THE SEMANTICS \& PSyctocochy of NeGATION:
tite ausiralian plan, negation as failure, and card sele ction tasics

Grea restacl

University of
St Andrews

Arché M\&l SEmINAR * 20 Sertemiser 2023

Titis TALK is BASED ON JOINT WORK wITI FRANCESCO BERTO uttps:// consequently.org/presentation

MY PLAN

1. Scene Setting
2. Truth Condemns for negation
3. taking two different perspectives
4. card selection tasks
5. where to co from here

MY PLAN

1. Scene Serina
2. TRuth Cond mons for neation
3. TAKINa Two differant parspeetves
4. Card sazction tasks
5. whare to co from hore

This is jaint wark with mas colleagne fromeesco Berto.

Negation on the Australian Plan

Francesco Berto ${ }^{1,2}$ © Greg Restall 3

Received: 25 November 2017 / Accepted: 30 March 2019 / Published online: 22 April 2019 © The Author(s) 2019

Abstract

We present and defend the Australian Plan semantics for negation. This is a comprehensive account, suitable for a variety of different logics. It is based on two ideas. The first is that negation is an exclusion-expressing device: we utter negations to express incompatibilities. The second is that, because incompatibility is modal, negation is a modal operator as well. It can, then, be modelled as a quantifier over points in frames, restricted by accessibility relations representing compatibilities and incompatibilities between such points. We defuse a number of objections to this Plan, raised by supporters of the American Plan for negation, in which negation is handled via a many-valued semantics. We show that the Australian Plan has substantial advantages over the American Plan

Keywords Negation • Compatibility semantics • Kripke semantics • Non-classical logics • Many-valued logics • Modal logics

[^0]We are interested in the

vocabulary, and how
this connects with what

Journal of Philosophical Logic https://doi.org/10.1007/s10992-019-09510-2

Negation on the Australian Plan
Francesco Berto ${ }^{1,2}$ (1). Greg Restall ${ }^{3}$

Received: 25 November 2017 / Accepted: 30 March 2019 / Published online: 22 April 2019
© The Author(s) 2019

Abstract
We present and defend the Australian Plan semantics for negation. This is a comprehensive account, suitable for a variety of different logics. It is based on two ideas. The first is that negation is an exclusion-expressing device: we utter negations to express incompatibilities. The second is that, because incompatibility is modal, negation is a modal operator as well. It can, then, be modelled as a quantifier over points in frames, restricted by accessibility relations representing compatibilities and incompatibilities between such points. We defuse a number of objections to this Plan, raised by supporters of the American Plan for negation, in which negation is handled via a many-valued semantics. We show that the Australian Plan has substantial advantages over the American Plan.

Keywords Negation Compatibility semantics • Kripke semantics • Non-classical logics • Many-valued logics • Modal logics

Francesco Berto
fb96@st-andrews.ac.uk; F.Berto@uva.nl
Greg Restall
restall@unimelb.edu.au

1 Department of Philosophy, University of St Andrews, St Andrews, UK
2 Institute for Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam, The Netherlands

3 Department of Philosophy, University of Melbourne, Melbourne, Australia

We ore interested in the
Semantics of logical
vocabulary, and how this connects with what we do in our thought and talk.

Dory I'll talk about The semantics of negation and sene connections with the psychology of reasoning

MY PLAN

1. Scene Setting
2. TRuth CONDIIONS FOR NEGATION
3. TAKING Two difforont perspectives
4. Card selection tasks
S. WHERE TO CO FROM HERE
$\neg A$ is true if and only if A is not true.

In terms of situations

SHIᄀA if and ally if $S \mathbb{f} A$

In terms of truth values

$$
\begin{aligned}
& N(\neg A)=1 \text { if and only if } N(A) \neq 1 \\
& \qquad(\text { i.e., when } N(A)=0)
\end{aligned}
$$

Generalising Truth Values
$N(\neg A)=1$ if and only if $N(A)=0$
$N(\neg A)=0$ if and only if $N(A)=1$

Generalising Truth Valnes
$N(\neg A)=1$ if and only if $N(A)=0$
$N(\neg A)=i$ if and anly if $N(A)=i$
$\sim(\neg A)=0$ if and anly if $N(A)=1$

If the entermediate velue is talen to be neithertrue ner false, we have a tuith-value gap.

Generalising Truth Values
$N(\neg A)=1$ if and only if $N(A)=0$
$N(\neg A)=i$ if and only if $N(A)=i$
$\sim(\neg A)=0$ if and only if $N(A)=1$

If the intermediate value is talent to be both true and false, we have a turth-value glut

Generalising Truth Values

$$
\begin{aligned}
& N(\neg A)=1 \text { if and only if } v(A)=0 \\
& N(\neg A)=m \text { if and only if } v(A)=n \\
& N(\neg A)=b \text { if and only if } \sim(A)=b \\
& N(\neg A)=0 \text { if and only if } \sim(A)=1
\end{aligned}
$$

If you really went, yen car have two intermediate values for 'both' and 'neither' - guts $\$$ gaps.
(If you wander hew to evaluate the other lagieal operators in schemes chlu this, meditate on these Hasse diagrams. Conjunction is greatest lover bound, dis junction, least upper bound, as usual.)

In the relevant logic tradition, this scheme for negation (generalising beyond two tout values) is called the AMERICAN PLAN, because it cones from the work of the two American legicioms

* In this tradition, at least. The idea arose elsewhere, to.

The distinctive feature of these semantic schemes is that truth and falsity ore treated on a par as distinct (though connected) semanhi statuses.

There are ather ways to generalise Beolem nejation.

SHー $\neg A$ if and anly if siff.

Beth/Kriple Sememtics for Intritioniste lagic
sㄲㄱA iff for every $t \geqslant s$, $t \| f A$.

The Rentley Stor Semantics
$s \mid 1 \neg A$ if and only if $s^{*} \| f A$.

The General Scheme...
$s \mid \vdash \neg A$ iff for every where $s C t, t \nVdash A$.

This scheme, in which negation is given a torntz-canditional semantics by way of a context-shift 'compatibility' relation has became known as the AUSTRAUAN plan, because it arose* in the work of Australian Logicians

Valerie Plumwood (then Rautley)

Richard Sylvan (then Raitley)

* In this tradition, at least. The idea arose elsewhere, to.

The distinctive feature of these semantic schemes is that truth and falsity ore treated differently. Falsity (truth of a negation), arises out of tut \& (in)compatiblity.

These two plans are very different, and sene tale them to be in conflict.

There is More to Negation than Modality

Michael De ${ }^{\mathbf{1}} \cdot$ Hitoshi Omori 2

[^1]Abstract There is a relatively recent trend in treating negation as a modal operator One such reason is that doing so provides a uniform semantics for the negations of a wide variety of logics and arguably speaks to a longstanding challenge of Quine put to non-classical logins. One might be tempted to draw the conclusion that negation is a modal operator, a claim Francesco Berto (Mind, 124(495), 761-793, 2015) defend at length in a recent paper. According to one such modal account, the negation of a sentence is true at a world x just in case all the worlds at which the sentence is true are incompatible with x. Incompatibility is taken to be the key notion in the account, and what minimal properties a negation has comes down to which minimal conditions incompatibility satisfies. Our aims in this paper are twofold. First, we wish to point out problems for the modal account that make us question its tenability on a fundamental level. Second, in its place we propose an alternative, non-modal account of negation as a contradictory-forming operator that we argue is superior to and more natural than, the modal account.

Keywords Negation • Compatibility • Modality • Contradictory

[^2]Journal of Philosophical Logic https://doi.org/10.1007/s10992-019-09510-2

Negation on the Australian Plan

Received: 25 November 2017 / Accepted: 30 March 2019 / Published online: 22 April 2019 © The Authors) 2019

Abstract

We present and defend the Australian Plan semantics for negation. This is a comprehensive account, suitable for a variety of different logics. It is based on two ideas. The first is that negation is an exclusion-expressing device: we utter negations to express incompatibilities. The second is that, because incompatibility is modal, negation is a modal operator as well. It can, then, be modelled as a quantifier over points in frames, restricted by accessibility relations representing compatibilities and incompatibilities between such points. We defuse a number of objections to this Plan, raised by supporters of the American Plan for negation, in which negation is handled via a many-valued semantics. We show that the Australian Plan has substantial advantages over the American Plan.

Keywords Negation • Compatibility semantics • Kripke semantics • Non-classical logics • Many-valued logics • Modal logics

M Francesco Berta

fb96@st-andrews.ac.uk; F.Berto@uva.n
Greg Restall
restall@unimelb.edu.au

1 Department of Philosophy, University of St Andrews, St Andrews, UK
2 Institute for Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam, The Netherlands

My task here is not to ajudicate this dispute, but to explore one of the ways the distinctive features of the Australian Plan semantics can be applied.

Before that, let's see another tradition in the semantics of negation: NEGATION AS FACLRE, from logic programming \& database theory

NEGATION AS FAILURE

Keith L. Clark
Department of Computer Science \& Statistics
Queen Mary College, London, England

ABSTRACT
A query evaluation process for a logic data base comprising a
set of clauses is described. It is essentially a Horn clause rem prover augmented with a special inference rule for dealing with negation. This is the negation as failure inference rule whereby advantage of the query evaluator described is the falls. The chief as failure rule only allows us to conclude negated facts that could be inferred from the axioms of the completed data base, a data
base of relation definitions and equality schemas that we consider is implicitly given by the data base of clauses. We also show that when the clause data base and the queries satisfy certain con-

Treat a database D as verifying $\neg A$ if and only of D fails to verify A.
(This looks a lot like Boolean Negation. but this is a database, not a world.)

Which of these approaches is CORREA?

I am not the person to give yen a direct Logical Pluralism answer to that kind of question.

MY PLAN

1. Scene Setting
2. TRuTH CONDIIONS FOR NEGATION
3. TAKING Two difforont perspectives
4. Card selection tasks
S. WHERE TO CO FROM HERE
(2)
(2)
 \section*{\section*{
 \section*{\section*{

 (2)

 (2)

 484

 484

 5

 5

 5

 $+8+2$

 $+8+2$

 $+8+2$

 (20)

 (20)

 (20)

 4,

 4,

 $=$

 $=$

 848

 848

 848

 $\operatorname{lol}_{2-2}+\frac{1}{2}$}

 $\operatorname{lol}_{2-2}+\frac{1}{2}$}

 $\operatorname{lol}_{2-2}+\frac{1}{2}$}

I will propose a view from which both NEGATION AS FAILLRE and an Australian plan semantics for negation can explain different aspects of the psychology of reasoning with negations.

The framework

$$
s \notin A
$$

The freamenork

The Framework
 evidence base

A judgement

Evidence bases are not worlds.

The framework

$$
S \notin \mathbb{A}
$$

Evidence bases are not worlds.

D

s	D	B	3	7
a	\checkmark	-	-	-
b	-	-	\checkmark	-
c	-	\checkmark	-	-
d	-	-	-	\checkmark

s	D	B	3	7
a	\checkmark	-	-	-
b	-	-	\checkmark	-
c	-	\checkmark	-	-
d	-	-	-	\checkmark

$s \| D_{a} \quad s \Vdash 3 b$

s	D	B	3	7
a	\checkmark	-	-	-
b	-	-	\checkmark	-
c	-	\checkmark	-	-
d	-	-	-	\checkmark

$s \| D_{a} \quad$ sil $3 b$ sif $D b \quad$ slf $7 b$

When does this evidential Situation support a negative judgement, like $\neg 76$ or $\neg D 6$?

Well, it depends on what your mean.

The International Bestseller

Thinking, Fast and Slow

Daniel Kahneman
Winner of the Nobel Prize

I'Il take for grouted that there acre different kinds of cognitive processes involved in our information processing, including in our treatment of negation \& negative judgements.
Lets work with two levels
of information processing

Immediate, fast reaction judgement
$S \mathbb{H}_{1} A$ (A a basic judgement) iff $s \|-A$
$S \|_{1} \neg A$ if and only of $S H_{1} A$

Immediate, fast reaction judgement
$S \mathbb{H}_{1} A$ (A a basic judgement) inf $s \|-A$
$S H_{1} \neg A$ if and early of $S H_{1} A$
(At least when A is a basic judgement. 1 leave it an open question whether System 1 cam deliver claims such as $\rightarrow 7$ Da)

$$
s \mathbb{F}_{1} D a \quad s \mathbb{F}_{1} \neg 3 a \quad s \mathbb{H}_{1} \neg B_{a} \quad s \mathbb{H}_{1} \neg 7 a
$$

$$
\begin{array}{llll}
s \mathbb{F}_{1} D a & s \mathbb{H}_{1} \neg 3 a & s \|_{1} \neg B a & s \|_{1} \neg 7 a \\
s \mathbb{H}_{1} \neg D b & s \|_{1} 3 b & s \|_{1} \neg B b & s \|_{1} \neg 7 b
\end{array}
$$

$s \| D_{a} \quad s \mathbb{F} \quad 3 a \quad s \Vdash \neg B_{a} \quad s \Vdash \neg 7 a$

But clearly, these are not all alike, if you knout about the card setup \& you think for a little bit.

$$
s \Vdash D_{a} \quad s \Vdash \neg \rightarrow 3 a \quad s \Vdash \neg B_{a} \quad s \Vdash \neg 7 a
$$

Card a doesit have a 3 an this side, but it might on the other.

$S\left\|\mathrm{Da}_{a} \quad s\right\|-\neg 3 a \quad s \mathbb{T} \neg \mathrm{Ba}_{a} \quad$ s $\Vdash \neg \neg a$
Card a doesit have a 3 an this side, but it might on the other.
If the evidence base contains the constraint that each card has a letter on ore side \$ a number on the other... Same reasoning can deliver this negative judgement.

$$
s \mathbb{H}_{2} D a \quad s\left\|_{2} \neg 3 a \quad s\right\|_{2} \neg B a \quad s \|_{2} \neg 7 a
$$

We think these sorts of distinctions take a bat wore work to make. They seem more Like slow thinking: System 2.

System 2, Slaw reaction judgement
$S \mathbb{F}_{2} A$ (A a basic judgement) if $S \Vdash A$
$s \|_{2} \neg A$ if and early, of $t \mathbb{F}_{2} A$, for any t compatible with S.

System 2, Slaw reaction judgement

$$
S \mathbb{H}_{2} A \text { (A a basic judgenat) iff } S \Vdash A
$$

$s \mathbb{H}_{2} \neg A$ if and ally of $t \Vdash_{2} A$, for any t compatible with S.

This requires each evidence base to not only syppett basic jridgerents, but a compatiblif relation between evidence bases \qquad and system 2 reflection must operate an those hypothetical evidence bases!

a

b

c

		c		
t	D	B	3	7
a	\checkmark	-	\checkmark	-
b	-	-	\checkmark	-
c	-	\checkmark	-	-
d	-	-	-	\checkmark

u	D	B	3	7
a	\checkmark	-	-	\checkmark
b	-	-	\checkmark	-
c	-	\checkmark	-	-
d	-	-	-	\checkmark

d
a could have a 3 on the other side

S	D	B	3	7
a	\checkmark	-	-	-
b	-	-	\checkmark	-
c	-	\checkmark	-	-
d	-	-	-	\checkmark

This sort of considered reflection of alternatives seems to model the way we reason about negations when we take our time.
fast, easy, System 1 negation as failure (ave rgenerates)

This sort of considered reflection of alternatives seems to model the way we reason about negations when we take our time

- Slow, difficult, system 2 Australian PLaN compatibility negation (accurate)

MY PLAN

1. Scene Setting
2. TRUTH CONDIIONS FOR NEGATION
3. TAKING Two different perspectives
4. Card selection tasks
S. WHERE TO Co from Hort

Every card has a letter on one side \ddagger a number on the other which cards must you flip to verify "If a card has a D on one side there is a 3 ow the other "?

REASONING ABOUT A RULE
BY
P. C. WASON

From Psycholinguistics Research Unit, University College London
Two experiments were carried out to investigate the difficulty of making the contrapositive inference from conditional sentences of the form, "if P then Q." This inference, that not-P follows from not-Q, requires the transformation of the information presented in the conditional sentence. It is suggested that the difficulty is due to a mental set for expecting a relation of truth, correspondence, or match to hold between sentences and states of affairs. The elicitation of the inference was not facilitated by attempting to induce two kinds of therapy designed to break this set. It is argued that the subjects did not give evidence of having acquired the characteristics of Piaget's 'formal operational thought."

a

b

c

d

Every card has a letter an one side \ddagger a number on the other which cards must you flip to verify "If a card has a D on one side there is a 3 on the other"?

REASONING ABOUT A RULE
REASONING ABOUT A RULE
P. C. WASON

From Psycholinguistics Research Unit, University College London
Two experiments were carried out to investigate the difficulty of making the contrapositive inference from conditional sentences of the form, "if P then Q." This inference, in the conditional sentence. It is suggested that the difficulty is due to a mental set for expecting a relation of truth, correspondence, or match to hold between sentences and induce two kinds of therapy designed to break this set It is argued that the subject a induce two kinds of therapy designed to break this set. It is argued that the subjects
fewer than 10% of ${ }^{273}$ the participants answered correctly ($a \& d$).

Quarterly J. Exp. Psych. 1968

a

b

c

d

Every card has a letter an one side \ddagger a number on the other which cards must you flip to verify "If a card has a D on one side there is a 3 on the other"?

REASONING ABOUT A RULE
REASONING ABOUT A RULE
P. C. WASON

From Psycholinguistics Research Unit, University College London
Two experiments were carried out to investigate the difficulty of making the contrapositive inference from conditional sentences of the form, "if P then Q." This inference, in the conditional sentence. It is suggested that the difficulty is due to a mental set for expecting a relation of truth, correspondence, or match to hold between sentences and induce two kinds of therapy designed to break this set It is argued that the subject a induce two kinds of therapy designed to break this set. It is argued that the subjects
fewer than 10% of ${ }^{273}$ the participants answered correctly ($a \& d$).

Quarterly J. Exp. Psych. 1968

c
Perkaps supprisingly, performance is much better if yen negcte the consequent. "If a card has a D on one side thereisn't a 3 ow the other." (Choose $a \not \& b$.)

Br. J. Psychol. (1973), 64, 3, pp. 391-397
Printed in Great Britain

MATCHING BIAS IN THE SELECTION TASK
By J. ST B. T. EVANS and J. S. LYNCH
Psychology Section, City of London Polytechnic
A previous study (Evans, 1972) found that subjects tend to match rather than alter named values when constructing verifying and falsifying cases of conditional rules. It was suggested that this tendency ('matching bias') might account for the responses normally observed in Wason's $(1968,1969)$ 'selection task'. This suggestion was tested by giving subjects the selection task with conditional rules in which the presence and absence of negative components was systematically varied, to see whether subjects consistently attempted to verify the rules (Wason's theory) or whether they continued to choose the matching values despite the presence of negatives, which would reverse the logical meaning of such selections. Significant matching tendencies were observed on four independent measures, and the overall pattern, with matching bias cancelled out, gave no evidence for a verification bias, indicating instead that the logically correct values were most frequently chosen.

Wason \& Johnson-Laird (1972) review a number of recent studies about the reasoning patterns generally obtained in Wason's 'selection task'. That task was

Reasoning about a rule
PC Wason - Quarterly journal of experimental psychology, 1968 - journals.sagepub.com Two experiments were carried out to investigate the difficulty of making the contra-positive inference from conditional sentences of the form, "if P then Q." This inference, that not-P ... $\hat{\psi}$ Save $\quad 0$ Cite Cited by 4339 Related articles All 9 versions

There is a vast literature on card selection tasks! It is not our ain to get to the bottom of all of it.

We want to see hew contemporary work in the semantics of negation can be tested fer cognitive significance.

Pusight 1: Reasoning accurately absent negations (and falsity) involves generalising over compatible evidence bases, and this is complicated. It is not surprising that we find this difficult.

$$
\begin{array}{llll}
s \mathbb{H}_{1} D a & s \mathbb{H}_{1} \neg 3 a & s \mathbb{H}_{1} \neg B_{a} & s \mathbb{H}_{1} \neg 7 a \\
s \mathbb{H}_{1} \neg D b & s \mathbb{H}_{1} 3 b & s \mathbb{H}_{1} \neg B b & s \mathbb{H}_{1} \neg 7 b
\end{array}
$$

Pusight 2: If System 1 judgements about negations are quick-and-dirty negation as foulure judgements, it's not surprising that we overgenerate answers.

How can we account for greater success in the negated consequent form of the task:
"If there is a D on are side of the cord there sit a 3 ow the other"?

Here we might use same concepts from Berta's 2022 book Topics of Thought.

Judgements do not only have truth conditions - they also have topics.

Negation is tepic-transparent.

$$
t(\neg A)=t(A)
$$

S o is the material conditional.

$$
t(A \rightarrow B)=t(A) \oplus t(B) .
$$

"If there is a D on one side of the card there suit a 3 ow the other"?

$$
\begin{aligned}
& t\left(D_{x} \rightarrow \neg 3 x\right)=t\left(D_{x}\right) \oplus t(3 x) \\
& t\left(D_{x} \rightarrow 3 x\right)=t\left(D_{x}\right) \oplus t(3 x)
\end{aligned}
$$

"If there is a D an are side of the cord there sit a 3 em the other"?

If our pre-reflective quick judgement of relevance is guided by topic (in this sense) then it is not surprising that we might pick $a \& b$ (at least) in this scenario, whether we check $D x \rightarrow 73 x$ or $D x \rightarrow 3 x$, since being a D \& being a 3 is clearly on topic.

"If there is a D an one side of the cord there isis a 3 em the other"?

If we stop there, to consider only the clearly D and 3 cards, without considering the othersider of $c \notin d$, we chance on the right answer of the $D_{x} \rightarrow 73 x$ task, but er on the $D_{x} \rightarrow 3_{x}$ task.

a

b

c

d
"If there is a D an ane side of the card there isint a 3 on the other"?

Combining topic sensitivity with negation as failure (System 1) judgements briggs every card into salience, which could explain why peopleare prone to overgenerate answers in either case,

Contemporary work in the philosophy of logic can gite us new ideas about possible cognitive mechanisms at play in our reasoning judgements, whether fast or Slow.

Contemporary work in the philosophy of logic can gite us new ideas about possible cognitive mechanisms at play in our reasoning judgements, whether fast or Slow.
There does not reed to be a one-size-fits-all approach. Pluralism seems fitting here!

MY PLAN

1. Scene Setting
2. TRuTH CONDIIONS FOR NEGATION
3. TAKING TWO DIFFORONT PERSPECTIVES
4. card selection tasks
S. WHERE To GO fROM HERE?

This walk is only just beginning!

1. Read through existing results with logically-infired eyes.
2. Examine the logical literature fer cognitively significant tools.
3. Make conjectiver, and test them.
4. Refine the canjectrins \& repeat...
Thanks

[^0]: \triangle Francesco Berto
 fb96@st-andrews.ac.uk; F.Berto@uva.n
 Greg Restall
 restall@unimelb.edu.au

 1 Department of Philosophy, University of St Andrews, St Andrews, UK
 2 Institute for Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam, The Netherlands

 3 Department of Philosophy, University of Melbourne, Melbourne, Australia

[^1]: Received: 17 February 2016 / Accepted: 20 January 201
 © Springer Science+Business Media Dordrecht 2017

[^2]: This research was funded by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement nr 263227. Hitoshi Omor is a Postdoctoral Research Fellow of the Japan Society for the Promotion of Science (JSPS).

 Hitoshi Omori
 hitoshiomori@gmail.com
 Michael De
 mikejde@gmail.com
 1 Department of Philosophy, University of Konstanz, Konstanz, Germany
 2 Department of Philosophy, Kyoto University, Kyoto, Japan

