DAY 3

POSITIONS, MODELS
Speecit Acts \& More

TDDAY'S PLAN
positions \& LIMIT Positions
COMPLETENESS PROOFS \ddagger IMIT POSITIONS
SPEECH ACTS \& BRIDGE PRINCIPLES
ASSERTION \& DENIAL/WEALL \& STRONG
Rules as definitions
Extra topics

POSITIONS, ASSERTION \& DENIAL
What is the import of a proof from A to B?
for Assertion \& DENiAL, doit assert A \ddagger deny B.

A position in which A is asserted \& B is denied is out of Bounds.

BRIDGE PRINCIPLES

If $x>-4$ is derivable, then doit ASSERT X \& DENY Y.

This is neGative
Is there a positive bridge prinuple indicating what yen could do or SHould do with a valid segment or with a proof?

TITIS DEPENDS On WITAT SPEECH ACTS ore in PLAY....
A derivation of $X_{2}-A_{,}, Y$ shows how to infer A in a position $[X: Y$].

- What is it to infer A in this sense?
- Pts to comprehensively answer a justification request for A, (in a context whee $[x i y]$ is take m as given.)
(Mare ow this later.)

THERE IS A CONNECTION between these two. ACCOUNTS.
$X>-A, Y:$ In $[X: Y]$, denying A is out of boundsie, relative to $[x: Y], A$ is undeniable.
$X, A, Y:$ we shaw that A against a context $[X: Y]$.
To dothis is to show that A is undeniable, \& if we Show that A is undeniable, we have (.) proved A.
(Mare ow this, later)

Norms for Bounds

* [A:A] is out of bounds
* If $[x: y]$ is out of bounds, so are $[X, A: Y]$ and $[X: A, Y]$.
* If $[X: A, Y] \&[X, A: Y]$ ore out of bounds, thence is $[X: Y]$
* If $[x: 4]$ is out of bounds the for sone finite subsets $X^{\prime} \leq X ; Y^{\prime} \leq Y,\left[X^{\prime}: Y^{\prime}\right]$ is out of bounds.

Norms For Bounds

* [A:A] is out of bounds
* If $[x: y]$ is out of bounds, $\frac{x-y}{x, A-4} \frac{x-4}{x-A, 4}$ so are $[X, A: Y]$ and $[X: A, Y]$.
* If $[X: A, Y] \&[X: A: Y]$ ore out of bounds, thence is $[X: Y]$

$$
\frac{x-A, 4 x, A-y}{x-4}
$$

* If $[x: 4]$ is out of bands the for sone finite subsets $X^{\prime} \subseteq X ; Y^{\prime} \subseteq Y,\left[X^{\prime}: Y^{\prime}\right]$ is out of bounds.

Compactness!

AVAILABLE POSITIONS

- Lets call a position $[x: y]$ available when it is not out of bounds.
- Sos if $[x: y]$ is available so is either $[X, A: Y]$ or $[X: A, Y]$.

Positions \& sEquent
[$x: y$] is out of bounds if $x^{\prime}-y^{\prime}$ is derivable for sone finite $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y$.

We write $X>Y$ to say that $[X: Y]$ is out of bounds
-for now, we ore no langer presuming that Identity sequents ere the only axiomswe allows other primitively analytically valid b sequents - of $F_{a}, a=b-F_{b}$; $F a, b \geqslant{ }_{k} a 2-F b ; \quad 0=12-$
positan extension

$$
\begin{aligned}
& {[x: y] \leqslant\left[x^{\prime}: y^{\prime}\right]} \\
& \text { iff } x \leq x^{\prime} \notin y \leq y!
\end{aligned}
$$

Limit positions
Given a language $<$, a limit position $[\mathscr{H}: y]$ is a pair where

- [z: $y]$ is a portion of α
-ie $x \cup y=\alpha ;$ $x \cap y=\varnothing$.
- [x: y] is available

LIMIT POSimen FAET
for any lungnage \mathcal{K}, ary available positinen $[X: Y]$ is extendea by seme liunt positios $[x: y]$.
(We use Zorn's lemmn, ou the ordered set of available positions extendic $[x: y]$.
Yencon ge with ant Zonn'lemman ittar case of a countable largnage.)

TRUTH of FALSITY in POSITIONS
A is TRUE $\mathbb{N}[X: Y]$ if $[X: A, Y]$ is out of bounds. (ie $x D A, y$)
A is FALSE in $[x: Y]$ if $[x, A: Y]$ is out of bounds. (ie $X, A \subset Y$)

FACTS: * If A is both true \ddagger false in $[x: y]$ them $[x: y]$ is out of bounds.

* Evernmenter of X is true in $[x: Y]$.
\& Everymenter of 4 is fulserin $[x: y]$.

Posimon equivalence
$[x: y]$ is equivalent to [u:v] iff
A is the in $[x: y] \Leftrightarrow$ Aistruen [u:v]
A is forke in $[x: y] \Leftrightarrow$ A is faluni[u:v]

Ea. $[p, q: r]$ is equivalut to $[(p \wedge q) \wedge$ คr:]

TRumt/Falsity Facts
$A \wedge B$ is truen $[x: y]$ iff both $A \& B$ aretrine in $[x: y$, $A \wedge B$ is fulse: $[x: y]$ if wither A or B are falsen $[x: y$,
$A \vee B$ is truen $[x: y]$ if wither A or B aretrine in $[x: y$,] $A \vee B$ is false: $[x: y]$ iff both $A \& B$ arefalse in $[x: y]$]
$\neg A$ is truen $[x: y]$ iff A is folse: $[x: y]$
TA is fulse: $[x: y]$ iff A is truen $[x: y]$
$A \wedge B$ is truen $[x: y]$ iff both $A \& B$ aretine in $[x ; y]$

$$
\begin{aligned}
& \frac{X \mapsto A, Y \quad X \gtrdot B, Y}{X \triangleright A \wedge B, Y} \wedge R
\end{aligned}
$$

$A \wedge B$ is false: $[x: y]$ if wither A or B are falsen $[x ; y]$

$$
\frac{X, A \triangleright Y}{X_{,} A \wedge B \triangleright 4^{A L} \quad \frac{X, B \triangleright Y}{X, A A B \triangleright Y} A C}
$$

THAT if CANNOT, in CIENERAR BE strenatiened to an inf.
$p \vee q$ is true in $[p \vee q:]$, but we de net want either p or q true ci $[p v q:]$, in general, Since we went to refute beth

$$
p \vee q>p \phi p \vee q>q
$$

However, in limit Positions...

If $[x: y]$ is a limit position then
$A \wedge B$ is truen $[x: y]$ iff both $A \& B$ aretinenin $[x ; y]$
$A \wedge B$ is falsein $[x: y]$ iff uither A or B ore falsein $[x: y]$]
$A \vee B$ is trevei $[x: y]$ iff either A or B ore tine in $[x: y]$
$A \cup B$ is false: $[x: y]$ iff both $A \& B$ are false in $[x: y]$]
$\neg A$ is truen $[x: y]$ iff A is false: $[x: y]$
ᄀA is falsen $[x: y]$ iff A is truein $[x: y]$
A is truen $[X: Y]$ iff A is not falen $[x: Y]$

A is true in $[x: y]$ if A is not false in $[x ; y]$ Olen $[x: 4]$ is alimit.

If $X \triangleright A, Y \& x, A \triangleright Y$ then by cut $X \triangleright Y$. \& hence $[x: y]$ is not available.

If $X \notin A, Y \notin X, A \notin Y$ then $A \notin X \notin A \notin Y$, $\$$ hence $[x: Y]$ is net maximal.
$A \wedge B$ is false $[x: 4]$ of wither A or B ore falser $[x ; y]$

If $X, A \wedge B \subset Y$, then $X \phi A \wedge B, Y \&$ so, either $X \phi A, Y$ on $X \phi B, Y$, \$ hence, by maxinalify, either $X, A>Y$ or $X, B>4$.

So, Limit positions are boolean Valuations
... and any Deaden valuation on \mathcal{L} determines a limit position (setting $f=\{A: \sim(A)=1\}$, $Y=\langle B: v(B)=0\})$ - provided that Podention segments ce the only axioms determining the bounds-
(Mare generally, we say that a valuation v is a countroxemple to $X>-Y$ if $v(A)=1$ foreach $A \in X \$$ $N(B)=0$ foreach $B \in Y$, and it respects $X-Y$ if it is not a counterexample to it. Then, any valuation that) respects all axioms determines a limit position.

Completeness via limit positions
Suppose $[x: Y]$ is available (since $X H Y$.)
Then there is a clint position $[76: y]$ extending $[x: 4]$.
This position determines a Bodem-Valuatien N which assigns each member of X the value 1 \& each mender of 4 , the value 0 .
So, $X \not F Y$.
titis cieneratises...
Intuitionistic logic: $[\notin: y]$ is available if for no $X \subseteq f \& C \in\}$ is $X P C$ derivable.
$[77 p: P]$ is available, \& so, is extended by a limit position.
At any such position, $n>p$ is true \& p is false. We de net have $I A$ tree at a position of A is false there. But, we have something that may to familiar...
$\neg A$ is tone in $[X: Y]$ if $X \triangleright \neg A, Y$, which, if $[X: Y]$ is available, means $X \triangleright \neg A$, \& this holds of X, A

Let's say $\left[X^{\prime}: Y^{\prime}\right]$ extends $[x: Y]$ if $X \subseteq X^{\prime}$.
Then $D A$ is trine in $[X: Y]$ of
A is false in any available $\left[X^{\prime}: Y^{\prime}\right]$ that extends $[X: Y]$.
(\&) Similarly fer the conditional: $A \rightarrow B$ is true in $[x: y]$ if B istruein any available $\left[X^{\prime} ; Y^{\prime}\right]$ extending $[x: y]$ at which A is tine. Wa use $X \triangleright A \rightarrow B$ if $X, A \triangleright B$.)
this cienerayises...
... and also to nodal logics, as we will see tomorrow.

But what about Assertion \& denial?

Assertion \& Denial are opposed
($[A: A]$ is out of bounds)
... but how, exactly?
what is denial?

DENIALS: STRONG \& WEAK

Abelard: Labour will win the Westminster election.

Eloise: Na. The Lib Dims will win the Westminster election. (l)

This is a strong denial.
She rejects Abelard's claim as false.

Abelard: Labour will win the Westminster election.

Eloise: No. Labour er the libdems will $($ win the westminster election.
This is a weak denial
She reject's Abelard's clown as unwarranted

ASSERTION, DENIAL \& THE COMMON GROUND
Represent the Common around (what we, together have ruled in (hat ne have (ruled ont) as a position [X:Y].
X : positive common ground Y.negative common ground.
STRongly Deny A - bidtoadd A to the ngahine cig.
WEAKLY DENY A - block the addition of A to the positive cg

ASSERTION, DENIAL \& THE COMMON GROUND
Represent the Common around (what we, together have ruled in \$ Shat ne have (ruled ont) as a position [X:Y]. X :positive common grand Y 'negative comenen grand.

STRongly Deny A - bidtoadd A to the ngahine cig. WEAKLY DENY A - block the addition of a to the positive cg

STRONGMM ASSERT A-bid tad A to the positive cu WEAKCM ASSERT A - block the addition Of A to the negatrie cg

ISOLATNG STRONG Assertion \& DINIAL

Abelard: Will Labor win?
Eloise: No, the Lib Dams will win.

Isolatina strona Assertin \& donitl

Alelard: Will Labour wir?
Elaise: No, the Lis Dems will win.

Akelard: Will Labar wir?
Eloise: No, either Laber er the lib Dems will win.
??

ISOLATNG STRONG Assertion \& DINIAL

Abelard: Will Labor win?
Eloise: No, the Lis Dams will win.

Abelard: Will Labor win?
Eloise: No, either labor ar the lib Dams will win.
? ?
If Elocrés ' $n 0$ ' is appropriate as an answer to Abelard's question, then the followt-up is a strange way of sayif that the Lis Rems will win!

Isolatina strona Assertin \& donitl

Ahelard: Will Labar win?
Elaise: No, the Lis Dems will win.

? ?

If Eloice's 'no' is appropriate asan answer to Abelard's question, then the follow-up is a strange wey of sayic that the Cil Dems will win!

BACK TO RULES FOR CONNELTVES...

$$
\frac{X, A>B, Y}{X>-A \rightarrow B, Y} \rightarrow R \quad \frac{X+A, Y \quad U, B+V}{X, U, A \rightarrow B-Y, V} \rightarrow C
$$

Why are these in harmony? Hew acre they a definition?

BACK TO RULES FOR CONNELTVES.. .

$$
\frac{X, A>B, Y}{X>-A \rightarrow B, Y} \rightarrow R \quad \frac{X+A, Y \quad U, B+V}{X, U, A \rightarrow B-Y, V} \rightarrow C
$$

Why are these in harmony? How ore they a definition?

FRom \rightarrow Df TO $\rightarrow L / \rightarrow R$
$\frac{X, A>-B, Y}{X>-A \rightarrow B, Y} \rightarrow D f \quad$ The \downarrow direction is $\rightarrow R$
The \uparrow arrection gintifies $\rightarrow L$, usiop Cut \& (dentity (1Id +2 cuts)

$$
\begin{aligned}
& \frac{x-A, y \quad u, B-V}{x, u, A \rightarrow B-Y, V} \rightarrow c
\end{aligned}
$$

From $\rightarrow L / \rightarrow R$ back to $\rightarrow D F$
$\rightarrow R$ jist (i) $\rightarrow D f \downarrow$
$\rightarrow L$ jistifes $\rightarrow D F \uparrow$, usig Cut \& 1 dentity
(2Ids+1 Cut)

- This generaliteste the other cennectives
- No Cantraction ir Weallering is ever used.

QUANTFERS?

$$
\frac{x-A(x), y}{\overline{x>\forall x A(x), y}} \forall D f
$$

This werks, as a definution of the univeral quentifier, hit to craverthe $\forall L$ Rules we need to do seme noik.
Obrieus sidecendition ar n in ferce. - n is ubseat from the bottem soguent. - The specialise rule is requifed in the Syster with the Df Pules -it malues the eignvarames anferentiall? general...

