#### Contraction

## Since $\{x\} R x$ , we have $\{x, x\} R x$ . Set frames are models of $R^+$ .

#### Contraction

## Since $\{x\} R x$ , we have $\{x, x\} R x$ . Set frames are models of $R^+$ .

OPEN QUESTION: Is the logic of set frames *exactly* R<sup>+</sup>?

#### Lists, Trees

We can take collections to be *lists* (order matters) or *leaf-labelled binary trees* (associativity matters), and the generalisation works well.

> We can model the Lambek Calculus (lists), or the basic substructural logic B<sup>+</sup> (trees).

#### Lists, Trees

We can take collections to be *lists* (order matters) or *leaf-labelled binary trees* (associativity matters), and the generalisation works well.

> We can model the Lambek Calculus (lists), or the basic substructural logic  $B^+$  (trees).

The *empty list* is straightforward and natural. The *empty tree* is less straightforward.

(To get the logic  $B^+$  take the empty tree to be a *left* but not a *right* identity.)

#### **Finite Structures**

#### There is a general mathematical theory of finite structures. (The theory of *species*.)

#### **Finite Structures**

#### There is a general mathematical theory of finite structures. (The theory of *species*.)

# What *other* finite structures give rise to natural logics like these?

#### The Upshot

▶ The collection of conditions on N,  $\sqsubseteq$ , R in ternary frames are not *ad hoc*, but arise out of a single underlying phenomenon, the *compositional relation*.

#### The Upshot

- ► The collection of conditions on N, , R in ternary frames are not *ad hoc*, but arise out of a single underlying phenomenon, the *compositional relation*.
- Identifying compositional relations on structures is a way to look for *natural* models of substructural logics.

#### The Upshot

- ► The collection of conditions on N, , R in ternary frames are not *ad hoc*, but arise out of a single underlying phenomenon, the *compositional relation*.
- Identifying compositional relations on structures is a way to look for *natural* models of substructural logics.
- Different logics are found by varying the *collections* being related, whether sets, multisets, lists, leaf-labelled binary trees or something else.

## THANK YOU!