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My Aim

To present some thoughts on geometric
models for relevant logics, written for
a festschrift for Alasdair Urquhart ...

... and to test giving a talk using Zoom
before I use all this for my classes.
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Semantics for Relevant Logics (1972)

THE JOURNAL OF SymsoLIC LoGiC
Volume 37, Number 1, March 1972

SEMANTICS FOR RELEVANT LOGICS

ALASDAIR URQUHART

§1. Introduction. In what follows there is presented a unified semantic treat-
ment of certain “paradox-free” systems of entailment, including Church’s weak
theory of implication (Church [7]) and logics akin to the systems E and R of Ander-
son and Belnap (Anderson [3], Belnap [6]).* We shall refer to these systems gene-
rally as relevant logics.

The leading idea of the semantics is that just as in modal logic validity may be
defined in terms of certain valuations on a binary relational structure so in relevant
logics validity may be defined in terms of certain valuations on a semilattice—
interpreted informally as the semilattice of possible pieces of information. Complete-
ness theorems can be given relative to these semantics for the implicational frag-
ments of relevant logics. The semantical viewpoint affords some insights into the
structure of the systems—in particular light is thrown upon admissible modes of
negation and on the assumptions underlying rejection of the ““paradoxes of material
implication”.



The Undecidability of Entailment ... (1984)

THE JOURNAL OF SYMBOLIC LoGIC
Volume 49, Number 4, Dec. 1984

THE UNDECIDABILITY OF ENTAILMENT
AND RELEVANT IMPLICATION

ALASDAIR URQUHART

§1. Introduction. In this paper we show that the propositional logics E of
entailment, R of relevant implication and T of ticket entailment are undecidable.
The decision problem is also shown to be unsolvable in an extensive class of related
logics. The main tool used in establishing these results is an adaptation of the von
Neumann coordinatization theorem for modular lattices.

Interest in the decision problem for these systems dates from the late 1950s. The
earliest result was obtained by Anderson and Belnap who proved that the first
degree fragment of all these logics is decidable. Kripke [11] proved that the pure
implicational fragments R_, and E_, of R and E are decidable. His methods were
extended by Belnap and Wallace to the implication-negation fragments of these
systems [3]; Kripke’s methods also extend easily to include the implication-



Failure of Interpolation in Relevant Logics (1993)
ALASDAIR URQUHART

FAILURE OF INTERPOLATION IN RELEVANT
LOGICS

ABSTRACT. Craig’s interpolation theorem fails for the propositional logics £ of
entailment, R of relevant implication and T of ticket entailment, as well as in a large
class of related logics. This result is proved by a geometrical construction, using the
fact that a non-Arguesian projective plane cannot be imbedded in a three-dimensional
projective space. The same construction shows failure of the amalgamation property in
many varieties of distributive lattice-ordered monoids.

Journal of Philosophical Logic (22) 449-479,1993



My Plan

Models for Relevant Logics
Collection Frames
Points at Infinity

Functional Geometric Set Frames



MODELS FOR
RELEVANT LOGICS



Semantics for Relevant Logics (1972)

THE JOURNAL OF SymsoLIC LoGiC
Volume 37, Number 1, March 1972

SEMANTICS FOR RELEVANT LOGICS

ALASDAIR URQUHART

§1. Introduction. In what follows there is presented a unified semantic treat-
ment of certain “paradox-free” systems of entailment, including Church’s weak
theory of implication (Church [7]) and logics akin to the systems E and R of Ander-
son and Belnap (Anderson [3], Belnap [6]).* We shall refer to these systems gene-
rally as relevant logics.

The leading idea of the semantics is that just as in modal logic validity may be
defined in terms of certain valuations on a binary relational structure so in relevant
logics validity may be defined in terms of certain valuations on a semilattice—
interpreted informally as the semilattice of possible pieces of information. Complete-
ness theorems can be given relative to these semantics for the implicational frag-
ments of relevant logics. The semantical viewpoint affords some insights into the
structure of the systems—in particular light is thrown upon admissible modes of
negation and on the assumptions underlying rejection of the ““paradoxes of material
implication”.



Relevant logics



When is A — B true at a world?

A natural thought:

x IF A — B iff at some appropriately chosen worlds y,
ify I+ A, then we have y I- B too.



The Problem of p — (q — q)



Alasdair Urqubart’s Insight

Check the antecedent A,
and the consequent B,

at different places.



Alasdair Urqubart’s Insight

Check the antecedent A,
and the consequent B,

at different places.

x IF A — Biff foreachy
ify - A, thenx Uy IF B.



p — (q — q) is no longer a problem

Provided that U is not cumulative.



These aren’t “worlds”

Urqubhart calls them pieces of information.
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These aven’t “worlds”

Urqubhart calls them pieces of information.

I’ll call them points.

For Urquhart, Ul is commutative,

assoctative and z'dempotem‘.



P — P fails somewbere, not necessarily everywhere

If we have a point O where 0 LI x = x,
then 0 IF A — A for each A.



P — P fails somewbere, not necessarily everywhere

If we have a point 0 where 0 U x = x,
then 0 IF A — A for each A.

We call 0 a normal point.



Disjunction: The Fly in the Ointment

xIFAVBiffxIFAorxI-B
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Disjunction: The Fly in the Ointment

xIFAVBiffxIF AorxIFB

Supposex I-p — (qV r)andy IF p.
Thenx Uy I q V v, but which one?



Routley-Meyer Ternary Relational Semantics (1972, 1973)

THE SEMANTICS OF ENTAILMENT
Richard ROUTLEY

Australian National University

Robert K. MEYER

University of Toronto, Indiana University

Once upon a time, modal logics “had no semantics”. Bearing a real world
G, a set of worlds K, and a relation R of relative possibility between worlds,
Saul Kripke beheld this situation and saw that it was formally explicable, and
made model structures. It came to pass that soon everyone was making model
structures, and some were deontic, and some were temporal, and some were
epistemic, according to the conditions on the binary relation R.

None of the model structures that Kripke made, nor that Hintikka made,
nor that Thomason made, nor that their co-workers and colleagues made,
were, however, relevant. This caused great sadness in the city of Pittsburgh,
where dwelt the captains of American Industry. The logic industry was there
represented by Anderson, Belnap & Sons, discoverers of entailment and
scourge of material impliers, strict impliers, and of all that to which their false-
hoods and contradictions led. Yea, every year or so Anderson-& Belnap turned
out a new logic, and they did call it E, or R, or Ef, or P — W, and they beheld
each such logic, and they were called relevant. And these logics were looked
upon with favor by many, for they captureth the intuitions, but by many more
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The Fix: Generalise!

Replace x Uy = z by the ternary relation Rxyz.
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The Fix: Generalise!

Replace x Uy = z by the ternary relation Rxyz.

There may be more than one
‘result’ of applying x to y,
and there may be none.
x IF A — Biff for each y, z where Rxyz, if y IF A then z |- B.

xIFAVBiffxIFAorxIFB
xIFAABiffx IF A and x IF B.
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The Twofold Cost: Complexity

(P,N,E,R)

> P:anon-empty set 1. N is non-empty.

> P
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The Twofold Cost: Complexity

(P,N,E,R)

> P:anon-empty set 1. N is non-empty.
2. C isapartial order (or preorder).
> NCP
> CECPxP
> RCPxPxP
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(P,N,C, R)

> P:anon-empty set 1. N is non-empty.
2. C isapartial order (or preorder).
> NCP 3. Ris downward preserved in the its two
positions and upward preserved in the
> CCPxP third, i.e. if Rx'y’zand x C x',y C y/,
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The Twofold Cost: Complexity

(P,N,C, R)

> P:anon-empty set 1. N is non-empty.
2. C isapartial order (or preorder).
> NCP 3. Ris downward preserved in the its two
positions and upward preserved in the
> L C PxP third, ie. if Rx'y’zand x E x’,y C y/,
z C 2/, then Rxyz'.
> RCPxPxP 4.y Cy’iff (3x)(Nx A Rxyy’).



Then, to model nice logics, like R, you need more

(Fu)(Rxyu A Ruzw) < (3v)(Ryzv A Rxvw)
Rxyz & Ryxz

Rxxx



The Twofold Cost: Complexity

Ternary relations are not so easy to think about, by themselves.



Urqubart’s Insight

Ternary relations occur naturally in geometry.
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Urqubart’s Insight

Ternary relations occur naturally in geometry.

Collinearity: Cabc but not Cabe.

Betwemness/SuWoundz'ng: Sacb but not Sabc.



Geometric Properties

The properly geometric properties are those preserved
under translation, rotation, scaling, etc.
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Collinearity, Betweenness,
Intersection, Parallels,
Inside/Outside, Angle,

Relative Size, Shape, etc.



Geometric Properties

The properly geometric properties are those preserved
under translation, rotation, scaling, etc.

Collinearity, Betweenness,

Intersection, Parallels,
Inside/Outside, Angle,

Relative Size, Shape, etc.

Not: Absolute Size, Absolute Position.



The fit between geometry and ternary models isn’t perfect

Ordering: There is no natural ordering C

(other than =) in most geometries.
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The fit between geometry and ternary models isn’t perfect

Ordering: There is no natural ordering C

(other than =) in most geometries.

Normal points: If x € N then if Rxyz theny = z.

If R is collinearity or betweenness, then
there is 7o candidate normal point in any R™
(or in any affine or projective space).



Urqubart’s Approach

Add one!



Urqubart’s Approach

Add one!

This follows in the steps of a venerable tradition in mathematics,
of adding ideal points. In this case, a point at infinity.



COLLECTION
FRAMES
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The Bebhaviour of N, T and R
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The Bebhaviour of N, T and R

N z xLC z R xyz

> The position of an underlined variable is closed downwards along C.



The Bebhaviour of N, T and R
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> The position of an underlined variable is closed downwards along C.

> The position of an overlined variable is closed upwards along C.



The Bebhaviour of N, T and R

N z xLC z xy Rz

> The position of an underlined variable is closed downwards along C.

> The position of an overlined variable is closed upwards along C.



The Bebhaviour of N, T and R

Rz X Rz xy Rz

> The position of an underlined variable is closed downwards along C.

> The position of an overlined variable is closed upwards along C.



Rz

Collection Relations

xRz

xy Rz



Collection Relations

XRz

X is a finite collection of elements of P; zisin P.
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Leaf-Labelled Trees  Lists ~ Multisets  Sets  more ...
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What kind of finite collection?

Leaf-Labelled Trees  Lists  Multisets ~ Sets  more ...

Rxyz & Ryxz
(Fu)(Rxyu ARuzw) < (3v)(Ryzv A Rxvw)

Rxxx
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Set Relations

R C P'(P) x P

R generalises C.



Set Relations

R C P'(P) x P

R generalises C.

So, it should satisfy analogues of reflexivity and transitivity.



Reflxivity

{x} Rx



Generalised Transitivity

X R x



Generalised Transitivity

XRx {x]UYRy
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Generalised Transitivity
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Generalised Transitivity

(XRxA{xJUYRyYy)=XUYRy

XUYRYyY X Rx



Generalised Transitivity

(XRxA{xJUYRyYy)=XUYRy

XUYRuy XRx {x}JUYRy



Generalised Transitivity

(XRxA{xJUYRyYy)=XUYRy

XUYRyYy = (Ix)(XRx A {x}UY Rvy)



Generalised Transitivity

(Ix)(XRxA{x]UYRyYy) =< XUYRYy



Left to Right



Right to Left



Compositional Set Relations

R C Pfin(P) x P is compositional iff for each X, Y € Pn(P) andy € P

e {yIRy
o (IX)(XRxA{XxJUYRyYy)<—= XUYRy



Ternary Relational Frames for R*

(P,N,C, R)

1. N is non-empty.

> P:a non-empty set 2. C isa partial order (or preorder).

3. Ris downward preserved in the its two
>NCP positions and upward preserved in the third.

4. y Cy’iff (Ix)(Nx A Rxyy’).
>CCPxP

5. Rxyz < Rxyz
> RCPxPxP 6. (3v)(Rxyv A Rvzw) & (Fu)(Ryzu A Rxuw)

7. Rxxx



Compositional Set Frames for R*

(P,R)

> P:anon-empty set
anon-empty 1. Ris compositional. Thatis, {x} R x and

] (I)XRxA{Xx}UYRyYy) = XUYRYy

> RC Pfin(P) x P



Compositional Set Frames for R*

(P,R)

> P:anon-empty set
pty 1. Ris compositional. Thatis, {x} R x and

i Ix)(X Rx A YR XUYR
DRQTf'”(P)xP (I (X RxA{x}U y) © XUYRy

Nx xCvy Rxyz



Compositional Set Frames for R™

(P,R)

> P:anon-empty set
pty 1. Ris compositional. Thatis, {x} R x and

i Ix)(X Rx A YR XUYR
DRQTf'”(P)xP (I (X RxA{x}U y) & XU y

Nx xCvy Rxyz
{IRx {xIRy {x,y}Rz



POINTS AT INFINITY



Compositional Set Frames for non-normal R™

(P,R)

> P:anon-empty set

> R C Pfin*(P) x P

1. Riscompositional. Thatis, {x} R x and

o 'Pﬁ"*(P) is the set of () (X RxA{X}JUYRY) & XUY Ry

non-empty finite
subsets of P.



Surrounding
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Surrounding

> {}Sv

> {x}Sv

> {x,y}Sv

> {x,y, z}Sv

> {x,y,z, Ww}Sv



Surrounding

> {}Sv

> {x}Sv

> {x,y}Sv

> {x,y, z}Sv

> {x,y,z, WiSv

The result is an elegant geometric metaphor
for concept combination and containment.



Adding a Point at Infinity

IfR C Pfi*(P) x P, we want to add a point oo,
extending R to a relation R” where

{1Ro0



Adding a Point at Infinity

IfR C Pfi*(P) x P, we want to add a point oo,
extending R to a relation R” where

{1Ro0

We want R’ C Pfin(P U {o0}) x P U {0}
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Two Natural Options

XR*z iff (X\oo)Rz or z = o0

(XR* oo always: so x CT oo forall x.)

Ry i {(X\oo)Rz, X\oo # ()
z=00,  X\co={}

(XR* 00 only when X = { } or {oo}: sox C* oo iff x = 00.)

Both R* and R* are compositional if R is.



FUNCTIONAL
GEOMETRIC SET
FRAMES



Different Desiderata for Geometric Relations

> Ris INCLUSIVE: If XRy theny € b(X) (the shape bounded by R).
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Different Desiderata for Geometric Relations

> Ris INCLUSIVE: If XRy theny € b(X) (the shape bounded by R).
> Ris REGIONAL: If b(X) = b(Y) then XRz iff YRz.
> Ris PRESERVED: If XRy then T(X)Rt(x) for geometric transformationst

> Ris FUNCTIONAL: There is a unique x where XRx.



There are exactly two relations satisfying the desiderata on R

INCLUSIVE PRESERVED REGIONAL FUNCTIONAL



There are exactly two relations satisfying the desiderata on R

INCLUSIVE PRESERVED REGIONAL FUNCTIONAL

min max



There are no relations satisfying the desiderata on R™ (n > 2)

R is inside R™.



There are no relations satisfying the desiderata on R™ (n. > 2)

R is inside R™.

InR™ (n > 2) you can rotate an interval 180°,
sending min onto max (and vice versa),
so neither is preserved under this rotation.



What does this all mean?

We’ve seen how we can use and extend
Urquhart’s insights into the connection
between geometries and models of relevant logics,
to provide new ways to buzld and
understand those models.



THANK YOU!



QUESTIONS,
COMMENTS?
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