Our Aim

To introduce *proof theory*, with a focus on its applications in philosophy, linguistics and computer science.
Our Aim for Today

Examine the proof theory of substructural logics.
Today's Plan

Structural Rules

The Case of Distribution

Different Systems and their Applications

Revisiting Cut Elimination
STRUCTURAL RULES
Weakening

\[
\begin{array}{c}
X, Y \vdash Z \\
\hline
X, A, Y \vdash Z \\
\end{array}
\] \hspace{1cm} \text{[KL]}

\[
\begin{array}{c}
X \vdash Y, Z \\
\hline
X \vdash Y, A, Z \\
\end{array}
\] \hspace{1cm} \text{[KR]}

\[
\frac{X, A, A, Y \vdash Z}{X, A, Y \vdash Z} \quad [WL]
\]

\[
\frac{X \vdash Y, A, A, Z}{X \vdash Y, A, Z} \quad [WR]
\]
Permutation

\[\frac{X, A, B, Y \vdash Z}{X, B, A, Y \vdash Z} \quad [\text{CL}] \]

\[\frac{X \vdash Y, A, B, Z}{X \vdash Y, B, A, Z} \quad [\text{CR}] \]
We can drop some (or all) of these rules to get different logics.

Dropping rules also leads to some distinctions.
THE CASE OF DISTRIBUTION
Two kinds of conjunction

Extensional, additive, context-sensitive, lattice-theoretic

\[X(A) \vdash Y \]

\[\frac{}{X(A \land B) \vdash Y} [\land L_1] \]

\[X(B) \vdash Y \]

\[\frac{}{X(A \land B) \vdash Y} [\land L_2] \]

\[X \vdash Y(A) \quad X \vdash Y(B) \]

\[\frac{}{X \vdash Y(A \land B)} [\land R] \]

Intensional, multiplicative, context-free, group-theoretic

\[X(A, B) \vdash Y \]

\[\frac{}{X(A \circ B) \vdash Y} [\circ L] \]

\[X \vdash Y, A \quad U \vdash B, V \]

\[\frac{}{X, U \vdash Y, A \circ B, V} [\circ R] \]
Two kinds of disjunction

Extensional, additive, context-sensitive, lattice-theoretic

\[
\begin{align*}
X \vdash Y(A) & \quad [\lor R_1] \\
\frac{X \vdash Y(A \lor B)}{} \\

X \vdash Y(B) & \quad [\lor R_2] \\
\frac{X \vdash Y(A \lor B)}{} \\

\frac{X(A) \vdash Y \quad X(B) \vdash Y}{X(A \lor B) \vdash Y} & \quad [\lor L]
\end{align*}
\]

Intensional, multiplicative, context-free, group-theoretic

\[
\begin{align*}
X \vdash Y(A, B) & \quad [+R] \\
\frac{X \vdash Y(A + B)}{} \\

X, A \vdash Y & \quad B, U \vdash V \quad [+L] \\
\frac{X, A + B, U \vdash Y, V}{X, A + B, U \vdash Y, V}
\end{align*}
\]
In the presence of weakening and contraction, \land and \circ are equivalent, as are \lor and $+$.

$A \land B \vdash A \circ B \quad A \lor B \vdash A + B$

They are not equivalent without both of those structural rules.
The issue with distribution

One of the distribution laws relating extensional conjunction and disjunction isn’t derivable without weakening

$$A \land (B \lor C) \vdash (A \land B) \lor C$$

The intensional version is derivable, although some distribution laws aren’t derivable without contraction

$$A \circ (B + C) \vdash (A \circ B) + C$$
\[
\begin{align*}
A \vdash A & \quad\text{[KL]} \\
A, B \vdash A & \quad\text{[KL]} \\
A \vdash A \land B & \quad\text{[\land R]} \\
A, B \vdash (A \land B) \lor C & \\
A \lor C \vdash (A \land B) \lor C & \quad\text{[\lor L]} \\
A \land (B \lor C), B \lor C \vdash (A \land B) \lor C & \quad\text{[\land L}_1\text{]} \\
A \land (B \lor C), A \land (B \lor C) \vdash (A \land B) \lor C & \quad\text{[\land L}_2\text{]} \\
A \land (B \lor C) \vdash (A \land B) \lor C & \quad\text{[\lor R}_2\text{]} \\
C \vdash C & \quad\text{[KL]} \\
C \vdash C & \quad\text{[\lor R}_1\text{]} \\
\end{align*}
\]
\[
\begin{align*}
B & \vdash B & C & \vdash C & \quad [+L] \\
A & \vdash A & B + C & \vdash B, C & \quad [\circ R] \\
A, B + C & \vdash A \circ B, C & \\
A, B + C & \vdash (A \circ B) + C & [+]R] \\
A \circ (B + C) & \vdash (A \circ B) + C & [\circ L]
\end{align*}
\]
It seems like truth-functional conjunction and disjunction, \land and \lor, should obey the distribution laws.
DIFFERENT SYSTEMS AND THEIR APPLICATIONS
Applications

We will look at three substructural systems and their applications

- Relevance
- Resource-sensitivity, paradox
- Grammar, modality
Classically, both $p \rightarrow (q \rightarrow p)$ and $q \rightarrow (p \rightarrow p)$ are valid, but what how does q imply $p \rightarrow p$?

These are two paradoxes of material implication, usually written with \supset, rather than \rightarrow

In *relevant logic*, valid conditionals indicate a connection of relevance or entailment
Paraconsistency

Classically, $A, \neg A \vdash B$, for any B whatsoever,

You might doubt that *contradictions* entail everything

How, after all, is an *arbitrary* B relevant to A?

A logic is *paraconsistent* iff contradictions don’t entail every formula
A couple of proofs

\[
\begin{align*}
\frac{A \vdash A}{\vdash A \rightarrow A} & \quad [\rightarrow R] \\
\frac{B \vdash A \rightarrow A}{\vdash A \rightarrow (A \rightarrow A)} & \quad [\mathrm{KL}] \\
\frac{A \vdash A}{\vdash A \rightarrow A} & \quad [\rightarrow R] \\
\frac{A, B \vdash A}{\vdash A \rightarrow (B \rightarrow A)} & \quad [\rightarrow R] \\
\frac{A \vdash A}{\vdash A \rightarrow (B \rightarrow A)} & \quad [\rightarrow R] \\
\frac{\neg A, A \vdash A}{\vdash A \rightarrow (B \rightarrow A)} & \quad [\neg L] \\
\frac{\neg A, A \vdash -A, A \vdash B}{\vdash A \rightarrow (B \rightarrow A)} & \quad [\mathrm{KR}] \\
\end{align*}
\]
Rejecting the weakening rules is the way to obtain a relevant logic, and it is one way to obtain a paraconsistent logic.

The arrow fragment with permutation (C) and contraction (W) is the logic R, of Anderson and Belnap.
What is provable in the arrow fragment of the logic with contraction and permutation?

- $A \to (A \to B) \vdash A \to B$
- $A \to (B \to C) \vdash B \to (A \to C)$
- $A \to B \vdash (C \to A) \to (C \to B)$
- $A \to B \vdash (B \to C) \to (A \to C)$
What is *unprovable* in the arrow fragment of the logic with contraction and permutation?

- \(\vdash B \rightarrow (A \rightarrow A) \)
- \(A \vdash B \rightarrow A \)
- \(\vdash A \rightarrow (A \rightarrow A) \)
- \((A \rightarrow B) \rightarrow A \vdash A \)
Adding connectives

Relevant logics usually take the additive rules to govern conjunction and disjunction.

Meyer showed that one gets R minus distribution by taking the additive connective rules with multiple conclusion sequents.

This system is cut-free and decidable, but it does not have distribution.

Full R, with distribution, is undecidable, as shown by Urquhart.
Conjunction and comma

Classically, the following are equivalent

- $A, B, C \vdash D$
- $\vdash (A \land B \land C) \rightarrow D$
- $\vdash (A \land B) \rightarrow (C \rightarrow D)$
- $\vdash A \rightarrow (B \rightarrow (C \rightarrow D))$

We can’t have all four equivalent while excluding the paradoxes of material implication.
We want $A \land B \vdash A$

If $A, B \vdash C$ is derivable, then by $[\to R]$, $A \vdash B \to C$ is too

So A, B to the left of the turnstile can’t be equivalent to $A \land B$

Solution: $A, B \vdash C$ is equivalent to $A \circ B \vdash C$
Distribution again

If we adopt the additive rules for conjunction and disjunction and we also reject weakening, then there will be a problem proving distribution.

This has lead to the introduction of a new structural connective—the *semicolon*.
More structure

The parts of a sequent can be built up with comma and semicolon

The two structural connectives can obey different structural rules

In particular, have comma obey weakening, but have semicolon appear in the rules for \circ and for \rightarrow.

\[
\begin{align*}
X(A; B) \vdash C \\
\frac{}{X(A \circ B) \vdash C} \quad [\circ L] \\
\end{align*}
\]

\[
\begin{align*}
X; A \vdash B \\
\frac{}{X \vdash A \rightarrow B} \quad [\rightarrow R]
\end{align*}
\]
Consequences

The system with the extra structure is cut-free

And, with the extra structure one can prove distribution for \land and \lor
Distribution again

\[
\frac{A}{A} \quad \frac{B}{B} \\
\frac{A, B}{A, B, A} \quad \frac{A, B}{A, B, B} \\
\frac{A, B}{A, B, A \land B} \quad \frac{A, B}{A, B, B} \\
\frac{A, B}{A, B, (A \land B) \lor C} \\
\frac{A, B}{A, B, (A \land B) \lor C} \quad \frac{C}{C} \\
\frac{A, B}{A, B, (A \land B) \lor C} \quad \frac{A, C}{A, C, C} \\
\frac{A, B, C}{A, B, C, (A \land B) \lor C} \\
\frac{A}{A, B \lor C, (A \land B) \lor C} \quad \frac{B \lor C}{B \lor C, (A \land B) \lor C} \\
\frac{A \land (B \lor C), B \lor C}{A \land (B \lor C), B \lor C, (A \land B) \lor C} \\
\frac{A \land (B \lor C), A \land (B \lor C)}{A \land (B \lor C), A \land (B \lor C), (A \land B) \lor C} \\
\frac{A \land (B \lor C)}{A \land (B \lor C), (A \land B) \lor C} \\
\frac{A}{A, B \lor C, (A \land B) \lor C} \\
\frac{A}{A, B \lor C, (A \land B) \lor C} \\
\frac{A}{A, B \lor C, (A \land B) \lor C} \\
\frac{A}{A, B \lor C, (A \land B) \lor C} \\
\frac{A}{A, B \lor C, (A \land B) \lor C}
\]
Consequences

With the extra structure one can prove distribution for \(\wedge \) and \(\lor \).

We can prove \(A, B \vdash A \), but cannot move to \(A \vdash B \to A \) via \([\to R]\).

That move would require \(A; B \vdash A \), which we cannot prove.
Consequences

A downside is that proof search complexity increases

The full (positive) system is undecidable

But, this idea of adding additional structure to a sequent
is one we will see again
For more on relevant logic

See Dunn and Restall’s “Relevance logic”

See also Anderson and Belnap’s *Entailment*

For a different take on relevant logic, see Tennant’s “Core Logic” papers,
e.g. “Cut for Core Logic”
Resource-sensitivity

If contraction rules are in the system, then one copy of a formula is as good as two.

If logic is concerned with propositions, then contraction may be motivated.

If one considers the logic of actions, then contraction is less appealing.
One can view formulas as resources, in which case how many you have matters.

For example, let D stand for ‘Shawn pays a dollar’ and F for ‘Shawn gets a flat white’.

The sequent $D, D, D \vdash F$ will be satisfied at the cafe while $D, D \vdash F$ won’t be.

Dropping contraction permits the logic to be sensitive to these distinctions.
The naive set comprehension scheme is $t \in \{y : A(y)\} \leftrightarrow A(t)$

In terms of sequent rules, the biconditional is captured by

$$
\begin{align*}
A(t), X \vdash Y & \quad [\in L] \\
t \in \{x : A(x)\}, X \vdash Y & \\
X \vdash Y, A(t) & \quad [\in R] \\
X \vdash Y, t \in \{x : A(x)\} &
\end{align*}
$$

As is well-known, in classical and intuitionistic logic, it leads to paradox
Let $R = \{x : x \notin x\}$

\[
\begin{array}{ll}
R \in R & \vdash R \in R \\
\vdash R \in R, R \notin R & \lceil \neg R \rfloor \quad & R \in R & \vdash R \in R \\
\vdash R \in R, R \in R & \lceil \in R \rfloor \\
\vdash R \in R & \lceil \text{WR} \rfloor \\
\end{array}
\]

\[
\begin{array}{ll}
R \notin R, R \in R & \vdash R \in R \\
R \in R, R \in R & \lceil \in \text{L} \rfloor \\
R \in R & \lceil \text{WL} \rfloor \\
\vdash R \in R & \lceil \text{Cut} \rfloor
\end{array}
\]
Curry's paradox

Let \(C = \{ x : x \in x \rightarrow p \} \)

\[
\begin{align*}
C \in C \vdash C \in C & \quad p \vdash p \quad \text{[\(\rightarrow\) L]} \\
C \in C \rightarrow p, C \in C \vdash p & \quad \text{[\(\in\) L]} \\
C \in C, C \in C \vdash p & \quad \text{[WL]} \\
C \in C \vdash p & \quad \text{[\(\rightarrow\) R]} \quad \vdash C \in C \rightarrow p \quad \text{[\(\in\) R]} \\
\vdash C \in C & \quad \vdash C \in C \rightarrow p \quad \text{[\(\in\) R]} \\
\vdash p & \quad \text{[Cut]}
\end{align*}
\]
As observed by Haskell Curry, contraction is essentially involved in Curry’s paradox.

Dropping contraction, in all its forms, permits one to have the naive set comprehension rules, and biconditionals, non-trivially.

The same goes for the full set of Tarski biconditionals: $T\langle A \rangle \leftrightarrow A$
Linear logic

Multiplicative, additive linear logic (MALL) is obtained by taking permutation as the only structural rule and using both the additive and multiplicative sets of rules.
Some sequents provable in MALL

- $A \rightarrow (B \rightarrow C) \vdash B \rightarrow (A \rightarrow C)$
- $A \circ (B \lor C) \vdash (A \circ B) \lor (A \circ C)$
- $A + (B \land C) \vdash (A + B) \land (A + C)$
- $(A + B) \lor (A + C) \vdash A + (B \lor C)$
Some sequents unprovable in MALL

- $A \rightarrow (A \rightarrow B) \vdash A \rightarrow B$
- $A \circ (B + C) \vdash (A \circ B) + (A \circ C)$
- $A \lor (B \land C) \vdash (A \lor B) \land (A \lor C)$
- $(A \land B) \rightarrow C \vdash A \rightarrow (B \rightarrow C)$
- $A \circ B \vdash A$

Unprovable
Exponentials

One can *expand* the vocabulary to regain some of the structural rules. Girard did this with the exponentials of linear logic. Introduce two new unary connectives, ! and ?.
Rules

If \(X \) is \(A_1, \ldots, A_n \), \(\neg X \) is \(\neg A_1, \ldots, \neg A_n \)

\[
\frac{X(A) \vdash Y}{X(\neg A) \vdash Y} \quad \text{[!L]}
\]

\[
\frac{X \vdash Y}{\neg A, X \vdash Y} \quad \text{[K!L]}
\]

\[
\frac{X \vdash Y(A)}{X \vdash Y(\neg A)} \quad \text{[?R]}
\]

\[
\frac{X \vdash Y}{X \vdash Y(\neg A)} \quad \text{[K?R]}
\]

\[
\frac{\neg X \vdash A, ?Y}{\neg X \vdash \neg A, ?Y} \quad \text{[!R]}
\]

\[
\frac{X(\neg A, \neg A) \vdash Y}{X(\neg A) \vdash Y} \quad \text{[W!L]}
\]

\[
\frac{X(\neg A) \vdash Y}{X(\neg A) \vdash Y} \quad \text{[W?R]}
\]

\[
\frac{X, A \vdash ?Y}{X, \neg A \vdash ?Y} \quad \text{[?L]}
\]
Idea

The exponentials let one ignore the resource sensitivity

!A says that A may be used as a premiss as many times as you want

Similarly, ?A says A may be used as a conclusion as much as one wants
Some sequents provable in MALL with exponentials

- $\vdash !A \rightarrow A$
- $\vdash A \rightarrow !B \rightarrow A$
- $\vdash !A \rightarrow (!A \rightarrow B) \vdash !A \rightarrow B$
- $\vdash !(A \rightarrow B) \vdash !A \rightarrow B$
Embedding

One can define an embedding t of classical logic LK into linear logic with exponentials LLE so that the following are equivalent:

- $t(X) \vdash t(Y)$ is derivable in LLE
- $X \vdash Y$ is derivable in LK

Linear logic with exponentials is an interesting system and, like the full logic R, it is undecidable.
“You can have coffee or tea” seems to imply “you can have coffee” and “you can have tea”

This is the phenomenon of free choice permission

In “Free choice permission as resource-sensitive reasoning,” Barker argues that the way to understand free choice is by using the connectives of linear logic

Permission is treated as a kind of resource, and it falls out naturally that the first entails each of the others, although it doesn’t give both together.
For more on linear logic, see Davoren’s “A Lazy Logician’s Guide to Linear Logic”

See also Restall’s *Introduction to Substructural Logics*
Take two English noun phrase, *birds* and *spiders*, and an English verb, *eat*.

The order in which these are combined *matters*.

Compare: Birds eat spiders, and Spiders eat birds.
Sometimes entailment $\rightarrow \rightarrow$ is taken to have some kind of necessitating, *modal force*

Just because p happens to be the case, it is not correct to infer that q is entailed by the fact that p entails q.

In that case, we don’t want $A \vdash (A \rightarrow B) \rightarrow B$.

\[
\frac{A \vdash A \quad B \vdash B}{A \rightarrow B, A \vdash B} \quad [\rightarrow \text{L}]
\]

\[
\frac{A, A \rightarrow B \vdash B}{A \vdash (A \rightarrow B) \rightarrow B} \quad [\rightarrow \text{R}]
\]

\[
\frac{A \vdash A \quad B \vdash B}{A \rightarrow B, A \vdash B} \quad [\rightarrow \text{L}]
\]

\[
\frac{A, A \rightarrow B \vdash B}{A \vdash (A \rightarrow B) \rightarrow B} \quad [\rightarrow \text{R}]
\]
In both these applications, the order of the premises matter. Both of these applications motivate dropping the Permutation rules. Dropping Permutation lets us draw more distinctions.
More arrows

The usual arrow rules are the following

\[\frac{X, A \vdash B}{X \vdash A \rightarrow B} \quad \text{and} \quad \frac{X \vdash A \quad Y(B) \vdash C}{Y(A \rightarrow B, X) \vdash C} \]

We can add another arrow

\[\frac{A, X \vdash B}{X \vdash B \leftarrow A} \quad \text{and} \quad \frac{X \vdash A \quad Y(B) \vdash C}{Y(X, B \leftarrow A) \vdash C} \]
Distinctions

In the presence of Permutation, this distinction collapses

\[A \rightarrow B \not\iff B \leftarrow A \]

Without Permutation, the distinction stands

We can also add a second negation following the same pattern
The *Lambek calculus* is a proof system for categorial grammar. We take the rules for \circ, together with the rules for \rightarrow and \leftarrow. We do not use any structural rules.
Lambek calculus

This gives a basic categorial grammar

The atomic letters are treated as different lexical items, possibly typed, from a given lexicon
The following are derivable

- $A \rightarrow B \vdash (C \rightarrow A) \rightarrow (C \rightarrow B)$
- $B \leftarrow A \vdash (B \leftarrow C) \leftarrow (A \leftarrow C)$
- $A \rightarrow (B \rightarrow C) \vdash (A \circ B) \rightarrow C$
- $(C \leftarrow B) \leftarrow A \vdash C \leftarrow (A \circ B)$
- $A \vdash B \leftarrow (A \rightarrow B)$
The following are underivable

- $A \rightarrow B \vdash (B \rightarrow C) \rightarrow (A \rightarrow C)$
- $A \circ B \vdash B \circ A$
- $C \leftarrow B, B \vdash C$
- $A, A \rightarrow B \vdash B$
For more on Lambek Calculus, see Morrill’s *Categorial Grammar*,
van Benthem’s *Language in Action*,
or Moot and Retoré’s *Logic of Categorial Grammar*

For more on modal restrictions on permutation,
see Anderson and Belnap’s *Entailment*
REVISITING CUT ELIMINATION
Cut revisited

Here is the form of Cut appropriate to (single conclusion) substructural logic:

\[
\begin{align*}
X & \vdash A \\
Y(A) & \vdash B \\
\hline
Y(X) & \vdash B \\
\end{align*}
\]

[Cut]

Looking at the proof of Cut Elimination yesterday, it turns out that we used *lots* of Weakening, Contraction, and Permutation.

In the substructural setting, we have to be a bit more careful.
Mix

\[\frac{X \vdash A \quad Y[A] \vdash B}{Y[X] \vdash B} \quad \text{[Mix]} \]

\(Y[X] \) is obtained by replacing all copies of \(A \) in \(Y \) with \(X \)

Mix eliminates \textit{all} the copies of \(A \) in \(Y \)

Mix helped us get around the problem with Contraction, but it would sometimes eliminate too many copies, which required weakening some back in
Dropping Weakening

Without Weakening, we cannot show Mix admissible

Rather than Mix, show that Multicut is admissible

\[X \vdash A \quad Y[A] \vdash B \]

\[Y[X] \vdash B \quad \text{[Multicut]} \]

In Multicut: \(Y[A] \) is \(Y \) with some \(n \geq 1 \) occurrences of \(A \) selected and \(Y[X] \) is obtained by replacing those occurrences of \(A \) in \(Y[A] \) with \(X \)

The proof strategy proceeds much as with Mix
Dropping Contraction

If one drops contraction, then one does not need to show Mix admissible, going directly for Cut

Rather than use a *double induction*, one can instead use a simpler, single induction proof

This is because without Contraction, the elimination procedure does not double up any proof branches

So one can simply use the number of nodes above a Cut as the Cut complexity
Without Permutation, we have to be careful about how exactly each rule is stated and how Cut is stated.

We cannot use Mix without Permutation, so we had better drop Contraction as well.

The proof of Cut Elimination can proceed directly, using a single induction on Cut complexity.
Substructural Logics

GREG RESTALL

An Introduction to Substructural Logics
Routledge 2000

FRANCESCO PAOLI

Substructural Logics: A Primer
Springer 2002

GREG RESTALL

“Relevant and Substructural Logics”, pp. 289–396 Logic and the Modalities in the Twentieth Century, Dov Gabbay and John Woods (editors)
Elsevier 2006

http://consequently.org/writing/HPPLrssl/
Relevant Logics

A. R. ANDERSON AND N. D. BELNAP
Entailment: The Logic of Relevance and Necessity, Volume 1
Princeton University Press, 1975

A. R. ANDERSON, N. D. BELNAP AND J. M. DUNN
Entailment: The Logic of Relevance and Necessity, Volume 2
Princeton University Press, 1992

EDWIN D. MARES
Relevant Logic: A Philosophical Interpretation
Cambridge University Press, 2004

J. MICHAEL DUNN AND GREG RESTALL
“Relevance Logic,” pp. 1–136 The Handbook of Philosophical Logic, vol. 6, edition 2, Dov Gabbay and Franz Guenther (editors)
Linear Logic and the Lambek Calculus

Jean-Yves Girard

Jean-Yves Girard, Yves Lafont and Paul Taylor
Proofs and Types
Cambridge University Press, 1989

Joachim Lambek

Glyn Morrill
Type Logical Grammar: Categorial Logic of Signs
Kluwer, 1994
THANK YOU!

https://consequently.org/class/2016/PTPLA-NASSLLI/

@consequently / @standefer on Twitter