Today's Plan

Our Target

Model Construction

Classifying Class Theories

Order and Continuity

Order Models
OUR TARGET
\[\alpha \in \{ x : \phi(x) \} \iff \phi(\alpha) \]
\(\alpha \in \lambda x. \phi(x) \iff \phi(\alpha) \)
Russell's Paradox

\{x : x \not\in x\} \in \{x : x \not\in x\} \iff \{x : x \not\in x\} \not\in \{x : x \not\in x\}
Russell's Paradox

\{x : x \not\in x\} \in \{x : x \not\in x\} \text{ iff } \{x : x \not\in x\} \not\in \{x : x \not\in x\}

In general,

\{x : F(x \in x)\} \in \{x : F(x \in x)\} \text{ iff }
F(\{x : F(x \in x)\} \in \{x : F(x \in x)\})
The Heterological Paradox

\[\lambda x. (x \notin x) \in \lambda x. (x \notin x) \text{ iff } \lambda x. (x \notin x) \notin \lambda x. (x \notin x) \]
The Heterological Paradox

\[\lambda x. (x \not\in x) \in \lambda x. (x \not\in x) \iff \lambda x. (x \not\in x) \not\in \lambda x. (x \not\in x) \]

In general,

\[\lambda x. F(x \in x) \in \lambda x. F(x \in x) \iff F(\lambda x. F(x \in x) \in \lambda x. F(x \in x)) \]
Extensionality

If a and b have the same members, then $a = b$.
If a and b have the same members, then $a = b$.

$$
\Gamma, x \in a \vdash x \in b, \Delta \quad \Gamma, x \in b \vdash x \in a, \Delta
$$

$$
\Gamma \vdash a = b, \Delta
$$
Extensionality

If \(a \) and \(b \) have the same members, then \(a = b \).

\[
\Gamma, x \in a \vdash x \in b, \Delta \quad \Gamma, x \in b \vdash x \in a, \Delta
\]

\[
\Gamma \vdash a = b, \Delta
\]

(Extensionality will not play a significant role in what follows.)
MODEL
CONSTRUCTION
What are Models For?

Defining validity.
What are Models For?

Defining validity.

Providing counterexamples, including proving non-triviality.
What are Models For?

Defining validity.

Providing counterexamples, including proving non-triviality.

Relating theories.
What are Models For?

- Defining validity.
- Providing counterexamples, including proving non-triviality.
- Relating theories.
- Giving a sense of what the theory can be about.
What are Models For?

Defining validity.

Providing counterexamples, including proving non-triviality.

Relating theories.

Giving a sense of what the theory can be about.

Motivating the theory.
What are Models For?

Defining validity.

Providing counterexamples, including proving non-triviality.

Relating theories.

Giving a sense of what the theory can be about.

Motivating the theory.
What are Models For?

Defining validity.

Providing *counterexamples*, including *proving non-triviality*.

Relating theories.

Giving a sense of what the theory can be *about*.

Motivating the theory.
These models are good for (1) relating ZFC to AFA, (2) motivating a choice of the anti-foundation axiom, and (3) explaining what the theory could be about.
These models are good for (1) relating ZFC to AFA, (2) motivating a choice of the anti-foundation axiom, and (3) explaining what the theory could be about.
These models are good for (1) relating ZFC to AFA, (2) motivating a choice of the anti-foundation axiom, and (3) explaining what the theory could be about.
These models are good for (1) relating ZFC to AFA, (2) motivating a choice of the anti-foundation axiom, and (3) explaining what the theory could be about.

\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}

an \(a\) where \(a = \{a\}\)
ZFC and its Cousins: Anti-Foundation

These models are good for (1) relating ZFC to AFA, (2) motivating a choice of the anti-foundation axiom, and (3) explaining what the theory could be about.

\[
\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}
\]

an \(a\) where \(a = \{a\}\)
These models are good for (1) relating ZFC to AFA,
These models are good for (1) relating ZFC to AFA, (2) motivating a choice of the anti-foundation axiom,
ZFC and its Cousins: Anti-Foundation

These models are good for (1) *relating* ZFC to AFA, (2) motivating a choice of the anti-foundation axiom, and (3) explaining what the theory could be *about*.
If x is a variable and M is a term, $\lambda x. M$ is a term.
If x is a variable and M is a term, $\lambda x. M$ is a term.

For any terms, M and N, MN is M applied to N.
Untyped λ Calculus

If x is a variable and M is a term, $\lambda x.M$ is a term.

For any terms, M and N, MN is M applied to N.

$$(\lambda x.M)N = M[x := N].$$
Models of the Untyped λ Calculus

You bump up against Cantor's Theorem.
Models of the Untyped λ Calculus

You bump up against Cantor's Theorem.
Models of the Untyped \(\lambda\) Calculus

\[
D \cong D \rightarrow D
\]

You bump up against Cantor’s Theorem.
$D \simeq [D \to D]$
[D → E]: the order preserving functions from (D, ⊑) to (E, ⊑).
[\mathcal{D} \rightarrow \mathcal{E}]: the order preserving functions from \((\mathcal{D}, \sqsubseteq)\) to \((\mathcal{E}, \sqsubseteq)\).

It’s ordered too: \(f \sqsubseteq g\) iff \((\forall x)(f(x) \sqsubseteq g(x))\).
The Scott Construction

\[[D \to E] : \text{the order preserving functions from } (D, \sqsubseteq) \text{ to } (E, \sqsubseteq). \]

It’s ordered too: \(f \sqsubseteq g \iff (\forall x)(f(x) \sqsubseteq g(x)) \).

Embed \(D_i \) into \([D_i \to D_i] = D_{i+1} \)
(Use the constant functions.)
The Scott Construction

\([D \rightarrow E]\): the order preserving functions from \((D, \sqsubseteq)\) to \((E, \sqsubseteq)\).

It’s ordered too: \(f \sqsubseteq g\) iff \((\forall x)(f(x) \sqsubseteq g(x))\).

Embed \(D_i\) into \([D_i \rightarrow D_i] = D_{i+1}\)
(Use the constant functions.)

Let \(D_\infty\) be the limit: \(D_\infty \cong [D_\infty \rightarrow D_\infty]\).

This is a model of the untyped \(\lambda\) calculus.
Truth Theories: Kripke, Woodruff, Gilmore, Brady

\[
\begin{align*}
M_0 & \quad \cdots \quad M_n & \quad M_{n+1} & \quad M_k & \quad M_{k+1} \\
0 & \quad A & \quad \sim & \quad T\langle A \rangle & \quad A & \quad = & \quad T\langle A \rangle
\end{align*}
\]
This is not like the other model constructions: the domain is constant—the terms \(f_x : \phi(x) \). This shows what the theory is about in only a very weak sense.
This is not like the other model constructions:
the domain is constant—the terms \(\{ x : \phi(x) \} \).
This is not like the other model constructions: the domain is constant—the terms \(\{ x : \phi(x) \} \).

This shows what the theory is \textit{about} in only a very weak sense.
CLASSIFYING CLASS THEORIES
Gaps or Gluts?
Underlying Logic: Negation

Gaps or Gluts?

Paraconsistent or Paracomplete?
Do we have a conditional in the language?
Do we have a conditional in the language?

And if so, what is it like?
These decisions are not *that* important.
Underlying Logic: Not *that* important

These decisions are not *that* important.

The logic must allow for *fixed points*.
These decisions are not *that* important.

The logic must allow for *fixed points*.

For *any* sentence context $F(-)$, we need to allow for some p to be *equivalent to* $F(p)$. If $c =_{df} \{ x : F(x \in x) \}$, then $c \in c$ *iff* $F(c \in c)$.
D

- D: the *ordinary* domain.
D: the *ordinary* domain.
- D: the *ordinary* domain.
- Ω: truth values.
Semantic Values

- D: the *ordinary* domain.
- \(\Omega \): truth values.
- C: the classes
Semantic Values

\[C \ (C \cup D) \rightarrow \Omega \]

- D: the *ordinary* domain.
- \(\Omega \): truth values.
- C: the classes
Semantic Values

\[C \cong (C \cup D) \rightarrow \Omega \]

- **D**: the *ordinary* domain.
- **Ω**: truth values.
- **C**: the classes
Semantic Values

\[C \cong [(C \cup D) \rightarrow \Omega] \]

- \(D\): the ordinary domain.
- \(\Omega\): truth values.
- \(C\): the classes
Extensionality

We won’t focus on extensionality here.
We won’t focus on extensionality here.

But we’ll *identify* classes by their extensions as much as possible.
Sharpening our Target

\[C \cong [C \cup D \to \Omega] \]
Sharpening our Target

\[C \cong [C \cup D \rightarrow \Omega] \]

\(\phi(x)\) gives a function \([C \cup D \rightarrow \Omega]\).

So we can find a class \(C\) to *match*.

\(a \in \{x : \phi(x)\}\) has the *same* value in \(\Omega\) as \(\phi(a)\).
ORDER AND CONTINUITY
Underlying Logic: Preservation
Underlying Logic: Preservation

Ω is ordered by ⊑.

\[\sqsubseteq \]
Ω is ordered by \sqsubseteq.

All connectives & quantifiers are \sqsubseteq-order preserving.
Underlying Logic: Preservation

\[\Omega \]

\(\Omega \) is ordered by \(\sqsubseteq \).

All connectives & quantifiers are \(\sqsubseteq \)-order preserving.

(If \(x \sqsubseteq x' \) and \(y \sqsubseteq y' \) then \(x \uparrow y \sqsubseteq x' \uparrow y' \), etc.)
Preservation on candidates for Ω

In $Ł^3$, $1! = 0$; but $0! = 1$

Similar behaviour here.

In RM^3, $1! = 0$; but $0! = 1$.
Preservation on candidates for Ω

$\begin{array}{c}
0 \\
\rightarrow \\
*
\rightarrow \\
1
\end{array}$

K_3 or LP

In \mathcal{L}, $1! = 0$; but $0! = 1$.

Similar behaviour here.

In \mathcal{R}, $1! = 0$; but $0! = 1$.
Preservation on candidates for Ω

K₃ or LP, but not Ł₃

In Ł₃, $\star \rightarrow \star$ is 1; but $1 \rightarrow 0$ is 0
Preservation on candidates for Ω

In Ł3, $* \rightarrow *$ is 1; but $1 \rightarrow 0$ is 0

In RM3, $1 \rightarrow *$ is 0; but $1 \rightarrow 1$ is 1
Preservation on candidates for Ω

K₃ or LP, but not Ł₃ or RM₃

In Ł₃, $* \rightarrow *$ is 1; but $1 \rightarrow 0$ is 0

In RM₃, $1 \rightarrow *$ is 0; but $1 \rightarrow 1$ is 1
Preservation on candidates for Ω

K_3 or LP, but not \mathcal{L}_3 or RM_3

In \mathcal{L}_3, $* \rightarrow *$ is 1; but $1 \rightarrow 0$ is 0

In RM_3, $1 \rightarrow *$ is 0; but $1 \rightarrow 1$ is 1

FDE, but no robust conditionals.
Preservation on candidates for Ω

K₃ or LP, but not Ł₃ or RM₃
In Ł₃, $\ast \rightarrow \ast$ is 1; but 1 → 0 is 0
In RM₃, 1 → \ast is 0; but 1 → 1 is 1

FDE, but no robust conditionals.
Similar behaviour here.
Many other choices for Ω are possible.
Many other choices for Ω are possible.

Even $\{0, 1\}$ can be ordered: $0 \sqsubseteq 1$. Then $\land, \lor, 0, 1$ are order preserving, but \neg and \supseteq are not order preserving.
3: our choice of Ω

\[0 \xleftarrow{} * \xrightarrow{} 1 \]
(I really don’t care if you think of * as true, or as untrue.)
ORDER MODELS
Given an order algebra Ω, and a domain D of urelements

\[\langle C, \sqsubseteq, \uparrow, \downarrow \rangle \text{ is a } \langle D, \Omega \rangle \text{ order model iff} \]

- \uparrow is a partial order on C.
- $\ast : C \rightarrow [C \rightarrow D] \rightarrow \Omega$ is order preserving and invertible.
- $+ : [C \rightarrow D] \rightarrow \Omega$, where $+ = \ast ^{-1}$, is also order preserving.

Write $\ast (c)$ as c^\ast and $+ (f)$ as f^+. So $c^\ast + = c$ and $f^+ \ast = f$.

- If $b \in C \in D$ and $c \in C$, then $c \ast (b)$ tells you whether b is in c.
Defining Order Models

Given an order algebra Ω, and a domain D of urelements

$\langle C, \sqsubseteq, \uparrow, \downarrow \rangle$ is a $\langle D, \Omega \rangle$ order model iff

- \sqsubseteq is a partial order on C.

- Write $\ast(c)$ as c^\ast and $\ast(f)$ as f^\ast. So $c^\ast + = c$ and $f +^\ast = f$.

- If $b \in C$ and $c \in C$, then $c^\ast(b)$ tells you whether b is in c.

Greg Restall

Fixed Point Models, for Theories of, Properties and Classes
Defining Order Models

Given an order algebra Ω, and a domain D of urelements

\[\langle C, \sqsubseteq, \uparrow, \downarrow \rangle \text{ is a } \langle D, \Omega \rangle \text{ order model iff} \]

- \(\sqsubseteq \) is a partial order on C.
- \(\uparrow : C \rightarrow [C \cup D \rightarrow \Omega] \) is order preservering and invertible.
Defining Order Models

Given an order algebra \(\Omega \), and a domain \(D \) of urelements

\[\langle C, \sqsubseteq, \uparrow, \downarrow \rangle \text{ is a } \langle D, \Omega \rangle \text{ order model iff} \]

- \(\sqsubseteq \) is a partial order on \(C \).
- \(\uparrow : C \rightarrow [C \cup D \rightarrow \Omega] \) is order preserving and invertible.
- \(\downarrow : [C \cup D \rightarrow \Omega] \rightarrow C \), where \(\downarrow = \uparrow^{-1} \), is also order preserving.
Defining Order Models

Given an order algebra Ω, and a domain D of urelements

$$\langle C, \sqsubseteq, \uparrow, \downarrow \rangle$$

is a $\langle D, \Omega \rangle$ order model iff

- \sqsubseteq is a partial order on C.
- $\uparrow : C \rightarrow [C \cup D \rightarrow \Omega]$ is order preserving and invertible.
- $\downarrow : [C \cup D \rightarrow \Omega] \rightarrow C$, where $\downarrow = \uparrow^{-1}$, is also order preserving.

- Write ‘$\uparrow(c)$’ as ‘c_{\uparrow}’ and ‘$\downarrow(f)$’ as ‘f_{\downarrow}’. So $c_{\uparrow\downarrow} = c$ and $f_{\downarrow\uparrow} = f$.
Defining Order Models

Given an order algebra \(\Omega \), and a domain \(D \) of urelements

\[
\langle C, \sqsubseteq, \uparrow, \downarrow \rangle \text{ is a } \langle D, \Omega \rangle \text{ order model iff}
\]

- \(\sqsubseteq \) is a partial order on \(C \).
- \(\uparrow : C \to [C \cup D \to \Omega] \) is order preserving and invertible.
- \(\downarrow : [C \cup D \to \Omega] \to C \), where \(\downarrow = \uparrow^{-1} \), is also order preserving.

- Write ‘\(\uparrow(c) \)’ as ‘\(c_{\uparrow} \)’ and ‘\(\downarrow(f) \)’ as ‘\(f_{\downarrow} \)’. So \(c_{\uparrow\downarrow} = c \) and \(f_{\downarrow\uparrow} = f \).
- If \(b \in C \cup D \) and \(c \in C \), then \(c_{\uparrow}(b) \) tells you whether \(b \) is in \(c \).
Membership is order preserving

If \(x \sqsubseteq x' \) and \(y \sqsubseteq y' \) then \(x \uparrow(y) \sqsubseteq x' \uparrow(y') \).
Membership is order preserving

If $x \sqsubseteq x'$ and $y \sqsubseteq y'$ then $x \uparrow(y) \sqsubseteq x' \uparrow(y')$.

$x \uparrow(y) \sqsubseteq x \uparrow(y')$ — $y \sqsubseteq y'$ and $x \uparrow$ is order preserving.
Membership is order preserving

If $x \sqsubseteq x'$ and $y \sqsubseteq y'$ then $x \uparrow(y) \sqsubseteq x' \uparrow(y')$.

$x \uparrow(y) \sqsubseteq x \uparrow(y')$ — $y \sqsubseteq y'$ and $x \uparrow$ is order preserving.

$x \uparrow \sqsubseteq x' \uparrow$ — $x \sqsubseteq x'$ and \uparrow is order preserving.
Membership is order preserving

If \(x \sqsubseteq x' \) and \(y \sqsubseteq y' \) then \(x_{\uparrow}(y) \sqsubseteq x'_{\uparrow}(y') \).

\[
\begin{align*}
 x_{\uparrow}(y) & \sqsubseteq x_{\uparrow}(y') & \text{— } & y \sqsubseteq y' \text{ and } x_{\uparrow} \text{ is order preserving.} \\
 x_{\uparrow} & \sqsubseteq x'_{\uparrow} & \text{— } & x \sqsubseteq x' \text{ and } \uparrow \text{ is order preserving.} \\
 x_{\uparrow}(y') & \sqsubseteq x'_{\uparrow}(y') & \text{— } & \text{by the definition of } \sqsubseteq \text{ for functions.}
\end{align*}
\]
Given a \(\langle D, 3 \rangle \) order model \(\mathcal{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle \),
Interpreting a Language

Given a \(\langle D, 3 \rangle \) order model \(\mathcal{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle \),

- An assignment \(\alpha \), takes variables to values in \(C \cup D \).
Given a $\langle D, 3 \rangle$ order model $\mathcal{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle$,

- An assignment α, takes variables to values in $C \cup D$.
- $[[x]]_{\mathcal{M}, \alpha} = \alpha(x)$ is the interpretation of the variable x.

Connectives and quantifiers are interpreted as usual.

(Connectives and quantifiers are order preserving functions on $\langle C \cup D, 3 \rangle$.)
Given a \(\langle D, 3 \rangle \) order model \(\mathcal{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle \),

- An assignment \(\alpha \), takes variables to values in \(C \cup D \).
- \([x]_{\mathcal{M}, \alpha} = \alpha(x) \) is the interpretation of the variable \(x \).
- (We abbreviate this \([x] \) when \(\mathcal{M} \) and \(\alpha \) is clear.)
Interpreting a Language

Given a \langle D, 3 \rangle order model \(\mathcal{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle \),

- An assignment \(\alpha \), takes variables to values in \(C \cup D \).
 - \(\llbracket x \rrbracket_{\mathcal{M}, \alpha} = \alpha(x) \) is the interpretation of the variable \(x \).
- (We abbreviate this \(\llbracket x \rrbracket \) when \(\mathcal{M} \) and \(\alpha \) is clear.)

- \(\llbracket s \in t \rrbracket_{\mathcal{M}, \alpha} \) is \(\llbracket t \rrbracket_{\uparrow}(\llbracket s \rrbracket) \) when \(\llbracket t \rrbracket \in C \),
 and is 0 when \(\llbracket t \rrbracket \in D \).
Interpreting a Language

Given a \(\langle D, 3 \rangle \) order model \(\mathcal{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle \),

- An assignment \(\alpha \), takes variables to values in \(C \cup D \).
 - \(\llbracket x \rrbracket_{\mathcal{M}, \alpha} = \alpha(x) \) is the interpretation of the variable \(x \).
 - (We abbreviate this \(\llbracket x \rrbracket \) when \(\mathcal{M} \) and \(\alpha \) is clear.)
 - \(\llbracket s \in t \rrbracket_{\mathcal{M}, \alpha} \) is \(\llbracket t \rrbracket_{\uparrow}(\llbracket s \rrbracket) \) when \(\llbracket t \rrbracket \in C \), and is 0 when \(\llbracket t \rrbracket \in D \).
- Connectives and quantifiers are interpreted as usual.
Given a \(\langle D, 3 \rangle \) order model \(\mathcal{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle \),

- An assignment \(\alpha \), takes variables to values in \(C \cup D \).
 \[\llbracket x \rrbracket_{\mathcal{M}, \alpha} = \alpha(x) \] is the interpretation of the variable \(x \).
- (We abbreviate this \(\llbracket x \rrbracket \) when \(\mathcal{M} \) and \(\alpha \) is clear.)
 \[\llbracket s \in t \rrbracket_{\mathcal{M}, \alpha} \text{ is } \llbracket t \rrbracket \uparrow (\llbracket s \rrbracket) \text{ when } \llbracket t \rrbracket \in C, \]
 and is 0 when \(\llbracket t \rrbracket \in D \).
- Connectives and quantifiers are interpreted as usual.
 (Connectives and quantifiers are order preserving functions on 3 or \(C \cup D \rightarrow 3 \).)
Extending the Language with Terms

\[\{ x : \phi(x) \} \]
Extending the Language with Terms

\[\{x : \phi(x)\} \]

Since \(\llbracket \phi(x) \rrbracket_m,\alpha[x := v] \) is order preserving in \(v \) we can use that function, in \([C \cup D \rightarrow 3] \), to select the extension of \(\{x : \phi(x)\} \).
Extending the Language with Terms

\[\{ x : \phi(x) \} \]

Since \([\phi(x)]_m,\alpha[x := v] \) is order preserving in \(v \),
we can use that function, in \([C \cup D \rightarrow 3]\),
to select the extension of \(\{ x : \phi(x) \} \).

\[\llbracket \{ x : \phi(x) \} \rrbracket_m,\alpha = (\lambda v. [\phi(x)]_m,\alpha[x := v]) \downarrow \]
Strong Comprehension

\[[t \in \{ x : \phi(x) \}]_{m, \alpha} \]
Strong Comprehension

\[
[t \in \{x : \phi(x)\}]_\mathcal{M},\alpha = \llbracket\{x : \phi(x)\}\rrbracket_\alpha(\llbracket t \rrbracket_\alpha)
\]

(I’ve dropped reference to \(\mathcal{M}\) as it is constant throughout.)
\[[t \in \{ x : \phi(x) \}]_{\mathcal{M},\alpha} = \llbracket \{ x : \phi(x) \} \rrbracket_{\alpha \uparrow} (\llbracket t \rrbracket_{\alpha}) \]
\[= (\lambda v. \llbracket \phi(x) \rrbracket_{\alpha[x := v]}_{\downarrow \uparrow}) (\llbracket t \rrbracket_{\alpha}) \]

(I’ve dropped reference to \(\mathcal{M} \) as it is constant throughout.)
\[[t \in \{x : \phi(x)\}]_m,\alpha \quad = \quad \llbracket \{x : \phi(x)\} \rrbracket_{\alpha \uparrow} (\llbracket t \rrbracket_{\alpha})
= \quad (\lambda v. \llbracket \phi(x) \rrbracket_{\alpha[x := v]})(\downarrow\uparrow (\llbracket t \rrbracket_{\alpha}))
= \quad (\lambda v. \llbracket \phi(x) \rrbracket_{\alpha[x := v]})(\llbracket t \rrbracket_{\alpha})\]

(I’ve dropped reference to \(M\) as it is constant throughout.)
Strong Comprehension

\[
[t \in \{x : \phi(x)\}]_{m,\alpha} = \llbracket \{x : \phi(x)\} \rrbracket_{\alpha \uparrow} (\llbracket t \rrbracket_{\alpha}) \\
= (\lambda v. \llbracket \phi(x) \rrbracket_{\alpha[x := v]} \downarrow \uparrow (\llbracket t \rrbracket_{\alpha}) \\
= (\lambda v. \llbracket \phi(x) \rrbracket_{\alpha[x := v]} (\llbracket t \rrbracket_{\alpha}) \\
= \llbracket \phi(x) \rrbracket_{\alpha[x := \llbracket t \rrbracket_{\alpha}}
\]

(I’ve dropped reference to \(M\) as it is constant throughout.)
[t ∈ \{x : \phi(x)\}]_{m,\alpha} = \llbracket\{x : \phi(x)\}\rrbracket_{\alpha}^{\uparrow}(\llbracket t \rrbracket_{\alpha})

= (\lambda v. \llbracket \phi(x) \rrbracket_{\alpha}[x := v])_{\downarrow\uparrow}(\llbracket t \rrbracket_{\alpha})

= (\lambda v. \llbracket \phi(x) \rrbracket_{\alpha}[x := v])(\llbracket t \rrbracket_{\alpha})

= \llbracket \phi(x) \rrbracket_{\alpha}[x := \llbracket t \rrbracket_{\alpha}]

= \llbracket \phi(t) \rrbracket_{m,\alpha}

(I’ve dropped reference to \(M\) as it is constant throughout.)
\[[t \in \{x : \phi(x)\}]_{\mathcal{M},\alpha} = \langle\{x : \phi(x)\}\rangle_{\alpha}^{\uparrow}([t]_{\alpha}) \]
\[= (\lambda v. [\phi(x)]_{\alpha[x := v]}^{\uparrow}[t]_{\alpha}) \]
\[= (\lambda v. [\phi(x)]_{\alpha[x := v]}([t]_{\alpha})) \]
\[= [\phi(x)]_{\alpha[x := [t]_{\alpha}]} \]
\[= [\phi(t)]_{\mathcal{M},\alpha} \]

(I’ve dropped reference to \(\mathcal{M}\) as it is constant throughout.)
Logical Constants
Logical Constants

0 * 1
\(\Lambda = \{ x : 0 \} \)
\[\Lambda = \{ x : 0 \} \quad x \in \Lambda \text{ is always false.} \]
\(\Lambda, \text{ } V \text{ and } \mathfrak{X} \)

\[
\Lambda = \{x : 0\} \quad x \in \Lambda \text{ is always false.}
\]

\[
V = \{x : 1\}
\]
Λ, V and Ξ

\[\Lambda = \{ x : 0 \} \quad x \in \Lambda \text{ is always false.} \]

\[V = \{ x : 1 \} \quad x \in V \text{ is always true.} \]
\(\Lambda = \{x : 0\}\) \(x \in \Lambda\) is always false.

\(\forall = \{x : 1\}\) \(x \in \forall\) is always true.

\(\mathcal{X} = \{x : *\}\)
\[\Lambda = \{ x : 0 \} \quad x \in \Lambda \text{ is always false.} \]

\[V = \{ x : 1 \} \quad x \in V \text{ is always true.} \]

\[\mathcal{X} = \{ x : * \} \quad x \in \mathcal{X} \text{ is always *}. \]
Ordering the Classes

In fact, \([V] \sqsubseteq c\) for every class \(c \in C\).

From now, we'll use '∅', 'V' and 'V' as both the class terms in the language, and as their denotations, names for objects in \(C\).
In fact, $[V] \sqsubseteq c$ for every class $c \in C$.

From now, we'll use '\emptyset', 'V' and 'V' as both the class terms in the language, and as their denotations, names for objects in C.
In fact, $[\mathcal{M}] \subseteq c$ for every class $c \in C$.
Ordering the Classes

In fact, \([\mathcal{X}] \sqsubseteq c\) for every class \(c \in C\).

From now, we’ll use ‘\(\emptyset\)’, ‘\(\forall\)’ and ‘\(\mathcal{X}\)’ as both the class terms in the language, and as their denotations, names for objects in \(C\).
In a model \mathcal{M}, a class c is **SHARP** iff for each object b in $C \cup D$, $c^*(b)$ takes the value 0 or 1.
In a model \mathcal{M}, a class c is **SHARP** iff for each object b in $C \cup D$
$c(\uparrow b)$ takes the value 0 or 1

Λ and \forall are sharp.
In a model \mathcal{M}, a class c is **SHARP** iff for each object b in $C \cup D$
\[c_\uparrow(b)\] takes the value 0 or 1

Λ and \forall are sharp.

\mathcal{W} is *not* sharp.
Almost No Classes are *Sharp*

If $c_{\uparrow}(b) = 1$ and $c_{\uparrow}(b') = 0$, then $c_{\uparrow}(\mathcal{X}) = \ast$.
Almost No Classes are *Sharp*

If $c_{\uparrow}(b) = 1$ and $c_{\uparrow}(b') = 0$, then $c_{\uparrow}(\mathcal{X}) = \ast$.

$\mathcal{X} \subseteq b$, so $c_{\uparrow}(\mathcal{X}) \subseteq c_{\uparrow}(b) = 1$.
Almost No Classes are *Sharp*

If \(c_{\uparrow}(b) = 1 \) and \(c_{\uparrow}(b') = 0 \), then \(c_{\uparrow}(\mathcal{X}) = * \).

\(\mathcal{X} \sqsubseteq b \), so \(c_{\uparrow}(\mathcal{X}) \sqsubseteq c_{\uparrow}(b) = 1 \).

\(\mathcal{X} \sqsubseteq b' \), so \(c_{\uparrow}(\mathcal{X}) \sqsubseteq c_{\uparrow}(b') = 0 \).
Almost No Classes are Sharp

If $c \uparrow (b) = 1$ and $c \uparrow (b') = 0$, then $c \uparrow (\mathcal{X}) = *$.

$\mathcal{X} \sqsubseteq b$, so $c \uparrow (\mathcal{X}) \sqsubseteq c \uparrow (b) = 1$.

$\mathcal{X} \sqsubseteq b'$, so $c \uparrow (\mathcal{X}) \sqsubseteq c \uparrow (b') = 0$.

It follows that $c \uparrow (\mathcal{X}) = *$.
There is no *classical recapture* through crisp classes.

Once a class *includes* something and *excludes* something, it is *indecisive* about \mathcal{X}.
There is no classical recapture through crisp classes

Once a class \textit{includes} something and \textit{excludes} something, it is \textit{indecisive} about \(\mathcal{X} \).

It follows that there are no \textit{crisp singletons}: objects \(\{a\} \) for which \(\llbracket a \in \{x\} \rrbracket = 1 \) and \(\llbracket b \in \{x\} \rrbracket = 0 \) for all other \(b \).
Singletons and Anti-Signetons: \(\{t\} \) and \(\{t\} \)

\[\text{\(\llbracket \{t\} \rrbracket_\alpha: \) (the class representative of) the function that}\]
\[\begin{align*}
\text{\quad – assigns } 1 \text{ to } x \text{ iff } \llbracket t \rrbracket_\alpha \sqsubseteq x, \\
\text{\quad – and } 0 \text{ to } x \text{ iff there is no } z \text{ where } x \sqsubseteq z \text{ and } \llbracket t \rrbracket_\alpha \sqsubseteq z, \\
\text{\quad – and } * \text{ otherwise.}
\end{align*}\]

\[\text{\(\llbracket \{t\} \rrbracket_\alpha: \) (the class representative of) the function that}\]
\[\begin{align*}
\text{\quad – assigns } 0 \text{ to } x \text{ iff } \llbracket t \rrbracket_\alpha \sqsubseteq x, \text{ and} \\
\text{\quad – and } 1 \text{ to } x \text{ if there is no } z \text{ where } x \sqsubseteq z \text{ and } \llbracket t \rrbracket_\alpha \sqsubseteq z, \\
\text{\quad – and } * \text{ otherwise.}
\end{align*}\]
From Here

- Study pure order models (where D is empty), and impure order models.
- Find perspicuous ways to construct order models.
- Relate these constructions to other known model constructions.
- Axiomatise the logic of order models.
- Examine different motivations of order models.
Study *pure* order models (where D is empty),
Study *pure* order models (where \(D\) is empty), ... and *impure* order models.
Study *pure* order models (where D is empty),
... and *impure* order models.

Find perspicuous ways to *construct* order models.
From Here

- Study *pure* order models (where D is empty),
 ... and *impure* order models.
- Find perspicuous ways to *construct* order models.
- Relate these constructions to other known model constructions.
From Here

- Study *pure* order models (where D is empty), ... and *impure* order models.
- Find perspicuous ways to *construct* order models.
- Relate these constructions to other known model constructions.
- *Axiomatise* the logic of order models.
Study *pure* order models (where D is empty),
... and *impure* order models.

Find perspicuous ways to *construct* order models.

Relate these constructions to other known model constructions.

Axiomatise the logic of order models.

Examine different *motivations* of order models.
THANK YOU!