Geometric Models for Relevant Logics

Greg Restall

MELBOURNE LOGIC GROUP * 20 MARCH 2020 * ONLINE TALK & ZOOM TEST

To present some thoughts on *geometric models* for relevant logics, written for a festschrift for Alasdair Urquhart ...

To present some thoughts on *geometric models* for relevant logics, written for a festschrift for Alasdair Urquhart ...

... and to test giving a talk using *Zoom* before I use all this for my classes.

Alasdair Urquhart, *Banff* (2007)

Alasdair Urquhart, & Robert K. Meyer (2007)

Semantics for Relevant Logics (1972)

THE JOURNAL OF SYMBOLIC LOGIC Volume 37, Number 1, March 1972

SEMANTICS FOR RELEVANT LOGICS

ALASDAIR URQUHART

§1. Introduction. In what follows there is presented a unified semantic treatment of certain "paradox-free" systems of entailment, including Church's weak theory of implication (Church [7]) and logics akin to the systems E and R of Anderson and Belnap (Anderson [3], Belnap [6]).¹ We shall refer to these systems generally as *relevant logics*.

The leading idea of the semantics is that just as in modal logic validity may be defined in terms of certain valuations on a binary relational structure so in relevant logics validity may be defined in terms of certain valuations on a semilattice interpreted informally as the semilattice of possible pieces of information. Completeness theorems can be given relative to these semantics for the implicational fragments of relevant logics. The semantical viewpoint affords some insights into the structure of the systems—in particular light is thrown upon admissible modes of negation and on the assumptions underlying rejection of the "paradoxes of material implication".

The Undecidability of Entailment ... (1984)

THE JOURNAL OF SYMBOLIC LOGIC Volume 49, Number 4, Dec. 1984

THE UNDECIDABILITY OF ENTAILMENT AND RELEVANT IMPLICATION

ALASDAIR URQUHART

§1. Introduction. In this paper we show that the propositional logics E of entailment, R of relevant implication and T of ticket entailment are undecidable. The decision problem is also shown to be unsolvable in an extensive class of related logics. The main tool used in establishing these results is an adaptation of the von Neumann coordinatization theorem for modular lattices.

Interest in the decision problem for these systems dates from the late 1950s. The earliest result was obtained by Anderson and Belnap who proved that the first degree fragment of all these logics is decidable. Kripke [11] proved that the pure implicational fragments R_{\rightarrow} and E_{\rightarrow} of R and E are decidable. His methods were extended by Belnap and Wallace to the implication-negation fragments of these systems [3]; Kripke's methods also extend easily to include the implication-

Failure of Interpolation in Relevant Logics (1993)

ALASDAIR URQUHART

FAILURE OF INTERPOLATION IN RELEVANT LOGICS

ABSTRACT. Craig's interpolation theorem fails for the propositional logics E of entailment, R of relevant implication and T of ticket entailment, as well as in a large class of related logics. This result is proved by a geometrical construction, using the fact that a non-Arguesian projective plane cannot be imbedded in a three-dimensional projective space. The same construction shows failure of the amalgamation property in many varieties of distributive lattice-ordered monoids.

Journal of Philosophical Logic (22) 449–479, 1993

My **Plan**

Models for Relevant Logics

Collection Frames

Points at Infinity

Functional Geometric Set Frames

MODELS FOR RELEVANT LOGICS

Semantics for Relevant Logics (1972)

THE JOURNAL OF SYMBOLIC LOGIC Volume 37, Number 1, March 1972

SEMANTICS FOR RELEVANT LOGICS

ALASDAIR URQUHART

§1. Introduction. In what follows there is presented a unified semantic treatment of certain "paradox-free" systems of entailment, including Church's weak theory of implication (Church [7]) and logics akin to the systems E and R of Anderson and Belnap (Anderson [3], Belnap [6]).¹ We shall refer to these systems generally as *relevant logics*.

The leading idea of the semantics is that just as in modal logic validity may be defined in terms of certain valuations on a binary relational structure so in relevant logics validity may be defined in terms of certain valuations on a semilattice interpreted informally as the semilattice of possible pieces of information. Completeness theorems can be given relative to these semantics for the implicational fragments of relevant logics. The semantical viewpoint affords some insights into the structure of the systems—in particular light is thrown upon admissible modes of negation and on the assumptions underlying rejection of the "paradoxes of material implication".

Relevant logics

$A \to B$

When is $A \rightarrow B$ true at a world?

A natural thought:

$$\begin{split} x \Vdash A \to B \text{ iff at some appropriately chosen worlds } y, \\ & \text{ if } y \Vdash A \text{, then we have } y \Vdash B \text{ too.} \end{split}$$

The Problem of $p \to (q \to q)$

Alasdair Urquhart's Insight

Check the antecedent A, and the consequent B, at *different places*. Alasdair Urquhart's Insight

Check the antecedent A, and the consequent B, at *different places*.

$x \Vdash A \rightarrow B$ iff for each y if $y \Vdash A$, then $x \sqcup y \Vdash B$.

$p \rightarrow (q \rightarrow q)$ is no longer a problem

Provided that \sqcup is not *cumulative*.

Urquhart calls them *pieces of information*.

Urquhart calls them *pieces of information*.

I'll call them *points*.

Urquhart calls them pieces of information.

I'll call them *points*.

For Urquhart, \sqcup is *commutative*, *associative* and *idempotent*.

 $p \rightarrow p$ fails somewhere, not necessarily everywhere

If we have a point 0 where $0 \sqcup x = x$, then $0 \Vdash A \rightarrow A$ for each A.

 $p \rightarrow p$ fails somewhere, not necessarily everywhere

If we have a point 0 where $0 \sqcup x = x$, then $0 \Vdash A \rightarrow A$ for each A.

We call 0 a *normal* point.

Disjunction: The Fly in the Ointment

$x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B$

Disjunction: The Fly in the Ointment

$x \Vdash A \lor B$ iff $x \Vdash A$ or $x \Vdash B$

Suppose $x \Vdash p \to (q \lor r)$ and $y \Vdash p$.

Disjunction: The Fly in the Ointment

$x \Vdash A \lor B$ iff $x \Vdash A$ or $x \Vdash B$

Suppose $x \Vdash p \rightarrow (q \lor r)$ and $y \Vdash p$. Then $x \sqcup y \Vdash q \lor r$, but *which one*?

Routley–Meyer Ternary Relational Semantics (1972, 1973)

THE SEMANTICS OF ENTAILMENT

Richard ROUTLEY Australian National University

Robert K. MEYER University of Toronto, Indiana University

Once upon a time, modal logics "had no semantics". Bearing a real world G, a set of worlds K, and a relation R of relative possibility between worlds, Saul Kripke beheld this situation and saw that it was formally explicable, and made model structures. It came to pass that soon everyone was making model structures, and some were deontic, and some were temporal, and some were epistemic, according to the conditions on the binary relation R.

None of the model structures that Kripke made, nor that Hintikka made, nor that Thomason made, nor that their co-workers and colleagues made, were, however, relevant. This caused great sadness in the city of Pittsburgh, where dwelt the captains of American Industry. The logic industry was there represented by Anderson, Belnap & Sons, discoverers of entailment and scourge of material impliers, strict impliers, and of all that to which their falsehoods and contradictions led. Yea, every year or so Anderson & Belnap turned out a new logic, and they did call it E, or R, or $E_{\overline{1}}$, or P - W, and they beheld each such logic, and they were called relevant. And these logics were looked upon with favor by many, for they captureth the intuitions, but by many more

Alasdair Urquhart, & Robert K. Meyer (2007)

Replace $x \sqcup y = z$ by the *ternary relation* Rxy*z*.

Replace $x \sqcup y = z$ by the *ternary relation* Rxy*z*.

There may be more than one 'result' of applying x to y, and there may be *none*.

Replace $x \sqcup y = z$ by the *ternary relation* Rxy*z*.

There may be more than one 'result' of applying x to y, and there may be *none*.

 $x \Vdash A \rightarrow B$ iff for each y, z where Rxyz, if $y \Vdash A$ then $z \Vdash B$.

Replace $x \sqcup y = z$ by the *ternary relation* Rxy*z*.

There may be more than one 'result' of applying x to y, and there may be *none*.

 $x \Vdash A \to B$ iff for each y, z where Rxyz, if $y \Vdash A$ then $z \Vdash B$. $x \Vdash A \lor B$ iff $x \Vdash A$ or $x \Vdash B$ $x \Vdash A \land B$ iff $x \Vdash A$ and $x \Vdash B$.

$\langle P, N, \sqsubseteq, R \rangle$

$\langle P, N, \sqsubseteq, R \rangle$

▷ P: a non-empty set
▷ N ⊆ P
▷ ⊑ ⊆ P × P
▷ R ⊂ P × P × P

$\langle P, N, \sqsubseteq, R \rangle$

▷ P: a non-empty set
▷ N ⊆ P
▷ ⊑ ⊆ P × P
▷ R ⊂ P × P × P

$\langle P, N, \sqsubseteq, R \rangle$

▷ P: a non-empty set
▷ N ⊆ P
▷ □ ⊂ P × P

 $\triangleright \ R \subseteq P \times P \times P$

- I. N is non-empty.
- 2. \sqsubseteq is a partial order (or preorder).

Greg Restall

$\langle P, N, \sqsubseteq, R \rangle$

- ▷ P: a non-empty set
- $\triangleright \ N \subseteq P$
- $\triangleright \ \sqsubseteq \subseteq \mathsf{P} \times \mathsf{P}$
- $\triangleright \ \mathbf{R} \subset \mathbf{P} \times \mathbf{P} \times \mathbf{P}$

- I. N is non-empty.
- 2. \sqsubseteq is a partial order (or preorder).
- R is downward preserved in the its two positions and upward preserved in the third, i.e. if Rx'y'z and x ⊑ x', y ⊑ y', z ⊑ z', then Rxyz'.
The Twofold Cost: Complexity

$\langle P, N, \sqsubseteq, R \rangle$

- ▷ P: a non-empty set
- $\triangleright \ N \subseteq P$
- $\triangleright \ \sqsubseteq \subseteq \mathsf{P} \times \mathsf{P}$
- $\triangleright \ \mathbf{R} \subseteq \mathbf{P} \times \mathbf{P} \times \mathbf{P}$

- I. N is non-empty.
- 2. \sqsubseteq is a partial order (or preorder).
- R is downward preserved in the its two positions and upward preserved in the third, i.e. if Rx'y'z and x ⊑ x', y ⊑ y', z ⊑ z', then Rxyz'.
- 4. $y \sqsubseteq y' \operatorname{iff} (\exists x)(Nx \land Rxyy').$

Then, to model nice logics, like **R**, you need more

$(\exists u)(Rxyu \land Ruzw) \Leftrightarrow (\exists v)(Ryzv \land Rxvw)$ $Rxyz \Leftrightarrow Ryxz$ Rxxx

The Twofold Cost: Complexity

Ternary relations are not so easy to think about, by themselves.

Urquhart's Insight

Ternary relations occur naturally in geometry.

Urquhart's Insight

Ternary relations occur naturally in geometry.

Collinearity: Cabc but not Cabe.

Urquhart's Insight

Ternary relations occur naturally in geometry.

Collinearity: Cabc but not Cabe.

Betweenness/Surrounding: Sacb but not Sabc.

Geometric Properties

The properly *geometric* properties are those preserved under *translation*, *rotation*, *scaling*, etc.

Geometric Properties

The properly *geometric* properties are those preserved under *translation*, *rotation*, *scaling*, etc.

Collinearity, Betweenness,

Intersection, Parallels,

Inside/Outside, Angle,

Relative Size, Shape, etc.

The properly *geometric* properties are those preserved under *translation*, *rotation*, *scaling*, etc.

Collinearity, Betweenness,

Intersection, Parallels,

Inside/Outside, Angle,

Relative Size, Shape, etc.

Not: Absolute Size, Absolute Position.

Ordering: There is no *natural* ordering \sqsubseteq (other than =) in *most* geometries.

Ordering: There is no *natural* ordering \sqsubseteq (other than =) in *most* geometries.

Normal points: If $x \in N$ then if Rxyz then $y \sqsubseteq z$.

Ordering: There is no *natural* ordering \sqsubseteq (other than =) in *most* geometries.

Normal points: If $x \in N$ then if Rxyz then y = z.

Ordering: There is no *natural* ordering \sqsubseteq (other than =) in *most* geometries.

Normal points: If $x \in N$ then if Rxyz then y = z. If R is *collinearity* or *betweenness*, then there is *no* candidate normal point in any \mathbb{R}^n (or in any affine or projective space). Urquhart's Approach

Add one!

Urquhart's Approach

Add one!

This follows in the steps of a venerable tradition in mathematics, of adding *ideal points*. In this case, a *point at infinity*.

COLLECTION FRAMES

$N \overline{z} \qquad \underline{x} \sqsubseteq \overline{z} \qquad R \underline{x} \underline{y} \overline{z}$

 \triangleright The position of an <u>underlined</u> variable is closed *downwards* along \sqsubseteq .

$N \overline{z} \qquad \underline{x} \sqsubseteq \overline{z} \qquad R \underline{x} \underline{y} \overline{z}$

▷ The position of an <u>underlined</u> variable is closed *downwards* along \sqsubseteq .

▷ The position of an $\overline{overlined}$ variable is closed *upwards* along \sqsubseteq .

$N \overline{z} \qquad \underline{x} \sqsubseteq \overline{z} \qquad \underline{x} \underline{y} \ R \ \overline{z}$

▷ The position of an <u>underlined</u> variable is closed *downwards* along \sqsubseteq .

▷ The position of an $\overline{overlined}$ variable is closed *upwards* along \sqsubseteq .

$\mathsf{R}\,\overline{z} \qquad \underline{\mathsf{x}}\,\mathsf{R}\,\overline{z} \qquad \underline{\mathsf{x}}\underline{\mathsf{y}}\,\,\mathsf{R}\,\overline{z}$

- ▷ The position of an <u>underlined</u> variable is closed *downwards* along \sqsubseteq .
- ▷ The position of an *overlined* variable is closed *upwards* along \sqsubseteq .

Collection Relations

R z x R z xy R z

Collection Relations

X R z

X is a finite *collection* of elements of P; z is in P.

What kind of finite collection?

Leaf-Labelled Trees Lists Multisets Sets more ...

What kind of finite collection?

Leaf-Labelled Trees Lists Multisets Sets more ...

$\begin{array}{rcl} \mathsf{Rxyz} & \Leftrightarrow & \mathsf{Ryxz} \\ (\exists \mathfrak{u})(\mathsf{Rxyu} \land \mathsf{Ruzw}) & \Leftrightarrow & (\exists \mathfrak{v})(\mathsf{Ryzv} \land \mathsf{Rxvw}) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & &$

What kind of finite collection?

Leaf-Labelled Trees Lists Multisets Sets more ...

$\begin{array}{rcl} \mathsf{Rxyz} & \Leftrightarrow & \mathsf{Ryxz} \\ (\exists \mathfrak{u})(\mathsf{Rxyu} \land \mathsf{Ruzw}) & \Leftrightarrow & (\exists \mathfrak{v})(\mathsf{Ryzv} \land \mathsf{Rxvw}) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & &$

Set Relations

$R\subseteq \mathfrak{P}^{\mathsf{fin}}(P)\times P$

Set Relations

$R\subseteq \mathfrak{P}^{\mathsf{fin}}(P)\times P$

R generalises \sqsubseteq .

Set Relations

$R\subseteq \mathfrak{P}^{\mathsf{fin}}(P)\times P$

R generalises \sqsubseteq .

So, it should satisfy analogues of *reflexivity* and *transitivity*.

Reflxivity

$\{x\} \mathrel{R} x$

X R x

$X \mathrel{R} x \quad \{x\} \cup Y \mathrel{R} y$

$X R x \quad \{x\} \cup Y R y \qquad X \cup Y R y$

$(X \mathrel{R} x \land \{x\} \cup Y \mathrel{R} y) \Rightarrow X \cup Y \mathrel{R} y$

$(X \mathrel{R} x \land \{x\} \cup Y \mathrel{R} y) \Rightarrow X \cup Y \mathrel{R} y$

 $X\cup Y \mathrel{R} y$

$(X R x \land \{x\} \cup Y R y) \Rightarrow X \cup Y R y$ $X \cup Y R y \qquad X R x$
Generalised Transitivity

$(X R x \land \{x\} \cup Y R y) \Rightarrow X \cup Y R y$ $X \cup Y R y \qquad X R x \qquad \{x\} \cup Y R y$

Generalised Transitivity

$(X R x \land \{x\} \cup Y R y) \Rightarrow X \cup Y R y$ $X \cup Y R y \Rightarrow (\exists x)(X R x \land \{x\} \cup Y R y)$

Generalised Transitivity

$(\exists x)(X \mathrel{R} x \land \{x\} \cup Y \mathrel{R} y) \Leftrightarrow X \cup Y \mathrel{R} y$

Left to Right

Right to Left

Compositional Set Relations

- $R\subseteq {\mathfrak P}^{fin}(P)\times P$ is compositional iff for each $X,Y\in {\mathfrak P}^{fin}(P)$ and $y\in P$
 - {y} R y
 - $(\exists x)(X \ R \ x \land \{x\} \cup Y \ R \ y) \Longleftrightarrow X \cup Y \ R \ y$

Ternary Relational Frames for \mathbf{R}^+

$\langle \mathsf{P},\mathsf{N},\sqsubseteq,\mathsf{R}\rangle$

- ▷ P: a non-empty set
- \triangleright N \subseteq P
- $\triangleright \ \sqsubseteq \subseteq P \times P$
- $\triangleright \ R \subseteq P \times P \times P$

- 1. N is non-empty.
- 2. \Box is a partial order (or preorder).
- 3. R is downward preserved in the its two positions and upward preserved in the third.
- 4. $y \sqsubseteq y'$ iff $(\exists x)(Nx \land Rxyy')$.
- 5. $Rxyz \Leftrightarrow Rxyz$
- 6. $(\exists v)(Rxyv \land Rvzw) \Leftrightarrow (\exists u)(Ryzu \land Rxuw)$
- 7. Rxxx

Compositional Set Frames for **R**⁺

$\langle P, R \rangle$

▷ P: a non-empty set ▷ $R \subset \mathcal{P}^{fin}(P) \times P$

 $\begin{array}{ll} \text{I. } & \text{R is compositional. That is, } \{x\} \ \text{R x and} \\ & (\exists x)(X \ \text{R x} \land \{x\} \cup Y \ \text{R y}) \Leftrightarrow X \cup Y \ \text{R y} \end{array}$

Compositional Set Frames for **R**⁺

$\langle P, R \rangle$

 $\label{eq:result} \begin{array}{ll} \triangleright & P \text{: a non-empty set} \\ \begin{tabular}{ll} \triangleright & R \subseteq \mathcal{P}^{\mathsf{fin}}(P) \times P \end{array} \end{array} \quad I. \end{tabular} \begin{array}{ll} \mathsf{R} \text{ is compositional. That is, } \{x\} \ \mathsf{R} \ x \ \mathsf{and} \\ & (\exists x)(X \ \mathsf{R} \ x \land \{x\} \cup Y \ \mathsf{R} \ y) \Leftrightarrow X \cup Y \ \mathsf{R} \ y \end{array}$

$Nx \quad x \sqsubseteq y \quad Rxyz$

Compositional Set Frames for **R**⁺

$\langle P, R \rangle$

POINTS AT INFINITY

Compositional Set Frames for non-normal **R**⁺

$\langle \mathsf{P},\mathsf{R}\rangle$

- ▷ P: a non-empty set
- $\triangleright \ R \subseteq \mathfrak{P}^{\mathsf{fin}*}(\mathsf{P}) \times \mathsf{P}$
- P^{fin*}(P) is the set of *non-empty* finite subsets of P.

I. R is compositional. That is, $\{x\} R x$ and $(\exists x)(X R x \land \{x\} \cup Y R y) \Leftrightarrow X \cup Y R y$

$\triangleright \{x, y\}Sv$

$$\triangleright \{x, y\} Sv$$
$$\triangleright \{x, y, z\} Sv$$

- $\triangleright \{\mathbf{x}, \mathbf{y}\} \mathbf{S} \mathbf{v}$ $\triangleright \{\mathbf{x}, \mathbf{y}, \mathbf{z}\} \mathbf{S} \mathbf{v}$
- $\triangleright \{x, y, z, w\} Sv$

- $\triangleright \{x\}Sv$
- $\triangleright \{x,y\}Sv$
- $\triangleright \{x, y, z\}Sv$
- $\triangleright \{x, y, z, w\} Sv$

- \triangleright { }Sv
- $\triangleright \ \{x\} S \nu$
- $\triangleright \{x,y\}Sv$
- $\triangleright \{x, y, z\}Sv$
- $\triangleright \{x, y, z, w\} Sv$

- \triangleright { }*S* ν
- $\triangleright \{x\}Sv$
- $\triangleright \{x,y\}Sv$
- $\triangleright \{x, y, z\}Sv$
- $\triangleright \{x, y, z, w\}Sv$

The result is an *elegant* geometric metaphor for concept combination and containment.

Adding a Point at Infinity

If $R \subseteq \mathcal{P}^{fin*}(P) \times P$, we want to add a point ∞ , extending R to a relation R' where

 $\{ \} R' \infty$

Adding a Point at Infinity

If $R \subseteq \mathcal{P}^{fin*}(P) \times P$, we want to add a point ∞ , extending R to a relation R' where

 $\{ \} R' \infty$

We want $R' \subseteq \mathcal{P}^{fin}(P \cup \{\infty\}) \times P \cup \{\infty\}$

XR^+z iff $(X \setminus \infty)Rz$ or $z = \infty$

XR^+z iff $(X\setminus\infty)Rz$ or $z=\infty$

 $(XR^+\infty \text{ always: so } x \sqsubseteq^+ \infty \text{ for all } x.)$

$$XR^+z$$
 iff $(X \setminus \infty)Rz$ or $z = \infty$

 $(XR^+\infty \text{ always: so } x \sqsubseteq^+ \infty \text{ for all } x.)$

$$XR^{\times}z \text{ iff } \begin{cases} (X\setminus\infty)Rz, & X\setminus\infty\neq\{\}\\ z=\infty, & X\setminus\infty=\{\} \end{cases}$$

 $(XR^{\times}\infty \text{ only when } X = \{\} \text{ or } \{\infty\}: \text{ so } x \sqsubseteq^{\times} \infty \text{ iff } x = \infty.)$

$$XR^+z$$
 iff $(X \setminus \infty)Rz$ or $z = \infty$

 $(XR^+\infty \text{ always: so } x \sqsubseteq^+ \infty \text{ for all } x.)$

$$XR^{\times}z \text{ iff } \begin{cases} (X\setminus\infty)Rz, & X\setminus\infty\neq\{\}\\ z=\infty, & X\setminus\infty=\{\} \end{cases}$$

 $(XR^{\times}\infty \text{ only when } X = \{\} \text{ or } \{\infty\}: \text{ so } x \sqsubseteq^{\times} \infty \text{ iff } x = \infty.)$

Both R^+ and R^{\times} are compositional if R is.

FUNCTIONAL GEOMETRIC SET FRAMES

▷ R is INCLUSIVE: If XRy then $y \in b(X)$ (the shape bounded by R).

- ▷ R is INCLUSIVE: If XRy then $y \in b(X)$ (the shape bounded by R).
- \triangleright R is regional: If b(X) = b(Y) then XRz iff YRz.

- ▷ R is INCLUSIVE: If XRy then $y \in b(X)$ (the shape bounded by R).
- \triangleright R is regional: If b(X) = b(Y) then XRz iff YRz.
- $\triangleright~R$ is preserved: If XRy then $\tau(X)R\tau(x)$ for geometric transformations τ

- ▷ R is INCLUSIVE: If XRy then $y \in b(X)$ (the shape bounded by R).
- \triangleright R is regional: If b(X) = b(Y) then XRz iff YRz.
- \triangleright R is preserved: If XRy then $\tau(X)R\tau(x)$ for geometric transformations τ
- ▷ R is FUNCTIONAL: There is a *unique* x where XRx.

There are exactly two relations satisfying the desiderata on $\mathbb R$

INCLUSIVE PRESERVED REGIONAL FUNCTIONAL

There are exactly two relations satisfying the desiderata on $\mathbb R$

INCLUSIVE PRESERVED REGIONAL FUNCTIONAL

There are no relations satisfying the desiderata on \mathbb{R}^n $(n \ge 2)$

\mathbb{R} is inside \mathbb{R}^n .

There are no relations satisfying the desiderata on \mathbb{R}^n $(n \ge 2)$

\mathbb{R} is inside \mathbb{R}^n .

In \mathbb{R}^n ($n \ge 2$) you can rotate an interval 180°, sending min onto max (and *vice versa*), so neither is preserved under this rotation.

What does this all mean?

We've seen how we can *use* and *extend* Urquhart's insights into the connection between geometries and models of relevant logics, to provide new ways to *build* and *understand* those models.

THANK YOU!

QUESTIONS, COMMENTS?