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THE JOURNAL OF SYMBOLIC LOGIC 
Volume 37, Number 1, March 1972 

SEMANTICS FOR RELEVANT LOGICS 

ALASDAIR URQUHART 

?1. Introduction. In what follows there is presented a unified semantic treat- 
ment of certain "paradox-free" systems of entailment, including Church's weak 
theory of implication (Church [7D and logics akin to the systems E and R of Ander- 
son and Belnap (Anderson [3], Belnap [6D.1 We shall refer to these systems gene- 
rally as relevant logics. 

The leading idea of the semantics is that just as in modal logic validity may be 
defined in terms of certain valuations on a binary relational structure so in relevant 
logics validity may be defined in terms of certain valuations on a semilattice- 
interpreted informally as the semilattice of possible pieces of information. Complete- 
ness theorems can be given relative to these semantics for the implicational frag- 
ments of relevant logics. The semantical viewpoint affords some insights into the 
structure of the systems-in particular light is thrown upon admissible modes of 
negation and on the assumptions underlying rejection of the "paradoxes of material 
implication". 

The systems discussed are formulated in fragments of a first-order language 
with -* (entailment), &, v, -A, (x) and (3x) primitive, omitting identity but includ- 
ing a denumerable list of propositional variables (p, q, r, pl, - X etc.), and (for 
each n > 0), a denumerable list of n-ary predicate letters. The schematic letters 
A, B, C, D, Al, - - 

e are used on the meta-level as variables ranging over formulas. 
The conventions of Church [9] are followed in abbreviating formulas. The seman- 
tics of the systems are given in informal terms; it is an easy matter to turn the infor- 
mal descriptions into formal set-theoretical definitions. 

?2. Relevant implication. Let us begin with the concept of apiece of information. 
A piece of information is a set of basic sentences concerning a subject or subjects 
about which reasoning is being carried out. In physics the basic sentences might 
consist of statements of experimental results, in mathematics elementary facts 
about numbers, and so forth. These sets of statements may be finite (e.g. listed on 
sheets of paper) or infinite (e.g. given by a mechanical listing procedure). It is 
clear that given any two pieces of information, X and Y, we may put them together 
to form a new piece of information, X u Y, containing all the information in X 

Received November 27, 1970; revised June 21, 1971. 
1 The author is much indebted to Nuel D. Belnap Jr., discussions with whom resulted in 

essential corrections to material in ?3, and to Alan Ross Anderson, whose subproof formula- 
tions of relevant logics in [2] provided the fundamental inspiration for the present semantics. 
Essentially identical semantics were conceived independently by Richard Routley [15]. 
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The Undecidability of Entailment . . . (����)

THE JOURNAL OF SYMBOLIC LOGIC 
Volume 49, Number 4, Dec. 1984 

THE UNDECIDABILITY OF ENTAILMENT 
AND RELEVANT IMPLICATION 

ALASDAIR URQUHART 

§1. Introduction. In this paper we show that the propositional logics E of 
entailment, R of relevant implication and T of ticket entailment are undecidable. 
The decision problem is also shown to be unsolvable in an extensive class of related 
logics. The main tool used in establishing these results is an adaptation of the von 
Neumann coordinatization theorem for modular lattices. 

Interest in the decision problem for these systems dates from the late 1950s. The 
earliest result was obtained by Anderson and Belnap who proved that the first 
degree fragment of all these logics is decidable. Kripke [11] proved that the pure 
implicational fragments R_ and £_ of R and E are decidable. His methods were 
extended by Belnap and Wallace to the implication-negation fragments of these 
systems [3]; Kripke's methods also extend easily to include the implication-
conjunction fragments of R and E. Meyer in his thesis [14] extended the result for R 
to include a primitive necessity operator. He also proved decidable the system R-
mingle, an extension of R, and ortho-R (OR), the logic obtained from R by omitting 
the distribution axiom. Various weak relevant logics are also known to be decidable 
by model-theoretic proofs of the finite model property (see Fine [5]). Finally, 
S. Giambrone [7] has solved the decision problem for various logics obtained by 
the omission of the contraction axiom (A -* • A -> B) -»• A -»B, including R + — W 
(R+ minus contraction). It is worth noting that even where positive results were 
obtained, the decision methods were usually of a complexity considerably greater 
than in the case of other nonclassical logics such as intuitionistic logic or modal 
logic, a fact which already indicates the difficulty of the decision problem. 

These results have some general methodological interest since they furnish the 
first known examples of undecidable "natural" sentential logics. It has been known 
since the work of Linial and Post in the 1940s that undecidable subsystems of 
classical sentential logic exist ([12]; for an exposition see Davis [4]). However, all 
previous examples were systems constructed for the purpose of exhibiting an 
undecidable logic. The nearest previous approach to a natural undecidable logic is 
the relevant logic Q+ of Meyer and Routley [17]. 

Before proceeding to details, we outline the main ideas of the proof. In [18], John 
von Neumann shows how to coordinatize a complemented modular lattice L 

Received December 10, 1982; revised July 16, 1983. 
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Failure of Interpolation in Relevant Logics (����)

ALASDAIR URQUHART 

F A I L U R E  O F  I N T E R P O L A T I O N  I N  R E L E V A N T  

L O G I C S  

ABSTRACT. Craig's interpolation theorem fails for the propositional logics E of 
entailment, R of relevant implication and T of ticket entailment, as well as in a large 
class of related logics. This result is proved by a geometrical construction, using the 
fact that a non-Arguesian projective plane cannot be imbedded in a three-dimensional 
projective space. The same construction shows failure of the amalgamation property in 
many varieties of distributive lattice-ordered monoids. 

I. INTRODUCTION 

In this article we show that the interpolation theorem fails for the 
propositional logics E of entailment, R of relevant implication and T 
of ticket entailment, as well as in an extensive class of  related logics. 
The main construction is geometrical, and depends on the fact that a 
non-Arguesian projective plane cannot be imbedded in a projective 
space of a higher dimension. This geometrical fact, when combined 
with a method used in [19] and [20] for constructing model structures 
from projective spaces, demonstrates that the amalgamat ion property 
fails in an appropriate category of algebras, which in turn implies the 
failure of the Robinson joint consistency theorem and hence of the 
interpolation theorem for the logics in question. 

The interpolation theorem is known to hold for certain subsystems 
of these logics. Anderson and Belnap [1, p. 161] show that the "Perfect 
interpolation theorem" holds for the first degree fragments of  the 
above propositional logics, that is, if A ~ C is provable, then there is 
a formula B containing only variables common to A and C so that 
A ~ B and B ~ C are provable. This is a "perfecting" of  Craig's 
celebrated theorem in the sense that it does not require the special cases 
where A is contradictory or C is valid to be excluded. McRobbie  in 
[13] showed that the interpolation theorem holds for the quantifi- 
cational logic ORQ, based on the propositional logic OR, which is 
obtained from R by omitting the distribution axiom. 

Journal of Philosophical Logic 22:449 - 479, 1993. 
 9 1993 Kluwer Academic Publishers. Printed in the Netherlands. 

Journal of Philosophical Logic (��) ���–���, ����
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My Plan

Models for Relevant Logics

Collection Frames

Points at In�nity

FunctionalGeometric Set Frames
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Semantics for Relevant Logics (����)

THE JOURNAL OF SYMBOLIC LOGIC 
Volume 37, Number 1, March 1972 

SEMANTICS FOR RELEVANT LOGICS 

ALASDAIR URQUHART 

?1. Introduction. In what follows there is presented a unified semantic treat- 
ment of certain "paradox-free" systems of entailment, including Church's weak 
theory of implication (Church [7D and logics akin to the systems E and R of Ander- 
son and Belnap (Anderson [3], Belnap [6D.1 We shall refer to these systems gene- 
rally as relevant logics. 

The leading idea of the semantics is that just as in modal logic validity may be 
defined in terms of certain valuations on a binary relational structure so in relevant 
logics validity may be defined in terms of certain valuations on a semilattice- 
interpreted informally as the semilattice of possible pieces of information. Complete- 
ness theorems can be given relative to these semantics for the implicational frag- 
ments of relevant logics. The semantical viewpoint affords some insights into the 
structure of the systems-in particular light is thrown upon admissible modes of 
negation and on the assumptions underlying rejection of the "paradoxes of material 
implication". 

The systems discussed are formulated in fragments of a first-order language 
with -* (entailment), &, v, -A, (x) and (3x) primitive, omitting identity but includ- 
ing a denumerable list of propositional variables (p, q, r, pl, - X etc.), and (for 
each n > 0), a denumerable list of n-ary predicate letters. The schematic letters 
A, B, C, D, Al, - - 

e are used on the meta-level as variables ranging over formulas. 
The conventions of Church [9] are followed in abbreviating formulas. The seman- 
tics of the systems are given in informal terms; it is an easy matter to turn the infor- 
mal descriptions into formal set-theoretical definitions. 

?2. Relevant implication. Let us begin with the concept of apiece of information. 
A piece of information is a set of basic sentences concerning a subject or subjects 
about which reasoning is being carried out. In physics the basic sentences might 
consist of statements of experimental results, in mathematics elementary facts 
about numbers, and so forth. These sets of statements may be finite (e.g. listed on 
sheets of paper) or infinite (e.g. given by a mechanical listing procedure). It is 
clear that given any two pieces of information, X and Y, we may put them together 
to form a new piece of information, X u Y, containing all the information in X 

Received November 27, 1970; revised June 21, 1971. 
1 The author is much indebted to Nuel D. Belnap Jr., discussions with whom resulted in 

essential corrections to material in ?3, and to Alan Ross Anderson, whose subproof formula- 
tions of relevant logics in [2] provided the fundamental inspiration for the present semantics. 
Essentially identical semantics were conceived independently by Richard Routley [15]. 
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Relevant logics

A ! B
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When isA ! B true at a world?

A natural thought:

x � A ! B i� at some appropriately chosen worlds y,

if y � A, then we have y � B too.
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The Problem of p ! (q ! q)
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Alasdair Urquhart’s Insight

Check the antecedentA,

and the consequent B,

at di�erent places.

x � A ! B i� for each y

if y � A, then x t y � B.
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p ! (q ! q) is no longer a problem

Provided that t is not cumulative.
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These aren’t “worlds”

Urquhart calls them pieces of information.

I’ll call them points.

For Urquhart, t is commutative,

associative and idempotent.
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p ! p fails somewhere, not necessarily everywhere

If we have a point 0where 0 t x = x,

then 0 � A ! A for eachA.

We call 0 a normal point.
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Disjunction: The Fly in the Ointment

x � A _ B i� x � A or x � B

Suppose x � p ! (q _ r) and y � p.

Then x t y � q _ r, but which one?
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Routley–Meyer Ternary Relational Semantics (����, ����)

THE SEMANTICS OF ENTAILMENT 

Richard ROUTLEY 
Australian National University 

Robert K. MEYER 
University o f  Toronto, Indiana University 

Once upon a time, modal logics “had no semantics”. Bearing a real world 
G, a set of worlds K, and a relation R of relative possibility between worlds, 
Saul Kripke beheld this situation and saw that it was formally explicable, and 
made model structures. It came to pass that soon everyone was making model 
structures, and some were deontic, and some were temporal, and some were 
epistemic, according to the conditions on the binary relation R. 

None of the model structures that Kripke made, nor that Hintikka made, 
nor that Thomason made, nor that their co-workers and colleagues made, 
were, however, relevant. This caused great sadness in the city of Pittsburgh, 
where dwelt the captains of American Industry. The logic industry was there 
represented by Anderson, Belnap & Sons, discoverers of entailment and 
scourge of material impliers, strict impliers, and of all that to which their false- 
hoods and contradictions led. Yea, every year or so Anderson& Belnap turned 
out a new logic, and they did call it E, or R, or E i ,  or P - W, and they beheld 
each such logic, and they were called relevant. And these logics were looked 
upon with favor by many, for they captureth the intuitions, but by many more 
they were scorned, in that they hadeth no semantics. 

Word that Anderson & Belnap had made a logic without semantics leaked 
out. Some thought it wondrous and rejoiced,’ that the One True Logic should 
make its appearance among us in the Form of Pure Syntax, unencumbered 
by all that set-theoretical garbage. Others said that relevant logics were Mere 
Syntax. Surveying the situation Routley, and quite independently Urquhart, 
found an explication of the key concept of relevant implication. Building on 
Routley [ 19721 , and with a little help from our friends - Dunn and Urquhart 

I The underlying point is, of course, that there are tiiany ways to explicate informal logical or 
mathematical notions formally, and that an axiom set counts. So do matrices, rules for natural 
deduction, correlated algebraic structures, and so forth. which had previously been provided for 
the relevant logics. The novelty of the present approach, as Belnap has put i t .  is that like 
Kripke’s semantical reductions of modal logics i t  provides an extensional - in a significant 
sense, a truth-funcrional .- understanding of relevant logic. Why this kind of understandmg 
turns out particularly illuminating is a matter forps.vchology of logic. in which we profess no 
competence; in fact, even purely technical problems seem to become much easier - cf., e.g.. 
section VIIl below. 
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The Fix: Generalise!

Replace x t y = z by the ternary relation Rxyz.

There may be more than one

‘result’ of applying x to y,

and there may be none.

x � A ! B i� for each y, zwhere Rxyz, if y � A then z � B.

x � A _ B i� x � A or x � B

x � A ^ B i� x � A and x � B.

Greg Restall Geometric Models, for Relevant Logics �� of ��



The Fix: Generalise!

Replace x t y = z by the ternary relation Rxyz.

There may be more than one

‘result’ of applying x to y,

and there may be none.

x � A ! B i� for each y, zwhere Rxyz, if y � A then z � B.

x � A _ B i� x � A or x � B

x � A ^ B i� x � A and x � B.

Greg Restall Geometric Models, for Relevant Logics �� of ��



The Fix: Generalise!

Replace x t y = z by the ternary relation Rxyz.

There may be more than one

‘result’ of applying x to y,

and there may be none.

x � A ! B i� for each y, zwhere Rxyz, if y � A then z � B.

x � A _ B i� x � A or x � B

x � A ^ B i� x � A and x � B.

Greg Restall Geometric Models, for Relevant Logics �� of ��



The Fix: Generalise!

Replace x t y = z by the ternary relation Rxyz.

There may be more than one

‘result’ of applying x to y,

and there may be none.

x � A ! B i� for each y, zwhere Rxyz, if y � A then z � B.

x � A _ B i� x � A or x � B

x � A ^ B i� x � A and x � B.

Greg Restall Geometric Models, for Relevant Logics �� of ��



The Twofold Cost: Complexity

hP,N,v, Ri

. P: a non-empty set

. N ✓ P

. v ✓ P ⇥ P

. R ✓ P ⇥ P ⇥ P

�. N is non-empty.

�. v is a partial order (or preorder).

�. R is downward preserved in the its two

positions and upward preserved in the

third, i.e. if Rx 0y 0z and x v x 0, y v y 0,

z v z 0, then Rxyz 0.

�. y v y 0 i� (9x)(Nx ^ Rxyy 0).
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Then, to model nice logics, likeR, you need more

(9u)(Rxyu ^ Ruzw) , (9v)(Ryzv ^ Rxvw)

Rxyz , Ryxz

Rxxx
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The Twofold Cost: Complexity

Ternary relations are not so easy to think about, by themselves.
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Urquhart’s Insight

Ternary relations occur naturally in geometry.

Collinearity: Cabc but notCabe.

Betweenness/Surrounding: Sacb but not Sabc.
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Geometric Properties

The properly geometric properties are those preserved
under translation, rotation, scaling, etc.

Collinearity, Betweenness,

Intersection, Parallels,

Inside/Outside, Angle,

Relative Size, Shape, etc.

Not: Absolute Size, Absolute Position.
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The �t between geometry and ternary models isn’t perfect

Ordering: There is no natural orderingv

(other than=) inmost geometries.

Normal points: If x 2 N then if Rxyz then yz.

If R is collinearity or betweenness, then
there is no candidate normal point in any Rn

(or in any a�ne or projective space).
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The �t between geometry and ternary models isn’t perfect

Ordering: There is no natural orderingv

(other than=) inmost geometries.

Normal points: If x 2 N then if Rxyz then y = z.

If R is collinearity or betweenness, then
there is no candidate normal point in any Rn

(or in any a�ne or projective space).
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Normal points: If x 2 N then if Rxyz then y = z.

If R is collinearity or betweenness, then
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(or in any a�ne or projective space).
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Urquhart’s Approach

Add one!

This follows in the steps of a venerable tradition in mathematics,
of adding ideal points. In this case, a point at in�nity.
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The Behaviour ofN,v and R

N z x v z R xyz

. The position of an underlined variable is closed downwards alongv.

. The position of an overlined variable is closed upwards alongv.
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The Behaviour ofN,v and R

R z x R z xy R z

. The position of an underlined variable is closed downwards alongv.
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Collection Relations

R z x R z xy R z

X is a �nite collection of elements of P; z is in P.
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X R z

X is a �nite collection of elements of P; z is in P.
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What kind of �nite collection?

Leaf-Labelled Trees Lists Multisets Sets more . . .

Rxyz , Ryxz

(9u)(Rxyu ^ Ruzw) , (9v)(Ryzv ^ Rxvw)

Rxxx
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Set Relations

R ✓ Pfin(P)⇥ P

R generalisesv.

So, it should satisfy analogues of re�exivity and transitivity.
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Re�xivity

{x} R x
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Generalised Transitivity

(

X R x

^ {x} [ Y R y) ) X [ Y R y

X [ Y R y ) (9x)(X R x ^ {x} [ Y R y)
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Generalised Transitivity

(9x)(X R x ^ {x} [ Y R y) , X [ Y R y
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Left to Right
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Right to Left
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Compositional Set Relations

R ✓ Pfin(P)⇥ P is compositional i� for each X, Y 2 Pfin(P) and y 2 P

• {y} R y

• (9x)(X R x ^ {x} [ Y R y) () X [ Y R y
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Ternary Relational Frames forR+

hP,N,v, Ri

. P: a non-empty set

. N ✓ P

. v ✓ P ⇥ P

. R ✓ P ⇥ P ⇥ P

�. N is non-empty.

�. v is a partial order (or preorder).

�. R is downward preserved in the its two

positions and upward preserved in the third.

�. y v y 0 i� (9x)(Nx ^ Rxyy 0).

�. Rxyz , Rxyz

�. (9v)(Rxyv ^ Rvzw) , (9u)(Ryzu ^ Rxuw)

�. Rxxx

Greg Restall Geometric Models, for Relevant Logics �� of ��



Compositional Set Frames forR+

hP, Ri

. P: a non-empty set

. R ✓ Pfin(P)⇥ P

�. R is compositional. That is, {x} R x and

(9x)(X R x ^ {x} [ Y R y) , X [ Y R y

Nx x v y Rxyz

{ }Rx {x}Ry {x, y}Rz
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Compositional Set Frames for non-normalR+

hP, Ri

. P: a non-empty set

. R ✓ Pfin⇤(P)⇥ P

- Pfin⇤(P) is the set of
non-empty �nite
subsets of P.

�. R is compositional. That is, {x} R x and

(9x)(X R x^{x}[Y R y) , X[Y R y
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Surrounding

. { }Sv

. {x}Sv

. {x, y}Sv

. {x, y, z}Sv

. {x, y, z,w}Sv

The result is an elegant geometric metaphor

for concept combination and containment.
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Adding a Point at In�nity

If R ✓ Pfin⇤(P)⇥ P, we want to add a point1,
extending R to a relation R 0 where

{ }R 01

Wewant R 0 ✓ Pfin(P [ {1})⇥ P [ {1}
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Two Natural Options

XR+z i� (X\1)Rz or z = 1

(XR+1 always: so x v+ 1 for all x.)

XR⇥z i�

�
(X\1)Rz, X\1 6= { }

z = 1, X\1 = { }

(XR⇥1 only when X = { } or {1}: so x v⇥ 1 i� x = 1.)

Both R+ and R⇥ are compositional if R is.
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Di�erent Desiderata for Geometric Relations

. R is ���������: If XRy then y 2 b(X) (the shape bounded by R).

. R is ��������: If b(X) = b(Y) then XRz i� YRz.

. R is ���������: IfXRy then ⌧(X)R⌧(x) for geometric transformations ⌧

. R is ����������: There is a unique xwhere XRx.
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There are exactly two relations satisfying the desiderata on R

��������� ��������� �������� ����������

min max
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There are no relations satisfying the desiderata on Rn (n > 2)

R is inside Rn.

In Rn (n > 2) you can rotate an interval ���°,
sendingmin ontomax (and vice versa),

so neither is preserved under this rotation.
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What does this all mean?

We’ve seen how we can use and extend
Urquhart’s insights into the connection

between geometries and models of relevant logics,

to provide new ways to build and
understand those models.
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