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[x : p] [y : q]
∧I

⟨x, y⟩ : p ∧ q
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if you want to forbid vacuous binding, since with fst⟨M,y⟩
you canmimic the use of an assumption y in the otherwise y-freeM.
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at the level of proofs, and even at the level
of proof dynamics—normalisation.

These results are robust. They extend to all four

structural settings, linear, relevant, affine, and full.
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λµ3 · translation / normalisation

We can translate a classical logic
(either linear, relevant, affine or full)

inside its constructive counterpart.

first: For formulas, ♯ and slashed formulas, add
to the constructive language a fresh atom q, and set:

♯ = q p = p → q A → B = (A → B) → q

f = q p = p → q A → B = (A → B ) → q



λµ3 · translation / normalisation

We can translate a classical logic
(either linear, relevant, affine or full)

inside its constructive counterpart.

first: For formulas, ♯ and slashed formulas, add
to the constructive language a fresh atom q, and set:

♯ = q p = ¬qp A → B = ¬q(A → B)

f = q p = ¬q p A → B = ¬q(A → B )



λµ3 · translation / normalisation

second: for terms variables and labels,

whenever x : A, we choose a unique variable x : A,

and whenever α : A , we choose a unique variable α : A .

We extend this translation to all terms and packages as follows . . .



λµ3 · translation / normalisation

λxN = λy(yλxN)

(M N) = λz(M λy((yN)z))

⟨M|α⟩ = (M α)

µαP = λαP

µP = P

⟨N⟩ = N

This translation sends a classical proof ofA to a constructive proof ofA.

notice: If source terms are linear (or relevant, or affine), so are their translations.
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λµ3 · translation / normalisation

(λxM N) ▷ M {N/x}

(λxM N) = λz(λxM λw((w N)z))

= λz( λv(v λxM) λw((w N)z) )

▷ λz( λw((w N)z) λxM )

▷ λz((λxM N)z)

▷η ( λxM N )

▷ M {N/x}

= M {N/x}



λµ3 · translation / normalisation

⟨µαP |β⟩ ▷ P {β/α}

⟨µαP |β⟩ = (µαP β)

= ( λαP β )

▷ P {β/α}

= P {β/α}



λµ3 · translation / normalisation

⟨µP⟩ ▷ P

⟨µP⟩ = P



λµ3 · translation / normalisation

(µαP N) ▷ µβP {⟨(∗N)|β⟩/⟨∗|α⟩}

(µαP N) = λy(µαP λx((x N)y))

= λy(λαP λx((x N)y))

▷ λyP {λx((xN)y)/α}

▷ λyP {((∗N)y)/(∗α)}

= λβP {⟨(∗N)|β⟩/⟨∗|α⟩}

= µβP {⟨(∗N)|β⟩/⟨∗|α⟩}



λµ3 · translation / normalisation

All the behaviour of classical proof
lives inside constructive proof,
for formulas of the formA.
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λµ 4 ·meanings

What does this mean for the relationship

between classical and constructive reasoning?



Errett Bishop and Douglas Bridges, Constructive Analysis (1985)



λµ 4 ·meanings

perspective #1:

Classical reasoning extends constructive reasoning.

There are statements which can be proved classically
that cannot be proved constructively.
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Robert Harper, Practical Foundations for Programming Languages (2016)



λµ 4 ·meanings

perspective #2:

Constructive language extends classical language.

There are things we can state constructively
that cannot be stated classically.
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λµ 4 ·meanings

Which of these pictures is correct?

It depends on what youmean.

That is, it depends on how you individuate the claims

wemake in our reasoning—the things that have meaning.
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wemake in our reasoning—the things that have meaning.



λµ 4 ·meanings

We usually take perspective #1 as given:
we have one field of statements, and

classical and constructive mathematicians argue

about which statements in that field are correct.

“Take the assertion that every bounded non-void setA of real numbers has a least upper bound . . .”

This fits the picture of classical logic as an extension

of constructive logic, allowing for more proofs.



λµ 4 ·meanings

If you take it that propositional content is determined

by what norms govern it, then the usual picture is not the only one.

Constructive justification is stricter than classical justification.

Since there are fewer ways to give constructive justification,

you can domore with such a justification when you have one.



λµ 4 ·meanings

classically: to state something is to rule something out, in that

if you and I rule out the same things, we have said the same thing.

constructively: p and¬¬p rule out the same things,
but they might (constructively) entail different things, so to say

p and to say¬¬p is to undertake different commitments.



λµ 4 ·meanings

perspective #2a: The constructive distinction between p

and¬¬p is a meaningful difference in what is said.

The classical logician erases or ignores differences

that are present in propositional content.



λµ 4 ·meanings

perspective #2b: The constructive distinction between p

and¬¬p is not a difference in propositional content.

If we allow only constructive justification, we are

in a wider field of pre-propositions, only some
of which are governed by all the norms that determine

propositional content, properly understood.



λµ 4 ·meanings

Our formal results are consistent with
perspectives #1, #2a and #2b.

I think it is useful to recognise these different perspectives,
and to learnwhat is involved in taking up each stance.




