$\lambda \mu$

RELATING CONSTRUCTIVE AND CLASSICAL LOGICS

Greg Restall

Arché • Philosophy Department University of St Andrews

HANDOUT \triangleright https://consequently.org/p/2024/lma

Arché Workshop
Proofs, Rules and Meanings
April 11, 2024
 St Andrews

Substructural Logics

R
AN INTRODUCTION TO SUBSTRUCTURAL
LOGICS
GREG RESTALL

Substructural Logics

LogicalPluralism

1 • TWO RULES / FOUR LOGICS

1 • TWO RULES / FOUR LOGICS
$2 \cdot$ ALTERNATIVES

1 • TWO RULES / FOUR LOGICS
$2 \cdot$ ALTERNATIVES

3•TRANSLATION / NORMALISATION

1 • TWO RULES / FOUR LOGICS

3• TRANSLATION / NORMALISATION
$2 \cdot$ ALTERNATIVES

4-MEANINGS

1 • TWO RULES / FOUR LOGICS

$$
\begin{array}{cc}
\begin{array}{l}
{[\mathrm{A}]^{i}} \\
\prod_{\mathrm{B}} \\
\mathrm{~A} \rightarrow \mathrm{~B}
\end{array} \mathrm{I}^{i} & \stackrel{\Pi}{\mathrm{~A}^{\prime}}
\end{array} \quad \begin{aligned}
& \Pi^{\prime} \\
& \mathrm{B}
\end{aligned} \rightarrow E
$$

$$
\begin{gathered}
\\
\\
\mathrm{A} \quad \begin{array}{c}
{[\mathrm{A}]^{\mathrm{i}}} \\
\Pi \\
\mathrm{~B} \\
\mathrm{~A} \rightarrow \mathrm{~B}
\end{array} \mathrm{r}^{\mathrm{i}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{[x: p \rightarrow(q \rightarrow r)] \quad[z: p]}{\frac{(x z): q \rightarrow r}{(x)} \rightarrow E} \frac{[y: p \rightarrow q] \quad[z: p]}{((x y): q} \rightarrow E \\
& \frac{((x z)(x y)): r}{\lambda z((x z)(x y)): p \rightarrow r} \rightarrow I^{z} \\
& \frac{\lambda y \lambda z((x z)(x y)):(p \rightarrow q) \rightarrow(p \rightarrow r)}{\lambda x \lambda y \lambda z((x z)(x y)):(p \rightarrow(q \rightarrow r) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))}
\end{aligned}
$$

$$
\left.\begin{array}{cc}
{[x: A]} \\
\vdots & \vdots \\
M: B & \vdots \\
x M: A \rightarrow B
\end{array}\right] I^{x} \quad \frac{M: A \rightarrow B \quad N: A}{(M N): B}
$$

$$
\left.\begin{array}{c}
{[x: A]} \\
\vdots \\
\frac{M: B}{\lambda \times M: A \rightarrow B} \rightarrow I^{x}
\end{array} \frac{\vdots}{(M: A \rightarrow B \quad N: A}\right]
$$

(Justify $A \rightarrow B$ by taking A as given, and using this to justify B.
You can use a such a justification of $A \rightarrow B$ by applying it to a justification of A to produce a justification of B.)

What about this 'proof'?

$$
\frac{\frac{[x: p]}{\lambda y x: q \rightarrow p} \rightarrow r^{y}}{\lambda x \lambda y x: p \rightarrow(q \rightarrow p)}
$$

We never used the supposition of q in the justification of p, and this is reflected in the term structure: the λy is vacuous.

What about this 'proof'?

$$
\frac{\frac{[x: p]}{\lambda y x: q \rightarrow p} \rightarrow r^{y}}{\lambda x \lambda y x: p \rightarrow(q \rightarrow p)}
$$

We never used the supposition of q in the justification of p, and this is reflected in the term structure: the λy is vacuous. We have a choice: allow vacuous binding, or forbid it.

$$
\begin{gathered}
\frac{[x: p]: y: q]}{\langle x, y\rangle: p \wedge q} \wedge I \\
\frac{\mathrm{fst}\langle x, y\rangle: p}{\lambda y \mathrm{fst}\langle x, y\rangle: q \rightarrow p} \rightarrow I^{y} \\
\lambda x \lambda y \mathrm{fst}\langle x, y\rangle: p \rightarrow(\mathrm{q} \rightarrow \mathrm{p})
\end{gathered}
$$

BEWARE: You must restrict or modify the usual rules for conjunction if you want to forbid vacuous binding, since with fst $\langle M, y\rangle$
you can mimic the use of an assumption y in the otherwise y-free M.

$$
\begin{aligned}
& \frac{[x: p \rightarrow(q \rightarrow r)] \quad[z: p]}{\frac{(x z): q \rightarrow r}{} \rightarrow E} \frac{[y: p \rightarrow q] \quad[z: p]}{((x z)(y z)): r} \rightarrow E \\
& \frac{\lambda z((x z)(y z)): p \rightarrow r}{\lambda y \lambda z((x z)(y z)):(p \rightarrow q) \rightarrow(p \rightarrow r)} \rightarrow I^{y} \\
& \frac{\lambda y}{\lambda x \lambda y \lambda z((x z)(y z)):(p \rightarrow(q \rightarrow r) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))} \rightarrow I^{x}
\end{aligned}
$$

Here we bound two instances of z in one go.

$$
\begin{aligned}
& \frac{[x: p \rightarrow(q \rightarrow r)] \quad[z: p]}{\frac{(x z): q \rightarrow r}{} \rightarrow E} \frac{[y: p \rightarrow q] \quad[z: p]}{(y z): q} \rightarrow E \\
& \frac{((x z)(y z)): r}{\lambda z((x z)(y z)): p \rightarrow r} \rightarrow I^{z} \\
& \frac{\lambda y \lambda z((x z)(y z)):(p \rightarrow q) \rightarrow(p \rightarrow r)}{\lambda x \lambda y \lambda z((x z)(y z)):(p \rightarrow(q \rightarrow r) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))} \rightarrow I^{y}
\end{aligned}
$$

Here we bound two instances of z in one go.
There are two options for duplicate binding: allow and forbid.

The Four Logics

We keep the $\rightarrow I$ and $\rightarrow E$ rules fixed and change the context in which they apply.

We keep the $\rightarrow I$ and $\rightarrow E$ rules fixed and change the context in which they apply.

Can we extend this analysis to classical logic?

In the sequent calculus, sort of!

$$
\frac{\mathrm{X} \succ \mathrm{~A} \quad \mathrm{~B}, \mathrm{X}^{\prime} \succ \mathrm{C}}{\mathrm{X}, \mathrm{~A} \rightarrow \mathrm{~B}, \mathrm{X}^{\prime} \succ \mathrm{C}} \rightarrow L \quad \frac{\mathrm{X}, \mathrm{~A} \succ \mathrm{~B}}{\mathrm{X} \succ \mathrm{~A} \rightarrow \mathrm{~B}} \rightarrow R
$$

In the sequent calculus, sort of!

$$
\frac{\mathrm{X} \succ \mathrm{~A}, \mathrm{Y} \quad \mathrm{~B}, \mathrm{X}^{\prime} \succ \mathrm{Y}^{\prime}}{\mathrm{X}, \mathrm{~A} \rightarrow \mathrm{~B}, \mathrm{X}^{\prime} \succ \mathrm{Y}, \mathrm{Y}^{\prime}} \rightarrow L \quad \frac{\mathrm{X}, \mathrm{~A} \succ \mathrm{~B}, \mathrm{Y}}{\mathrm{X} \succ \mathrm{~A} \rightarrow \mathrm{~B}, \mathrm{Y}} \rightarrow R
$$

In the sequent calculus, sort of!

$$
\frac{\succ \mathrm{A} \mathrm{~B} \succ}{\mathrm{~A} \rightarrow \mathrm{~B} \succ} \rightarrow L \quad \frac{\mathrm{~A} \succ \mathrm{~B}}{\succ \mathrm{~A} \rightarrow \mathrm{~B}} \rightarrow R
$$

$\rightarrow L / R$ operate in different contexts.

In the sequent calculus, sort of?

$$
\frac{X \succ A, Y \quad B, X^{\prime} \succ Y^{\prime}}{X, A \rightarrow B, X^{\prime} \succ Y, Y^{\prime}} \quad \frac{X, A \succ B, Y}{X \succ A \rightarrow B, Y}
$$

$\rightarrow L / R$ operate in different contexts.
The classical context allows for more than one positive formula occurrence.

In the sequent calculus, sort of?

$$
\frac{\mathrm{X} \succ \mathrm{~A} \quad \mathrm{~B}, \mathrm{X}^{\prime} \succ \mathrm{C}}{\mathrm{X}, \mathrm{~A} \rightarrow \mathrm{~B}, \mathrm{X}^{\prime} \succ \mathrm{C}} \rightarrow L \quad \frac{\mathrm{X}, \mathrm{~A} \succ \mathrm{~B}}{\mathrm{X} \succ \mathrm{~A} \rightarrow \mathrm{~B}} \rightarrow R
$$

$\rightarrow L / R$ operate in different contexts.
The classical context allows for more than one positive formula occurrence.
The constructive context imposes a tighter restriction.

In the sequent calculus, sort of!

$$
\frac{X \succ A \quad B, X^{\prime} \succ C}{X, A \rightarrow B, X^{\prime} \succ C} \rightarrow L \quad \frac{X, A \succ B}{X \succ A \rightarrow B}
$$

$\rightarrow L / R$ operate in different contexts.
The classical context allows for more than one positive formula occurrence.
The constructive context imposes a tighter restriction. (This is totally independent of contraction and weakening.)

Let's try to do this in a natural deduction setting.
Find a structural extension to natural deduction
that renders our four constructive logics, classical.

Let's try to do this in a natural deduction setting.

> Find a structural extension to natural deduction that renders our four constructive logics, classical.

(For bonus points, extend the simply typed λ calculus and our understanding of processes of justification or construction.)
$2 \cdot$ ALTERNATIVES

Bilateralism: assertion and denial are on equal footing.

Bilateralism: assertion and denial are on equal footing.
One option: proofs involve positively tagged formulas ($+A$) and negatively tagged formulas ($-A$).

$$
\begin{aligned}
& \frac{+A}{+B} \\
& +(A \rightarrow B) \\
& \begin{array}{rlrl}
& & \\
& \\
& & \\
& & \\
\hline-(A \rightarrow B) & & \\
& & \frac{-(A \rightarrow B)}{+A} & \frac{-(A \rightarrow B)}{-B}
\end{array} \\
& +- \text {-I: } \\
& \frac{-A}{+(\neg A)} \\
& +- \text {-E: } \\
& \text {--ר-E: } \\
& \frac{+A}{-(\neg A)} \\
& \frac{-(\neg A)}{+A}
\end{aligned}
$$

$$
\begin{array}{rlrl}
+-\neg-\mathrm{I}: & & +-\neg-\mathrm{E}: \\
& \frac{-A}{+(\neg A)} & & \frac{+(\neg A)}{-A} \\
--- \text {-I: } & & \\
& \frac{+A}{-(\neg A)} & & \frac{-(\neg A)}{+A}
\end{array}
$$

This is more than just a change in the structural context.

$$
\begin{aligned}
& \begin{array}{lll}
+\rightarrow-\mathrm{I}: & \\
\frac{+A}{+ \text { (i) }} \xrightarrow{+-\mathrm{E}:} \\
& +(A \rightarrow B)
\end{array} \\
& \begin{array}{cc}
+A & +(A \rightarrow B) \\
\vdots & +A \\
+B & \text { (i) }
\end{array} \\
& \rightarrow-\mathrm{I}: \quad \rightarrow-\mathrm{E}: \\
& \begin{array}{lll}
+A-B \\
-(A \rightarrow B)
\end{array} \frac{-(A \rightarrow B)}{+A} \quad \frac{-(A \rightarrow B)}{-B}
\end{aligned}
$$

The key bilateralist idea is that for $A, B \succ C, D$

The key bilateralist idea is that for $A, B>C, D$
if C is the conclusion of your proof, then D is part of the context, with opposite polarity to A and B.

The key bilateralist idea is that for $A, B \succ-D$
if C is the conclusion of your proof, then D is part of the context, with opposite polarity to A and B.

Given A and B, C follows, unless D.

The key bilateralist idea is that for $A, B \succ C, D$ if C is the conclusion of your proof, then D is part of the context, with opposite polarity to A and B.

Given A and B, C follows, unless D.
Granting A and B, and setting D aside, we have C.

The key bilateralist idea is that for $A, B \succ C, D$

if C is the conclusion of your proof, then D is part of the context, with opposite polarity to A and B.

Given A and B, C follows, unless D .

Granting A and B , and setting D aside, we have C .

We can use this idea to make a purely structural addition to natural deduction, keeping our existing rules unchanged.

$$
\begin{aligned}
& {[A]^{i}} \\
& \frac{\prod_{1} \quad A}{\#} \\
& \Pi \\
& \frac{\#}{A} \downarrow^{i}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\square}{\#} \uparrow \\
& \frac{A A]^{i}}{\#} \\
& \frac{\Pi^{i}}{A} \succ A, Y \\
& X \succ \square A, Y
\end{aligned}
$$

$$
\begin{aligned}
& {[A]^{i}} \\
& \frac{\pi}{A} \begin{array}{l}
\# \\
A
\end{array} \\
& \Pi \\
& \frac{X \succ A, Y}{X \succ \square A, Y}
\end{aligned}
$$

$$
\begin{array}{cc}
\prod^{\frac{A}{A}} \uparrow & {[A]^{i}} \\
\frac{\Pi}{\#} & \frac{\#}{A} \downarrow^{i} \\
\frac{X \succ A, Y}{X \succ \square A, Y} & \frac{X \succ \square A, Y}{X \succ A, Y}
\end{array}
$$

$$
\begin{aligned}
& {[A]^{i}} \\
& \frac{\prod_{1} \quad A}{\sharp}+ \\
& \begin{array}{l}
\Pi \\
\frac{\#}{A} \\
\iota^{i}
\end{array} \\
& \frac{X \succ A, Y}{X \succ \square A, Y} \\
& \frac{X \succ \square A, Y}{X \succ A, Y}
\end{aligned}
$$

Add these rules for alternatives.

Keep the connective rules fixed.
(Employing whichever discharge/binding discipline you prefer.)
Now you have a classical version of your logic.

$$
\frac{[(p \rightarrow q) \rightarrow p]^{3} \frac{\frac{[p]^{1} \quad[p]^{2}}{p} \uparrow}{\frac{\sharp}{q} \downarrow} \frac{\frac{\sharp}{p \rightarrow q} \rightarrow I^{1}}{\frac{\#}{p} \downarrow^{2}}}{\frac{[p]^{2}}{((p \rightarrow q) \rightarrow p) \rightarrow p} \rightarrow I^{3}} \uparrow
$$

$$
\frac{\frac{[p]^{1}[p]^{2}}{\frac{\sharp}{q} \downarrow} \uparrow}{\frac{[(p \rightarrow q) \rightarrow p]^{3}}{\frac{p}{p \rightarrow q} \rightarrow I^{1}}} \underset{\frac{\frac{\#}{p} \downarrow^{2}}{((p \rightarrow q) \rightarrow p) \rightarrow p} \rightarrow I^{3}}{[p]^{2}} \uparrow \quad p \succ \square p
$$

$$
\frac{\frac{[p]^{1}[p]^{2}}{\frac{\sharp}{q} \downarrow} \uparrow}{\frac{p(p \rightarrow q) \rightarrow p]^{3}}{\frac{p}{p \rightarrow q} \rightarrow I^{1}}} \underset{\frac{\frac{\sharp}{p} \downarrow^{2}}{((p \rightarrow q) \rightarrow p) \rightarrow p} \rightarrow I^{3}}{[p]^{2}} \uparrow \quad p \succ q, p
$$

$$
\frac{\frac{[p]^{1}[p]^{2}}{\frac{\#}{q} \downarrow} \uparrow}{\frac{[(p \rightarrow q) \rightarrow p]^{3}}{\frac{p}{p \rightarrow q} \rightarrow I^{1}}} \underset{\frac{\frac{\#}{p} \downarrow^{2}}{((p \rightarrow q) \rightarrow p) \rightarrow p} \rightarrow I^{3}}{[p]^{2}} \uparrow \quad(p \rightarrow q) \rightarrow p \succ p, p
$$

$$
\frac{\frac{[p]^{1}[p]^{2}}{\frac{\#}{q} \downarrow} \uparrow}{\frac{\left[^{\prime}(p \rightarrow q) \rightarrow p\right]^{3}}{\frac{p}{p \rightarrow q} \rightarrow I^{1}}} \underset{\frac{\frac{\#}{\mathrm{p}} \downarrow^{2}}{((p \rightarrow q) \rightarrow p) \rightarrow p} \rightarrow l^{3}}{[p]^{2}} \uparrow \quad(p \rightarrow q) \rightarrow p>\square p, p
$$

$$
\begin{gathered}
\frac{\frac{[p]^{1} \quad[p]^{2}}{\frac{\sharp}{q} \downarrow} \uparrow}{\frac{[(p \rightarrow q) \rightarrow p]^{3}}{\frac{p}{p \rightarrow q} \rightarrow I^{1}}} \underset{\frac{\sharp}{((p \rightarrow q) \rightarrow p) \rightarrow p} \rightarrow I^{3}}{[p]^{2}} \uparrow \\
\frac{\sharp}{p}
\end{gathered}
$$

$$
\begin{aligned}
& \text { [} \mathrm{x}: \mathrm{A} \text {] } \\
& x: A \quad \frac{M: B}{\lambda x M: A \rightarrow B} \rightarrow I^{x} \quad \frac{M: A \rightarrow B \quad N: A}{(M N): B} \rightarrow E
\end{aligned}
$$

Terms

$$
\begin{aligned}
& \text { [} \mathrm{x}: \mathrm{A} \text {] } \\
& x: A \quad \frac{M: B}{\lambda x M: A \rightarrow B} \rightarrow I^{x} \quad \frac{M: A \rightarrow B \quad N: A}{(M N): B} \rightarrow E \\
& \frac{M: A \quad \alpha: A}{\langle M \mid \alpha\rangle: \sharp} \uparrow
\end{aligned}
$$

Terms

$$
\begin{aligned}
& \text { [} \mathrm{x}: \mathrm{A} \text {] } \\
& x: A \quad \frac{M: B}{\lambda x M: A \rightarrow B} \rightarrow I^{x} \quad \frac{M: A \rightarrow B \quad N: A}{(M N): B} \rightarrow E \\
& \frac{M: A \quad \alpha: A}{\langle M \mid \alpha\rangle: \sharp} \uparrow
\end{aligned}
$$

Terms Labels

$$
\begin{aligned}
& \text { [} \mathrm{x}: \mathrm{A} \text {] } \\
& x: A \quad \frac{M: B}{\lambda x M: A \rightarrow B} \rightarrow r^{x} \quad \frac{M: A \rightarrow B \quad N: A}{(M N): B} \rightarrow E \\
& \frac{M: A \quad \alpha: A}{\langle M \mid \alpha\rangle: \sharp} \uparrow \\
& \text { Terms Labels Packages }
\end{aligned}
$$

$$
\begin{array}{cc}
{[x: A]} \\
\vdots \\
x: A & \frac{M: B}{\lambda x M: A \rightarrow B} \rightarrow I^{x} \\
\frac{M: A \rightarrow B \quad N: A}{(M N): B} \rightarrow E \\
& \\
& \begin{array}{c}
{[\alpha: A]} \\
\langle M \mid \alpha\rangle: \sharp
\end{array} \\
& \frac{P: \sharp}{\mu \alpha P: A} \downarrow^{\alpha} \\
\text { Terms Labels Packages }
\end{array}
$$

$$
\begin{gathered}
\frac{[y: p][\alpha: p]}{\frac{\langle y \mid \alpha\rangle: \sharp}{\mu \beta\langle y \mid \alpha\rangle: q} \downarrow^{\beta}} \uparrow \\
\frac{[x:(p \rightarrow q) \rightarrow p] \quad \frac{(x \lambda y \mu \beta\langle y \mid \alpha\rangle): p}{\lambda y \mu \beta\langle y \mid \alpha\rangle: p \rightarrow q}}{\frac{\langle(x \lambda y \mu \beta\langle y \mid \alpha\rangle) \mid \alpha\rangle: \sharp}{\langle }} \rightarrow E \quad[\alpha: p] \\
\frac{\mu \alpha\langle(x \lambda y \mu \beta\langle y \mid \alpha\rangle) \mid \alpha\rangle: p}{\lambda x \mu \alpha\langle(x \lambda y \mu \beta\langle y \mid \alpha\rangle) \mid \alpha\rangle:((p \rightarrow q) \rightarrow p) \rightarrow p} \rightarrow I^{x}
\end{gathered}
$$

Given \sharp, it makes sense to use it to define negation:
$\neg A$ is $A \rightarrow f$, where f is the formula representative of the empty conclusion.

$$
\frac{P: \sharp}{\mu P: f} f I \quad \frac{M: f}{\langle M\rangle: \sharp} f E
$$

Given \sharp, it makes sense to use it to define negation:
$\neg A$ is $A \rightarrow f$, where f is the formula representative of the empty conclusion.

$$
\begin{gathered}
\frac{P: \sharp}{\mu P: f} f I \quad \frac{M: f}{\langle M\rangle: \sharp E E} \\
\frac{[x: A] \quad[\alpha: A]}{\frac{\langle x \mid \alpha\rangle: \sharp}{\mu\langle x \mid \alpha\rangle: f} f I} \uparrow \\
\frac{y:(A \rightarrow f) \rightarrow f \quad \frac{(y \lambda x \mu\langle x \mid \alpha\rangle): f}{\lambda x \mu\langle x \mid \alpha\rangle: A \rightarrow f} \rightarrow I^{x}}{\frac{\langle(y \lambda x \mu\langle x \mid \alpha\rangle)\rangle: \sharp}{\langle E}} \downarrow^{\alpha} \\
\frac{\mu \alpha\langle(y \lambda x \mu\langle x \mid \alpha\rangle)\rangle: A}{}
\end{gathered}
$$

Given \sharp, it makes sense to use it to define negation:
$\neg A$ is $A \rightarrow f$, where f is the formula representative of the empty conclusion.

$$
\left.\begin{array}{ccc}
& P: \sharp \\
\mu \mathrm{P}: \mathrm{f} & f I & \frac{M: f}{\langle M\rangle: \sharp} \mathrm{fE}
\end{array} \quad \frac{\mathrm{M}: \neg \mathrm{A} \quad \mathrm{~N}: \mathrm{A}}{\langle(\mathrm{MN})\rangle: \sharp} \neg \mathrm{x}: \mathrm{A}\right] \quad \text { } \quad \frac{\mathrm{P}: \sharp}{\lambda x \mu \mathrm{P}: \neg \mathrm{A}} \neg I^{x}
$$

$$
\frac{[x: A] \quad[\alpha: A]}{\frac{\langle x \mid \alpha\rangle: \sharp}{\mu\langle x \mid \alpha\rangle: f}} \uparrow
$$

$$
\frac{y:(A \rightarrow f) \rightarrow f \quad \frac{(y \lambda x \mu\langle x \mid \alpha\rangle): f}{\lambda x \mu\langle x \mid \alpha\rangle: A \rightarrow f}}{\frac{\left(y I^{x}\right.}{\langle(y \lambda x \mu\langle x \mid \alpha\rangle)\rangle: \sharp}} \rightarrow I_{E}^{\mu \alpha\langle(y \lambda x \mu\langle x \mid \alpha\rangle)\rangle: A} \downarrow^{\alpha},
$$

Given \sharp, it makes sense to use it to define negation:
$\neg A$ is $A \rightarrow f$, where f is the formula representative of the empty conclusion.

$$
\begin{aligned}
& \text { [} \mathrm{x}: \mathrm{A} \text {] } \\
& \frac{P: \sharp}{\mu \mathrm{P}: \mathrm{f}} \mathrm{fI} \quad \frac{\mathrm{M}: \mathrm{f}}{\langle\mathrm{M}\rangle: \sharp} \mathrm{fE} \quad \frac{\mathrm{M}: \neg \mathrm{A} \quad \mathrm{~N}: \mathrm{A}}{\langle(\mathrm{MN})\rangle: \sharp} \neg E \quad \frac{\mathrm{P}: \sharp}{\lambda x \mu \mathrm{P}: \neg \mathrm{A}} \neg I^{x} \\
& \frac{[x: A][\alpha: A]}{\frac{\langle x \mid \alpha\rangle: \sharp}{\mu\langle x \mid \alpha\rangle: f} f I} \uparrow \\
& \frac{[x: A][\alpha: \nexists]}{\langle x \mid \alpha\rangle: \sharp} \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \frac{y: \neg \neg A \quad \overline{\lambda x \mu\langle x \mid \alpha\rangle: \neg A}}{\frac{\langle(y \lambda x \mu\langle x \mid \alpha\rangle)\rangle: \sharp}{\mu \alpha\langle(y \lambda x \mu\langle x \mid \alpha\rangle)\rangle: A} I^{\alpha}} \neg E
\end{aligned}
$$

$$
\begin{array}{ccccc}
(\lambda x M N) \triangleright M\{N / x\} & {[x: A]} & & \\
\vdots & & \vdots \\
\frac{M: B}{\lambda x M: A \rightarrow B} \rightarrow I^{x} & \vdots & \triangleright & N: A \\
\hline(\lambda x M N): B & & & M\{N / x\}: B
\end{array}
$$

$$
\begin{array}{cccccc}
(\lambda x M N) \triangleright M\{N / x\} & {[\alpha: A]} & & \\
\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} & \vdots & & {[\beta: A]} \\
& \frac{P: \sharp}{\mu \alpha P: A} \downarrow^{\alpha} & \beta: A \\
\langle\mu \alpha P \mid \beta\rangle: \sharp & & & & & \\
& & & & &
\end{array}
$$

$$
\begin{array}{rlrl}
(\lambda \times M N) & \triangleright M\{N / x\} & \vdots \\
\langle\mu \alpha P \mid \beta\rangle & \triangleright P\{\beta / \alpha\} & \frac{P: \sharp}{\mu P: f} f I & \triangleright \\
\langle\mu P\rangle & \triangleright P & P: \sharp \\
\langle\mu P\rangle: \sharp & &
\end{array}
$$

$$
\begin{array}{rll}
(\lambda x \mathrm{MN}) & \triangleright & \mathrm{M}\{\mathrm{~N} / x\} \\
\langle\mu \alpha \mathrm{P} \mid \beta\rangle & \triangleright & \mathrm{P}\{\beta / \alpha\} \\
\langle\mu \mathrm{P}\rangle & \triangleright & \mathrm{P} \\
(\mu \alpha \mathrm{PN}) & \triangleright & ? ? ?
\end{array}
$$

```
    [\alpha:A\longrightarrowB]
\frac{P:#}{\mu\alphaP:A->B}\mp@subsup{\downarrow}{}{\alpha}\quad\stackrel{N}{N}:A
```

```
\(\frac{*: A \rightarrow B \quad[\alpha: A \rightarrow B]}{\langle * \mid \alpha\rangle: \sharp} \uparrow\)
```


$$
(\mu \alpha \mathrm{P} \mathrm{~N}) \triangleright \mu \beta \mathrm{P}\{\langle(* \mathrm{~N}) \mid \beta\rangle /\langle * \mid \alpha\rangle\}
$$

```
\(\frac{*: A \rightarrow B \quad[\alpha: A \rightarrow B]}{\langle * \mid \alpha\rangle: \sharp} \uparrow\)
```


$$
\begin{gathered}
\frac{*: A \rightarrow B \quad N: A}{(* N): B} \rightarrow E \quad[\beta: B] \\
\langle(* N) \mid \beta\rangle: \sharp \\
\vdots \\
\frac{P\{\langle(* N) \mid \beta\rangle /\langle * \mid \alpha\rangle\}: \sharp}{\mu \beta P\{\langle(* N) \mid \beta\rangle /\langle * \mid \alpha\rangle\}: B} \downarrow^{\beta}
\end{gathered}
$$

$$
(\mu \alpha P N) \triangleright \mu P\{\langle(* N)\rangle /\langle * \mid \alpha\rangle\}
$$

$$
\begin{gathered}
*: A \rightarrow f \quad[\alpha: A \longrightarrow f] \\
\langle * \mid \alpha\rangle: \sharp \\
\vdots \\
\frac{P: \sharp}{\frac{\mu \alpha P: A \rightarrow f}{(\mu \alpha P N): f}} \downarrow^{\alpha} \quad N: A \\
\frac{}{(\mu} \rightarrow E
\end{gathered}
$$

$$
\begin{gathered}
\frac{*: A \rightarrow f \quad N: A}{\frac{(* N): f}{\langle(* N)\rangle: \sharp}} \rightarrow=E \\
\vdots \\
\frac{\mathrm{P}\{\langle(* \mathrm{~N})\rangle /\langle * \mid \alpha\rangle\}: \sharp}{\mu \mathrm{P}\{\langle(* \mathrm{~N})\rangle /\langle * \mid \alpha\rangle\}: \mathrm{f}} \mathrm{fI}
\end{gathered}
$$

$$
\begin{array}{rlll}
(\lambda x M \mathrm{~N}) & \triangleright \mathrm{M}\{\mathrm{~N} / x\} \\
\langle\mu \alpha \mathrm{P} \mid \beta\rangle & \triangleright \mathrm{P}\{\beta / \alpha\} \\
\langle\mu \mathrm{P}\rangle & \triangleright \mathrm{P} \\
(\mu \alpha \mathrm{PN}) & \triangleright \mu \beta \mathrm{P}\{\langle(* \mathrm{~N}) \mid \beta\rangle /\langle * \mid \alpha\rangle\} & \text { (if not type f) } \\
& \triangleright \mu \mathrm{P}\{\langle(* \mathrm{~N})\rangle /\langle * \mid \alpha\rangle\} & \text { (if type f) }
\end{array}
$$

$$
\begin{aligned}
& x: p \rightarrow(p \rightarrow q) \quad[y: p] \\
& \left.\left.\frac{(x y): p \rightarrow q}{\langle(x y) \mid \alpha\rangle: \sharp} \rightarrow \hbar: p _q\right]\right) \\
& \frac{\overline{\lambda y \mu\langle(x y) \mid \alpha\rangle: \neg p} \neg^{y} \quad[\beta: \neg p]!}{\langle\lambda y \mu\langle(x y) \mid \alpha\rangle \mid \beta\rangle: \sharp} \uparrow \\
& \overline{\mu \alpha\langle\lambda y \mu\langle(x y) \mid \alpha\rangle \mid \beta\rangle: p \rightarrow q} \downarrow^{\alpha} \quad[z: p] \\
& \frac{(\mu \alpha\langle\lambda y \mu\langle(x y) \mid \alpha\rangle \mid \beta\rangle z): q}{\langle(\mu \alpha\langle\lambda y \mu\langle(x y) \mid \alpha\rangle \mid \beta\rangle z) \mid \gamma\rangle: \sharp} \rightarrow E[\gamma: \text { q] } \uparrow
\end{aligned}
$$

$$
(\lambda \times M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$\lambda w \mu \gamma\langle(\mu \beta\langle\lambda z \mu\langle(\mu \alpha\langle\lambda y \mu\langle(x y) \mid \alpha\rangle \mid \beta\rangle z) \mid \gamma\rangle \mid \beta\rangle w)\rangle$

$$
(\lambda \times M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$$
\lambda w \mu \gamma\langle(\mu \beta\langle\lambda z \mu\langle(\mu \alpha\langle\lambda y \mu\langle(x y) \mid \alpha\rangle \mid \beta\rangle z) \mid \gamma\rangle \mid \beta\rangle w)\rangle
$$

$$
(\lambda \times M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$\lambda w \mu \gamma\langle(\mu \beta\langle\lambda z \mu\langle(\mu \alpha\langle\lambda y \mu\langle(x y) \mid \alpha\rangle \mid \beta\rangle z) \mid \gamma\rangle \mid \beta\rangle w)\rangle$

$$
(\lambda \times M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$\lambda w \mu \gamma\langle(\mu \beta\langle\lambda z \mu\langle(\mu \alpha\langle\lambda y \mu\langle(x y) \mid \alpha\rangle \mid \beta\rangle z) \mid \gamma\rangle \mid \beta\rangle \underset{w}{ })\rangle$

$$
(\lambda \times M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$\lambda w \mu \gamma\langle(\mu \beta\langle\lambda z \mu\langle(\mu \alpha\langle\lambda y \mu\langle(x y) \mid \alpha\rangle \mid \beta\rangle z) \mid \gamma\rangle \mid \beta\rangle \underset{w}{ })\rangle$

$$
(\lambda x M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$$
\lambda w \mu \gamma\langle(\lambda z \mu\langle(\mu \alpha\langle(\lambda y \mu\langle(x y) \mid \alpha\rangle w)\rangle z) \mid \gamma\rangle w)\rangle
$$

```
(\lambdaxM N)\trianglerightM{N/x} <\mu\alphaP|\beta\rangle\trianglerightP{\beta/\alpha} <\muP\rangle\trianglerightP P (\mu\alphaPN)\triangleright\cdots
```

$\lambda w \mu \gamma\langle(\lambda z \mu\langle(\mu \alpha\langle(\lambda y \mu\langle(x y) \mid \alpha\rangle w)\rangle z) \mid \gamma\rangle w)\rangle$
$(\lambda x M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots$
$\lambda w \mu \gamma\langle(\lambda z \mu\langle(\mu \alpha\langle(\lambda y \mu\langle(x y) \mid \alpha\rangle w)\rangle z) \mid \gamma\rangle w)\rangle$

```
(\lambdaxMN)\triangleright M{N/x} <\mu\alphaP|\beta\rangle\trianglerightP{{\beta/\alpha}\quad\langle\muP\rangle\trianglerightP ( 
```

$$
\lambda w \mu \gamma\langle(\lambda z \mu\langle(\mu \alpha\langle\mu\langle(x w) \mid \alpha\rangle\rangle z) \mid \gamma\rangle w)\rangle
$$

$$
(\lambda \times M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$$
\lambda w \mu \gamma\langle(\lambda z \mu\langle(\mu \alpha\langle\mu\langle(x w) \mid \alpha\rangle\rangle z) \mid \gamma\rangle w)\rangle
$$

$$
(\lambda \times M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$$
\lambda w \mu \gamma\langle(\lambda z \mu\langle(\mu \alpha\langle(x w) \mid \alpha\rangle z) \mid \gamma\rangle w)\rangle
$$

$$
(\lambda x M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$$
\lambda w \mu \gamma\langle(\lambda z \mu\langle\langle(\mu \alpha\langle(x w) \mid \alpha\rangle z) \mid \gamma\rangle w)\rangle
$$

$$
(\lambda x M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$\lambda w \mu \gamma\langle(\lambda z \mu\langle\mu \delta\langle((x w) z) \mid \delta\rangle \mid \gamma\rangle w)\rangle$

$$
(\lambda \times M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$$
\lambda w \mu \gamma\langle(\lambda z \mu\langle\mu \delta\langle((x w) z) \mid \delta\rangle \mid \gamma\rangle w)\rangle
$$

$$
(\lambda x M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$$
\lambda w \mu \gamma\langle(\lambda z \mu\langle((x w) z) \mid \gamma\rangle w)\rangle
$$

$$
(\lambda \times M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$$
\lambda w \mu \gamma\langle(\lambda z \mu\langle((x w) z) \mid \gamma\rangle w)\rangle
$$

```
\((\lambda x M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots\)
```

$\lambda w \mu \gamma\langle\mu\langle((x w) w) \mid \gamma\rangle\rangle$

$$
(\lambda x M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$\lambda w \mu \gamma\langle\mu\langle((x w) w) \mid \gamma\rangle\rangle$

$$
(\lambda x M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$\lambda w \mu \gamma\langle((x w) w) \mid \gamma\rangle$

$$
(\lambda x M N) \triangleright M\{N / x\} \quad\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\} \quad\langle\mu P\rangle \triangleright P \quad(\mu \alpha P N) \triangleright \cdots
$$

$\lambda w \mu \gamma\langle((x w) w) \mid \gamma\rangle$

$$
\begin{aligned}
& \frac{x: p \rightarrow(p \rightarrow q)[w: p]}{\left.\frac{(x w): p \rightarrow q}{}\right)} \frac{[(x w) w): q}{\frac{\langle((x w) w) \mid \gamma\rangle: \sharp}{\mu \gamma\langle((x w) w) \mid \gamma\rangle: q} \downarrow^{\gamma}} \rightarrow E \\
& \frac{[\gamma: q]}{\lambda w \mu \gamma\langle((x w) w) \mid \gamma\rangle: p \rightarrow \mathrm{q}} \rightarrow I^{w}
\end{aligned}
$$

$$
\begin{aligned}
& x: p \rightarrow(p \rightarrow q) \quad[w: p] \\
& (\mathrm{xw}): \mathrm{p} \rightarrow \mathrm{q} \quad \rightarrow E \quad[w: p] \\
& \frac{\frac{((x w) w): \mathrm{q}}{\langle((\mathrm{xw}) w) \mid \gamma\rangle: \sharp} \downarrow^{\gamma}}{\frac{\mu \gamma\langle((\mathrm{xw}) w) \mid \gamma\rangle: \mathrm{q}}{\lambda w \mu \gamma\langle((\mathrm{xw}) w) \mid \gamma\rangle: \mathrm{p} \rightarrow \mathrm{q}} \rightarrow I^{w}} \uparrow \\
& \frac{M: A \rightarrow B \quad x: A}{(M x): B} \rightarrow E
\end{aligned}
$$

$$
\begin{aligned}
& x: p \rightarrow(p \rightarrow q) \quad[w: p] \\
& (x w): p \rightarrow q \quad \rightarrow E \quad[w: p] \\
& \frac{\frac{((x w) w): \mathrm{q}}{\langle((\mathrm{xw}) w) \mid \gamma\rangle: \sharp} \rightarrow_{E}^{[\gamma: q]}}{\frac{\mu \gamma\langle((\mathrm{xw}) w) \mid \gamma\rangle: \mathrm{q}}{\lambda w \mu \gamma\langle((\mathrm{xw}) w) \mid \gamma\rangle: p \rightarrow \mathrm{q}} \rightarrow I^{w}} \\
& \underset{\frac{M: A \rightarrow B \quad x: A}{(M x): B} \rightarrow E}{\lambda x(M x): A \rightarrow B} \rightarrow I^{x} \\
& \triangleright_{\eta} \\
& M: A \rightarrow B
\end{aligned}
$$

$$
\begin{aligned}
& x: p \rightarrow(p \rightarrow q) \quad[w: p] \\
& (x w): p \rightarrow q \quad \rightarrow E \quad[w: p] \\
& \frac{((\mathrm{xw}) w): \mathrm{q}}{\frac{\langle((\mathrm{xw}) w) \mid \gamma\rangle: \sharp}{\mu \gamma\langle((\mathrm{xw}) w) \mid \gamma\rangle: \mathrm{q}} \downarrow^{\gamma}} \rightarrow E[\gamma: \boldsymbol{q}]{ }^{\gamma} \triangleright_{\eta} \\
& x: p \rightarrow(p \rightarrow q) \quad[w: p] \\
& \frac{(x w): \mathrm{p} \rightarrow \mathrm{q}}{\frac{((\mathrm{xw}) w): \mathrm{q}}{\lambda w((\mathrm{xw}) w): \mathrm{p} \rightarrow \mathrm{q}} \rightarrow I^{w}} \rightarrow E \\
& \frac{M: A \rightarrow B \quad x: A}{\frac{(M x): B}{\lambda x(M x): A \rightarrow B} \rightarrow I^{x}} \\
& \triangleright_{\eta} \\
& M: A \rightarrow B
\end{aligned}
$$

3•TRANSLATION / NORMALISATION

It's well known that classical logic can be found inside intuitionistic logic using double negation translations.

It's well known that classical logic can be found inside intuitionistic logic using double negation translations.

Classical logic is found inside intuitionistic logic not only at the level of provability, but also at the level of proofs, and even at the level of proof dynamics-normalisation.

It's well known that classical logic can be found inside intuitionistic logic using double negation translations.

Classical logic is found inside intuitionistic logic not only at the level of provability, but also at the level of proofs, and even at the level of proof dynamics-normalisation.

These results are robust. They extend to all four structural settings, linear, relevant, affine, and full.

We can translate a classical logic (either linear, relevant, affine or full) inside its constructive counterpart.

FIRST: For formulas, \sharp and stastred formulas, add to the constructive language a fresh atom q , and set:

$$
\begin{aligned}
& \overline{\#}=q \quad \bar{F}=p \rightarrow q \quad \bar{A} B \quad=(\bar{A} \rightarrow \bar{B}) \rightarrow q \\
& \bar{f}=q \quad \bar{p}=\bar{p} \rightarrow q \quad \overline{A \rightarrow B}=(\overline{A \longrightarrow D}) \rightarrow q
\end{aligned}
$$

We can translate a classical logic (either linear, relevant, affine or full) inside its constructive counterpart.

FIRST: For formulas, \sharp and stastred formulas, add to the constructive language a fresh atom q , and set:

$$
\begin{array}{lll}
\overline{\#}=q & \bar{p}=\neg_{q} p & \overline{A \rightarrow B}=\neg_{q}(\bar{A} \rightarrow \bar{B}) \\
\bar{f}=q & \bar{p}=\neg_{q} \bar{p} & \overline{A \rightarrow B}=\neg_{q}(\bar{A} \bar{A})
\end{array}
$$

SECOND: for terms variables and labels, whenever x : A, we choose a unique variable $\bar{x}: \bar{A}$, and whenever α : \mathbb{A}, we choose a unique variable $\bar{\alpha}: \bar{A}$.

We extend this translation to all terms and packages as follows ...

$$
\begin{aligned}
\overline{\lambda x N} & =\lambda y(y \lambda \bar{x} \bar{N}) \\
\overline{(M N)} & =\lambda z(\bar{M} \lambda y((y \bar{N}) z)) \\
\overline{\langle M \mid \alpha\rangle} & =(\bar{M} \bar{\alpha}) \\
\overline{\mu \alpha P} & =\lambda \bar{\alpha} \bar{P} \\
\overline{\mu P} & =\overline{\mathrm{P}} \\
\overline{\langle\mathrm{~N}\rangle} & =\overline{\mathrm{N}}
\end{aligned}
$$

$$
\begin{array}{rlc}
& & {[\bar{x}: \bar{A}]} \\
\overline{\lambda x N} & =\lambda y(y \lambda \bar{x} \bar{N}) & \vdots \\
\overline{(M N)} & =\lambda z(\bar{M} \lambda y((y \bar{N}) z)) & \frac{\bar{N}: \bar{B}}{\overline{\left(y: \neg_{q}(\bar{A} \rightarrow \bar{B})\right]}} \overline{\lambda \bar{x} \bar{N}: \bar{A} \rightarrow \bar{B}} \\
\overline{\langle M \mid \alpha\rangle} & =(\bar{M} \bar{\alpha}) & \frac{(y \lambda \bar{x} \bar{N}): q}{\lambda y(y \lambda \bar{x} \bar{N}): \neg_{q} \neg q^{q}(\bar{A} \rightarrow \bar{B})} \\
\overline{\mu \alpha P} & =\lambda \bar{\alpha} \bar{P} & \\
\overline{\mu P} & =\bar{P} &
\end{array}
$$

$$
\begin{aligned}
& \overline{\lambda x N}=\lambda y(y \lambda \bar{x} \bar{N}) \\
& \overline{(M N)}=\lambda z(\bar{M} \lambda y((y \bar{N}) z)) \\
& \overline{\langle M \mid \alpha\rangle}=(\bar{M} \bar{\alpha}) \\
& \overline{\mu \alpha \mathrm{P}}=\lambda \bar{\alpha} \overline{\mathrm{P}} \\
& \overline{\mu \mathrm{P}}=\overline{\mathrm{P}} \\
& \overline{\langle\mathrm{~N}\rangle}=\overline{\mathrm{N}} \\
& \begin{array}{lll}
{[y: \bar{A} \rightarrow \bar{B}] \quad \overline{\mathrm{N}}: \overline{\mathrm{A}}} & \\
\hline(y \overline{\mathrm{~N}}): \overline{\mathrm{B}} & {[z: \overline{\mathrm{B}}]} \\
\hline
\end{array} \\
& \bar{M}: \neg_{q} \neg_{q}(\bar{A} \rightarrow \overline{\mathrm{~B}}) \\
& ((y \bar{N}) z): q \\
& (\bar{M} \lambda y((y \bar{N}) z)): q \\
& \lambda z(\bar{M} \lambda y((y \overline{\mathrm{~N}}) z)): \overline{\mathrm{B}}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\overline{\lambda x N} & =\lambda y(y \lambda \bar{x} \bar{N}) & \bar{M}: \bar{A} \quad \bar{\alpha}: \bar{A} \\
\overline{(M N)} & =\lambda z(\bar{M} \bar{M} \lambda y((y \bar{N}) z)) & \\
\overline{\langle M \mid \alpha\rangle} & =(\bar{M} \bar{\alpha}) & \\
\overline{\mu \alpha P} & =\lambda \bar{\alpha} \bar{P} & \\
\overline{\mu \mathrm{P}} & =\overline{\mathrm{P}} & \\
\overline{\langle\mathrm{~N}\rangle} & =\overline{\mathrm{N}}
\end{array}
$$

$$
\begin{array}{rlrc}
& & {[\bar{\alpha}: \bar{\mp}]} \\
\overline{\lambda x N} & =\lambda y(y \lambda \bar{x} \bar{N}) & \vdots & \vdots \\
\overline{(M \mathrm{~N})} & =\lambda z(\bar{M} \lambda y((y \bar{N}) z)) & \frac{\bar{M}: \bar{A}}{(\bar{M} \bar{\alpha}): q} \overline{\bar{A}} & \overline{\mathrm{P}}: q \\
\overline{\langle M \mid \alpha\rangle} & =(\bar{M} \bar{\alpha}) & & \overline{\alpha \bar{\alpha} \bar{P}: \neg_{q} \bar{A}} \\
\overline{\mu \alpha P} & =\lambda \bar{\alpha} \bar{P} & & \\
\overline{\mu P} & =\overline{\mathrm{P}} & & \\
\overline{\langle N\rangle} & =\bar{N}
\end{array}
$$

$$
\begin{aligned}
& {[\bar{\alpha}: \bar{\mp}]} \\
& \overline{\lambda x N}=\lambda y(y \lambda \bar{x} \bar{N}) \\
& \overline{(M \mathrm{~N})}=\lambda z(\overline{\mathrm{M}} \lambda y((y \overline{\mathrm{~N}}) z)) \\
& \begin{array}{ccc}
\vdots & & \vdots \\
\bar{M}: \bar{A} & \bar{\alpha}: \bar{A} & \overline{\bar{P}}: q \\
\hline \bar{M} \bar{\alpha}): q & \frac{\bar{\alpha} \bar{P}: \neg_{q} \bar{A}}{}
\end{array} \\
& \overline{\langle M \mid \alpha\rangle}=(\bar{M} \bar{\alpha}) \\
& \overline{\mu \alpha P}=\lambda \bar{\alpha} \bar{P} \\
& \overline{\mu \mathrm{P}}=\overline{\mathrm{P}} \\
& \overline{\langle\mathrm{~N}\rangle}=\overline{\mathrm{N}} \\
& \begin{array}{cc}
\vdots & \vdots \\
\overline{\bar{P}: q} & \overline{\bar{N}: q} \\
\overline{\overline{P P}: q} & \overline{\overline{\langle N\rangle}: q}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\overline{\lambda x \mathrm{~N}} & =\lambda y(y \lambda \bar{x} \overline{\mathrm{~N}}) \\
\overline{(M \mathrm{~N})} & =\lambda z(\bar{M} \lambda y((y \bar{N}) z)) \\
\overline{\langle M \mid \alpha\rangle} & =(\bar{M} \bar{\alpha}) \\
\overline{\mu \alpha P} & =\lambda \bar{\alpha} \overline{\mathrm{P}} \\
\overline{\mu P} & =\overline{\mathrm{P}} \\
\overline{\langle\mathrm{~N}\rangle} & =\overline{\mathrm{N}}
\end{aligned}
$$

$$
\begin{array}{ccc}
\vdots & & {[\bar{\alpha}: \bar{\nexists}]} \\
\overline{\bar{M}: \bar{A}} \quad \bar{\alpha}: \bar{\nexists} & \vdots \\
(\bar{M} \bar{\alpha}): q & \frac{\overline{\mathrm{P}}: \mathrm{q}}{\lambda \bar{\alpha} \overline{\mathrm{P}}: \neg_{\mathrm{q}} \bar{\AA}}
\end{array}
$$

This translation sends a classical proof of A to a constructive proof of \bar{A}. NOTICE: If source terms are linear (or relevant, or affine), so are their translations.
$(\lambda x M N) \triangleright M\{N / x\}$

$$
\begin{aligned}
\overline{(\lambda x M \mathrm{~N})} & =\lambda z(\overline{\lambda x M} \lambda w((w \overline{\mathrm{~N}}) z)) \\
& =\lambda z(\lambda v(v \lambda \overline{\mathrm{x}} \overline{\mathrm{M}}) \lambda w((w \overline{\mathrm{~N}}) z)) \\
& \triangleright \lambda z(\lambda w((w \overline{\mathrm{~N}}) z) \lambda \overline{\mathrm{x} \overline{\mathrm{M}})} \\
& \triangleright \lambda z((\lambda \overline{\mathrm{x}} \overline{\mathrm{M}} \overline{\mathrm{~N}}) z) \\
& \triangleright_{\eta}(\lambda \bar{x} \overline{\mathrm{M}} \overline{\bar{N}}) \\
& \triangleright \bar{M}\{\overline{\mathrm{~N} / \bar{x}\}} \\
& =\overline{M\{\mathrm{~N} / x\}}
\end{aligned}
$$

$$
\langle\mu \alpha P \mid \beta\rangle \triangleright P\{\beta / \alpha\}
$$

$$
\begin{aligned}
\overline{\langle\mu \alpha \mathrm{P} \mid \beta\rangle} & =(\overline{\mu \alpha \mathrm{P}} \bar{\beta}) \\
& =(\overline{\lambda \bar{\alpha} \overline{\mathrm{P}} \mid \bar{\beta})} \\
& \triangleright \overline{\mathrm{P}\{\bar{\beta} / \bar{\alpha}\}} \\
& =\overline{\mathrm{P}\{\beta / \alpha\}}
\end{aligned}
$$

$$
\langle\mu P\rangle \triangleright P
$$

$$
\overline{\langle\mu \mathrm{P}\rangle}=\overline{\mathrm{P}}
$$

$$
\begin{aligned}
(\mu \alpha \mathrm{P} & \mathrm{N}) \triangleright \mu \beta \mathrm{P}\{\langle(* \mathrm{~N}) \mid \beta\rangle /\langle * \mid \alpha\rangle\} \\
\overline{(\mu \alpha \mathrm{PN})} & =\lambda y(\overline{\mu \alpha \mathrm{P}} \lambda x((x \overline{\mathrm{~N}}) \mathrm{y})) \\
& =\lambda y(\lambda \bar{\alpha} \overline{\mathrm{P}} \lambda x((x \overline{\mathrm{~N}}) \mathrm{y})) \\
& \triangleright \lambda y \overline{\mathrm{P}}\{\lambda x((x \overline{\mathrm{~N}}) \mathrm{y}) / \bar{\alpha}\} \\
& \triangleright \lambda y \overline{\mathrm{P}}\{((* \mathrm{~N}) \mathrm{y}) /(* \bar{\alpha})\} \\
& =\lambda \bar{\beta} \overline{\mathrm{P}}\{\overline{\langle(* \mathrm{~N}) \mid \beta\rangle} /\langle * \mid \alpha\rangle\} \\
& =\overline{\mu \beta \mathrm{P}\{\langle(* \mathrm{~N}) \mid \beta\rangle /\langle * \mid \alpha\rangle\}}
\end{aligned}
$$

All the behaviour of classical proof lives inside constructive proof, for formulas of the form \bar{A}.

1 - TWO RULES / FOUR LOGICS

3•TRANSLATION / NORMALISATION

$2 \cdot$ ALTERNATIVES

4-MEANINGS

What does this mean for the relationship between classical and constructive reasoning?

To see how some of the most basic results of classical analysis lack computational meaning, take the assertion that every bounded nonvoid set A of real numbers has a least upper bound. (The real number b is the least upper bound of A if $a \leqq b$ for all a in A, and if there exist elements of A that are arbitrarily close to b.) To avoid unnecessary complications, we actually consider the somewhat less general assertion that every bounded sequence $\left(x_{k}\right)$ of rational numbers has a least upper bound b (in the set of real numbers). If this assertion were constructively valid, we could compute b, in the sense of computing a rational number approximating b to within any desired accuracy; in fact, we could program a digital computer to compute the approximations for us. For instance, the computer could be programmed to produce, one by one, a sequence $\left(\left(b_{k}, m_{k}\right)\right)$ of ordered pairs, where each b_{k} is a rational number and each m_{k} is a positive integer, such that $x_{j} \leqq b_{k}+k^{-1}$ for all positive integers j and k, and $x_{m_{k}} \geqq b_{k}-k^{-1}$ for all positive integers k. Unless there exists a general method M that produces such a computer program corresponding to each bounded, constructively given sequence $\left(x_{k}\right)$ of rational numbers, we are not justified, by constructive standards, in asserting that each of the se-

PERSPECTIVE \#I:

Classical reasoning extends constructive reasoning.
There are statements which can be proved classically that cannot be proved constructively.

The law of the excluded middle provides a prime example. Constructively, this principle is not universally valid, as we have seen in Exercise 12.1. Classically, however, it is valid, because every proposition is either false or not false, and being not false is the same as being true. Nevertheless, classical logic is consistent with constructive logic in that constructive logic does not refute classical logic. As we have seen, constructive logic proves that the law of the excluded middle is positively not refuted (its double negation is constructively true). Consequently, constructive logic is stronger (more expressive) than classical logic, because it can express more distinctions (namely, between affirmation and irrefutability), and because it is consistent with classical logic.

Proofs in constructive logic have computational content: they can be executed as programs, and their behavior is described by their type. Proofs in classical logic also have computational content, but in a weaker sense than in constructive logic. Rather than positively affirm a proposition, a proof in classical logic is a computation that cannot be refuted. Computationally, a refutation consists of a continuation, or control stack, that takes a proof of a proposition and derives a contradiction from it. So a proof of a proposition in classical logic is a computation that, when given a refutation of that proposition derives a contradiction, witnessing the impossibility of refuting it. In this sense, the law of the excluded middle has a proof, precisely because it is irrefutable.

PERSPECTIVE \#I:

Classical reasoning extends constructive reasoning.
There are statements which can be proved classically that cannot be proved constructively.

The law of the excluded middle provides a prime example. Constructively, this principle is not universally valid, as we have seen in Exercise 12.1. Classically, however, it is valid, because every proposition is either false or not false, and being not false is the same as being true. Nevertheless, classical logic is consistent with constructive logic in that constructive logic does not refute classical logic. As we have seen, constructive logic proves that the law of the excluded middle is positively not refuted (its double negation is constructively true). Consequently, constructive logic is stronger (more expressive) than classical logic, because it can express more distinctions (namely, between affirmation and irrefutability), and because it is consistent with classical logic.

Proofs in constructive logic have computational content: they can be executed as programs, and their behavior is described by their type. Proofs in classical logic also have computational content, but in a weaker sense than in constructive logic. Rather than positively affirm a proposition, a proof in classical logic is a computation that cannot be refuted. Computationally, a refutation consists of a continuation, or control stack, that takes a proof of a proposition and derives a contradiction from it. So a proof of a proposition in classical logic is a computation that, when given a refutation of that proposition derives a contradiction, witnessing the impossibility of refuting it. In this sense, the law of the excluded middle has a proof, precisely because it is irrefutable.

PERSPECTIVE \#2:

Constructive language extends classical language.
There are things we can state constructively that cannot be stated classically.
$\lambda \mu$

Which of these pictures is correct?

Which of these pictures is correct?
It depends on what you mean.

Which of these pictures is correct?
It depends on what you mean.
That is, it depends on how you individuate the claims we make in our reasoning-the things that have meaning.

We usually take this as given: we have one field of statements, and classical and constructive mathematicians argue about which statements in that field are correct.

PERSPECTIVE \#2:

Constructive language extends classical language.
There are things we can state constructively that cannot be stated classically.
$\lambda \mu$

Which of these pictures is correct?

Which of these pictures is correct?
It depends on what you mean.

Which of these pictures is correct?
It depends on what you mean.
That is, it depends on how you individuate the claims we make in our reasoning-the things that have meaning.

We usually take this as given: we have one field of statements, and classical and constructive mathematicians argue about which statements in that field are correct.
"Take the assertion that every bounded non-void set A of real numbers has a least upper bound . . ."
This fits the picture of classical logic as an extension of constructive logic, allowing for more proofs.

If you take it that propositional content is determined by what norms govern it, then the usual picture is not the only one.

Constructive justification is stricter than classical justification.
Since there are fewer ways to give constructive justification, you can do more with such a justification when you have one.

CLASSICALLY: to state something is to rule something out, in that if you and I rule out the same things, we have said the same thing.

CONSTRUCTIVELY: p and $\neg \neg p$ rule out the same things, but they might (construtively) entail different things.

PERSPECTIVE \#2A: The constructive distinction between p and $\neg \neg p$ is a meaningful difference in what is said.

The classical logician erases or ignores differences that are present in propositional content.

PERSPECTIVE \#2B: The constructive distinction between p and $\neg \neg p$ is not a difference in propositional content.

If we allow only constructive justification, we are in a wider field of pre-propositions, only some of which are governed by all the norms that determine propositional content.

Our formal results are consistent with PERSPECTIVES \#1, 2a and \#2b.

Take time to recognise these different perspectives, and learn what is involved in taking up each stance.

Thank You!

