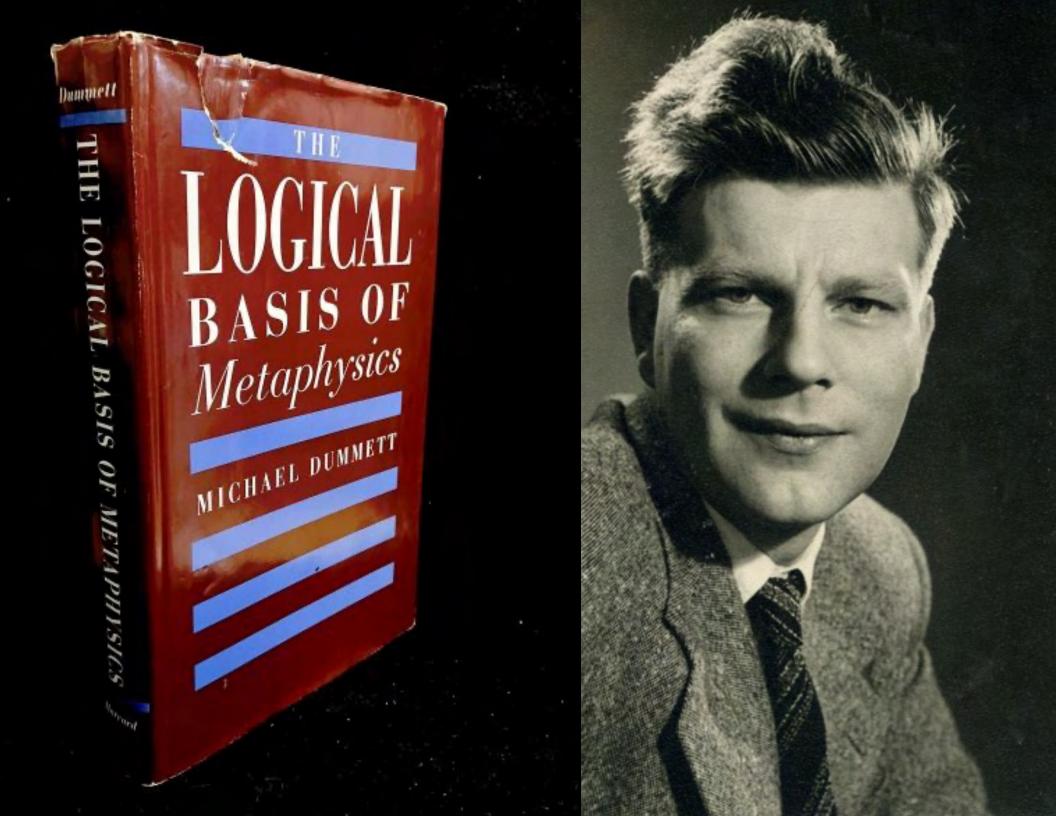
What do we Mean? SEMANTICS, PRACTICES & PLURAUSM GREG RESTAU Arche MEL Seminar 3 July 2024

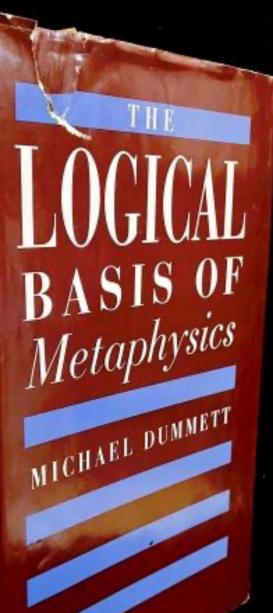
WARNING

This is all pretty fresh. In trying these ideas out will an aim to present them to a general philosophical andience. (Helpful) feedback is encouraged!


THE ISSUE

AN ANALOGY

THE CLAIM


Some CONSEQUENCES

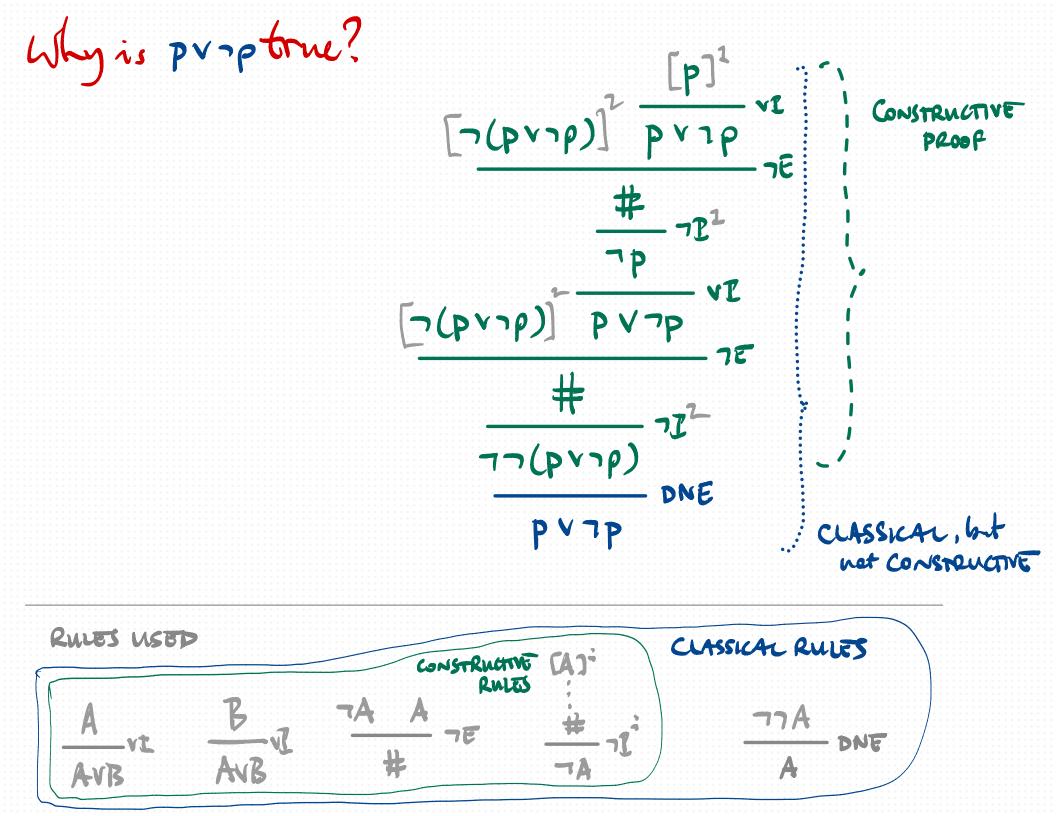
Ð LOGICAL BASIS OF METAPHYSIC

Contents

Preface ix

Introduction: Metaphysical Disputes over Realism 1 1 Semantic Values 20 2 Inference and Truth 40 Theories of Truth 61 3 Meaning, Knowledge, and Understanding 83 4 5 Ingredients of Meaning 107 Truth and Meaning-Theories 141 6 7 The Origin and Role of the Concept of Truth 165 8 The Justification of Deduction 184 Circularity, Consistency, and Harmony 200 9 Holism 221 10 Proof-Theoretic Justifications of Logical Laws 245 11 The Fundamental Assumption 265 12 13 Stability 280 Truth-Conditional Meaning-Theories 301 14 Realism and the Theory of Meaning 322 15 Index 353

=	Google Scholar	logical pluralism	Q	(
+	Articles	About 600,000 results (∂.09 sec)		😒 My profile 🔺 My library
	Any time	[PDF] Logical pluralism		[PDF] tandfonline.com
	Since 2024	JC Beall, G Restall - Australasian journal of philosophy, 2000 -		
	Since 2023	To be a pluralist about logical consequence, you need on		
	Since 2020	true logic '. There are hints of pluralism in the literature in phil		
	Custom range	☆ Save 切 Cite Cited by 917 Related articles All 16 ve	rsions 👐	
	Sort by relevance	[HTML] What logical pluralism cannot be		[HTML] springer.com
	Sort by date	<u>R Keefe</u> - Synthese, 2014 - Springer		
		form of logical pluralism. In the final section, I consider oth		
	Any type	logical pluralist by examining analogous positions in debates ☆ Save 55 Cite Cited by 67 Related articles All 10 vers		
	Review articles	A Gave 22 One Oned by 07 Related articles All 10 Vers	50113	
		Let a thousand flowers bloom: A tour of logical	pluralism	[PDF] wiley.com
	include patents	<u>RT Cook</u> - Philosophy Compass, 2010 - Wiley Online Library	plataion	[PDI] Wildy.com
	include citations	of logical pluralism rabid logical pluralism (RLP). RLP is	obtained by combining Beall-Restall	
		pluralism with Shapiro and Cook's logic-as On this view, t	here is be more than one logical	
	Create alert	☆ Save 50 Cite Cited by 131 Related articles All 3 vers	sions	
		[HTML] Logical pluralism		[HTML] stanford.edu
		<u>G Russell</u> , <u>C Blake-Turner</u> - 2013 - plato.stanford.edu		
		Much current work on the subject was sparked by a series Greg Restall (Beall & Restall 2000, 2001; Restall 2002), which		
		☆ Save 功 Cite Cited by 95 Related articles All 6 versio		
		Related searches		
		logical pluralism normativity logica	al pluralism reasoning	
		collapse argument logical pluralism logical	al pluralism correct logic	
		logical pluralism one correct logical	al pluralism carnap	
			al pluralism steinberger	
		Modalism and logical pluralism		[PDF] oup.com
		O Bueno, SA Shalkowski - Mind, 2009 - academic.oup.com		
		an alternative understanding of logical pluralism that coup		
		difficulties raised for pluralism via one logic is thereby obta		
		☆ Save 59 Cite Cited by 104 Related articles All 6 vers	sions	
		Legical dynamics mosts legical physics		
		Logical dynamics meets logical pluralism? J Van Benthem - The Australasian Journal of Logic, 2008 - ojs	s victoria ac nz	[PDF] victoria.ac.nz
		van Benutem - The Australasian Journal of Logic, 2008 - 0	5. 10(0)10.00.112	


... One is **logical pluralism**, locating the new scope of **logic** in ... mind about the crux of what **logic** should become. I would now ... And **logical** systems should deal with a wide variety of these, ... ☆ Save 55 Cite Cited by 47 Related articles All 4 versions ≫

[HTML] Why logical pluralism?

=	Google Scholar	logical pluralism restall	
•	Articles	About 4,570 results (0.03 sec)	🔄 My profile 🔺 My library
	Any time	[PDF] Logical pluralism	[PDF] tandfonline.com
	Since 2024	JC Beall, G Restall - Australasian journal of philosophy, 2000 - Taylor & Francis	
	Since 2023	To be a pluralist about logical consequence, you need only hold that there is more than 'one	
	Since 2020	true logic'. There are hints of pluralism in the literature in philosophy of logic, but it has not	
	Custom range	☆ Save 55 Cite Cited by 917 Related articles All 16 versions ≫	
	Sort by relevance	Logical pluralism, meaning-variance, and verbaldisputes	[PDF] tandfonline.com
	Sort by date	OT Hjortland - Australasian Journal of Philosophy, 2013 - Taylor & Francis	
	Cont by date	Restall's theory specifically. We argue that contrary to what Beall and Restall claim, their type of pluralism is We then develop an alternative form of logical pluralism that circumvents at	
	Any type	☆ Save 57 Cite Cited by 91 Related articles All 6 versions	
	Review articles		
	include patents	[HTML] Restall and Beall on logical pluralism: A critique	[HTML] springer.com
	✓ include citations	<u>M Bremer</u> - Erkenntnis, 2014 - Springer	
		service to logical pluralism Beall and Restall occasionally treat one logic (standard logic) as	
	Croate alart	This contradicts the equality of logics one might consider a crucial part of logical pluralism	
	Create alert	☆ Save 50 Cite Cited by 11 Related articles All 4 versions	
		[нтмL] What logical pluralism cannot be	[HTML] springer.com
		R Keefe - Synthese, 2014 - Springer	
		I consider in detail Beall and Restall's Logical Pluralism-which seeks to accommodate	
		radically different logics by stressing the way that they each fit a general form, the Generalised	
		☆ Save 50 Cite Cited by 67 Related articles All 10 versions	
		Broklama for legical pluralian	In tendforling com
		Problems for logical pluralism	[PDF] tandfonline.com
		O Griffiths - History and Philosophy of Logic, 2013 - Taylor & Francis	
		I argue that Beall and Restall's logical pluralism fails. Beall- Restall pluralism is the claim that	
		Second, I argue that Beall- Restall pluralism fails to hold in a single language with a single	
		☆ Save 55 Cite Cited by 22 Related articles All 4 versions	
		[HTML] Pluralism and proofs	[HTML] springer.com
		G Restall - Erkenntnis, 2014 - Springer	
		to motivate pluralism about logical consequence. Here, I will examine pluralism about logical	
		If we think of intuitionistic logic and classical logic in terms of proofs, do we end up with the	
		☆ Save 50 Cite Cited by 45 Related articles All 7 versions	
		Carpan's tolerance, meaning, and logical pluralism	IBDEL istor org
		Carnap's tolerance, meaning, and logical pluralism	[PDF] jstor.org
		<u>G Restall</u> - The Journal of Philosophy, 2002 - JSTOR	
		In some ways, this is a claim that the concept of logical consequence is ambiguous. Our	
		logical pluralism is more than this, however: we have argued that the core notion of logical	
		☆ Save 59 Cite Cited by 125 Related articles All 9 versions	
		Logical pluralism	[PDF] jstor.org
		A Passault 2007 ISTOP	

A Paseau - 2007 - JSTOR

 \ldots This leads me to deeper concerns about Beall and $\ensuremath{\textbf{Restall's pluralism}}$. As explained, they \ldots

How should we think about the relationship between classical & constructive logic?

Constructive logie is more restrictive than classical Lagic.

Et has trigher standards, \$ so, com prove fewer things.

OPTION 1 Computational meaning, take the assertion that every bounded nonvoid set A of real numbers has a least upper bound. (The real number b is the least upper bound of A if $a \leq b$ for all a in A, and if there exist elements of A that are arbitrarily close to b.) To avoid unnecessary complications, we actually consider the somewhat less general assertion that every bounded sequence (x_{i}) of rational numbers has a least upper bound b (in the set of real numbers). If this assertion were constructively valid, we could compute b, in the sense of computing a rational number approximating b to within any desired accuracy; in fact, we could program a digital computer to compute the approximations for us. For instance, the computer could be programmed to produce, one by one, a sequence $((b_k, m_k))$ of ordered pairs, where each b_k is a rational number and each m_k is a positive integer, such that $x_i \leq b_k + k^{-1}$ for all positive integers j and k, and $x_m \geq b_k - k^{-1}$ for all positive integers k. Unless there exists a general method M that produces such a computer program corresponding to each bounded, constructively given sequence (x_k) of rational numbers, we are not justified, by constructive standards, in asserting that each of the se-

Errett Bishop and Douglas Bridges, Constructive Analysis (1985)

Constructively, this principle is not universally valid, as we have seen in Exercise 12.1. Classically, however, it is valid, because every proposition is either false or not false, and being not false is the same as being true. Nevertheless, classical logic is consistent with constructive logic in that constructive logic does not refute classical logic. As we have seen, constructive logic proves that the law of the excluded middle is positively not refuted (its double negation is constructively true). Consequently, constructive logic is stronger (more expressive) than classical logic, because it can express more distinctions (namely, between affirmation and irrefutability), and because it is consistent with classical logic. Proofs in constructive logic have computational content: they can be executed as pro-

Proofs in constructive logic have computational content: they can be executed as programs, and their behavior is described by their type. Proofs in classical logic also have computational content, but in a weaker sense than in constructive logic. Rather than positively affirm a proposition, a proof in classical logic is a computation that cannot be refuted. Computationally, a refutation consists of a continuation, or control stack, that takes a proof of a proposition and derives a contradiction from it. So a proof of a proposition in classical logic is a computation that, when given a refutation of that proposition derives a contradiction, witnessing the impossibility of refuting it. In this sense, the law of the excluded middle has a proof, precisely because it is irrefutable.

Logic. It identifies

ferrer statements,

\$ so, has more to say

Robert Harper, Practical Foundations for Programming Languages (2016)

LogicalPluralism

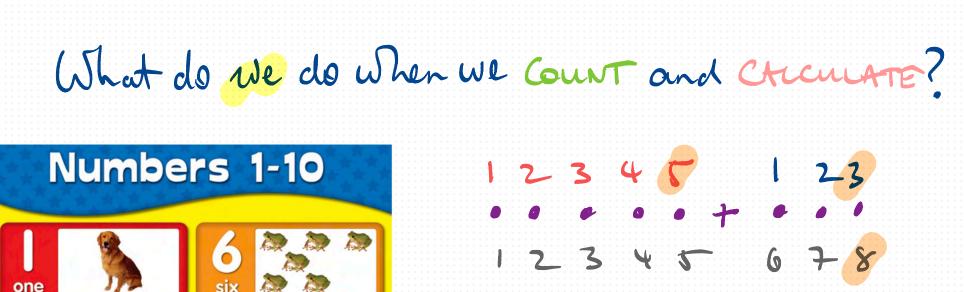
The coarest pruseness of Beall& Restall (2006) takes Options 2 & does not consider Option Z.

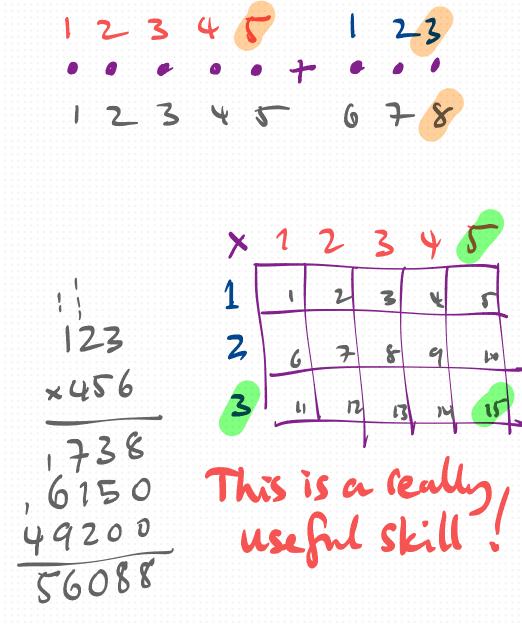
It's time to revisit this issue.

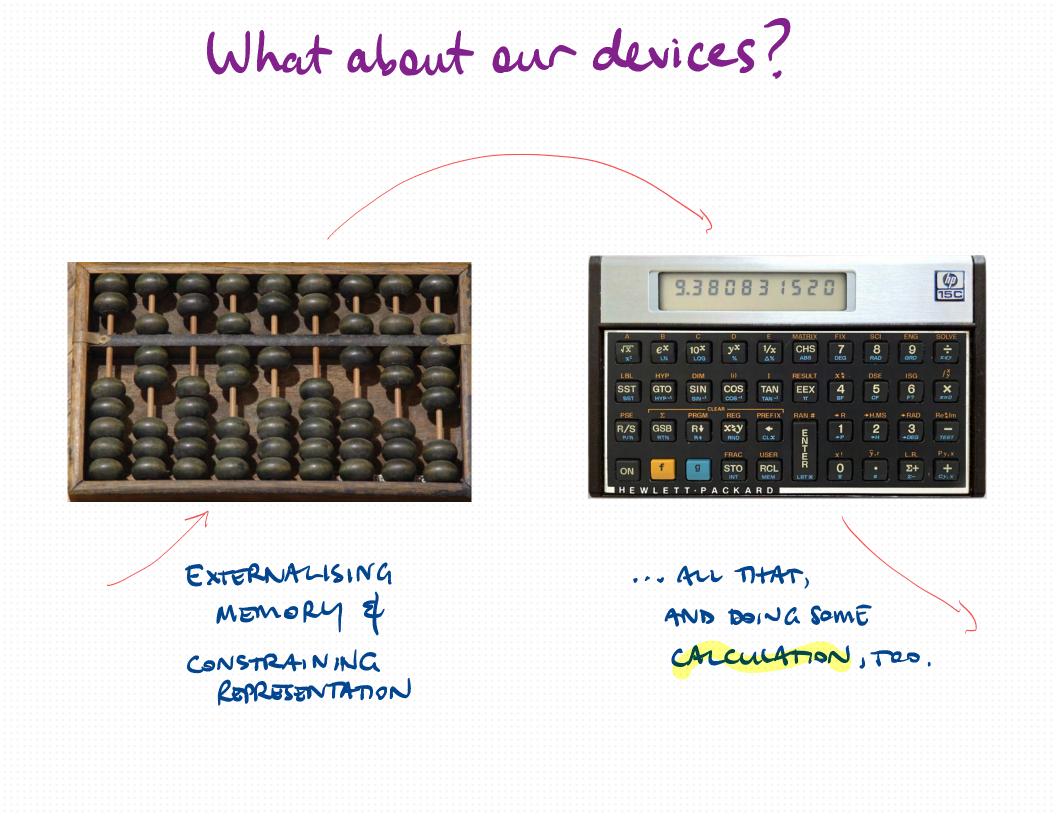
JC Beall and Greg Restall

	nal Typology -	JS 💿 R 😚 ▷	🖹 🔒 cs.bh	am.ac.uk (
B index	B Integers.Type	B Rationals.Type	B DedekindReals.Type	B Groups.Type	B CantorSchroederB
TypeTopology					
	ns in univalent mathema				
Martin Escardo and 20102024∞, con https://www.cs.bhar https://github.com/	collaborators, tinuously evolving. a.ac.uk/~mhe/ martinescardo/TypeTopo				
Tested with Agda 2.				٨	
notepad for our particular, some approaches, as ti and with failed i	mesearch and that of commodules have better and imme progresses, with the ideas and calculations	nd better results or he significant steps ke eventually erased.	ept,	A	; whole lot of mathematics
	olication, of the kind	nouncement of results t we would get when we w			
results, and so s		learning other people constructions and theor ments).		•	is being done using
over the years to and hence is some need arises. Its	o fulfill the needs of what chaotic. It will	een developed on demand the above as they aris continue to expand as evolution rather than Torvalds).	se,		proof assistants,
way, and offers h simpler proofs of	some (previously) differences to some				
minimal Martin-Ld (existence of pro propositional ext and classical mat explicit assumpti	of type theory, and use positional truncations censionality, univalence chematics (excluded mice	e notes, is to work wit e principles from HoTT/ s, function extensional ce, propositional resiz ddle, choice, LPO, WLPC or for the modules, th able to tell very	/UF Lity, zing) D) as		most of which use
if any, we have u results. We also	used for each construct	and classical mathemat tion, theorem or set of ith a minimal subset of losophy.	E		constructive legric.
type theory beyon this safe-modules inconsistent (as		able Tychonoff, and			U
(https://www.cs.h	oham.ac.uk/~mhe/TypeTop	pology/AllModulesIndex.	.html)		
files with 215k]	c, on 2024.06.19, this lines of code, includin i't update the count for		gda		
Philosophy of the repo					
assume the unival distinction betwee propositions, set axiom, or its typ	tence axiom. In particu- en types that are sing cs, l-groupoids etc., é pical consequences such d propositional extens	even in modules which o ular, we take seriously gletons (contractible), even when the univalence h as function sionality, are not need	y the ce		

* We work in a minimal version of intensional Martin Töf Tune


				_								
•••			• • •		🛛 🕘 🕘 🔳 🚺 🛃	peTypology V 🗸 🔪 J	s 💿 R 🏠 ▷	E	cs.bham.ac.uk	ۍ 🕑		
		•••		•••								
C	B index	B in		_	B index	B Integers.Type	B Rationals.Type	B DedekindReals.T	ype B Groups.Typ	B C		
Турет		0		B index								
Vario	Andrew Sne	Androw	Andr	Montin Des	Martin Escardo, 22nd and 24th January 2020, with further additions							
	Updated 18	Andrew	Upda	Martin Esca:	arter that.							
Marti	18	Tn this		There is and	The Cantor-Schröde	ne Cantor-Schröder-Bernstein for homotopy types, or ∞-groupoids, in Agda						
2010- https		In this	In t	UF.SIP-Exam					-			
https	mhia filo		are									
Teste	This file successor			code	the Journal of Hon	ersion of parts of thi notopy and Related Str	uctures. Springer	ed in 28th June 2021				
* Our	canonical		\beq	{-# OPTIONS	https://doi.org/10	0.1007/s40062-021-0028	34-6	Loon June Loui				
not		{-# OP1	(Deg									
app	cod		r #	module Grouj		ts, which assume funct	-					
and		open ir	{-#	onon import		existence of proposit MLTT is explicit in e		(any				
* We	{-# OPTION			open import open import	assumption perolia	THET TO EXPLICIT III 6	aon orannj.					
sub a m		open ir	open	open import								
	open impor	open ir		open import		oundations version of						
* We res	open impor			open import		gument that Cantor-Sch Le in constructive set						
are	open impor	open in	open	open import open import		.org/abs/1904.09193)		na January.)				
* The	open impor open impor	open in	_	open import	(····· , ···· , ···· , ···· , ·						
ove	open impor	open in	open	opon import		reproduced here, uses		lso known as				
nee	-Por Impor	open in	-	\end{code}	the searchabil	lity or omniscience) o	of N∞.					
int	module Int	open in	open		(See also Appe	endix II.)						
Our		open in	_	Underlying	(see arso white							
way		open in	open	code	(2) A proof that e	Bernstein for		Can.				
(ht		open in	open		 (2) A proof that excluded middle implies Cantor-Schröder-Bernstein for all homotopy types, or ∞-groupoids. (Added 24th January.) For any pair of types, if each one is embedded into the other, then they are equivalent. For this it is crucial that a map is an embedding if and only if its fibers are all propositions (rather than merely the map being 							
Our	In order t	open in	open	(_) : {s : {	For any pair of	of types, if each one	is embedded into th	he other.				
min (ex	the negati	open in		(X,S) =	then they are							
pro	For examp]	open in		monoid-stru					IND. LON			
exp	TOT GYAMPI	_		monoid-strue		crucial that a map i	-	and only if				
req	cod	-	open		left-cancellab	e all propositions (ra	acher than merely th	ne map being	\square			
if		module	_	monoid-axio	1010 Gundellu				I' M	· /		
Agd	data Z : 1		open	monoid-axio	As far as we b	know, (2) is a new res	sult.		hon 1			
* The	pos :	$Q: u_0$	open		Mhig mont is i	he Arde monster of b		- 12002 02020	trem 14	vy y		
typ	negsucc :	$Q = \Sigma c$	modu			the Agda version of ht ture notes to learn Ho		\$72002.07079.				
thi		4 - 2 (modu	\end{code}		s.bham.ac.uk/~mhe/HoTT		e-Notes/	-			
com	{-# BUILT]											
(ht	{-# BUILT]	$\Psi^* = \Psi$			\begin{code}					1		
* In .	{-# BUILT]			part of the	{-# OPTIONSsafe	without-K #-}		hht n	it about	long		
fil	\end{code}	is-in-]		code]	(" OF FEMALE Ball	"Tonouo-It "-j			y wow			
				-	module CantorSchro	ederBernstein.CSB whe	ere		1 1.	1UL		
Philosop	Now we have	is-in-l	open	group-struct		and a manage		as incot	nst about lomatics meaning	, July		
+ Me	By case ar	= inl	-	group-struct	open import CoNatu open import MLTT.							
* We ass			inha	group-axiom	open import MLTT.S			about	Manina	nolo		
dis	coc		inhal	group-axiom	open import Natura	als.Properties				1		
axi		Q-is-di	Tima.	J	-	nsOfDecidability.Decid	lable	010				
to	predℤ : ℤ					<pre>opology.CompactTypes opology.GenericConvergence</pre>	tent SequenceCompact	ness	m m.	• • •		
* 14-	predℤ (pos	Q-is-se	inha		open import UF.Bas	-	Jenebequencecompact	V V				




		3.3 8	108	13 1	52				150	
A	В	C	D	E	MATRIX	FIX	SCI	ENG	SOLVE	
x ²	ex LN	10 ^x	yx %	1/x 4%	CHS	7 DEG	8 RAD	9 GRD	xsy	
									the second second	
LBL	HYP	DIM	(i)	I	RESULT	XX	DSE	ISG	Jy	
SST BST	GTO HYP-1	SIN-1	COS -1	TAN -1	EEX π	4 SF	5 CF	6 F?	X x=0	
DOE	Σ	CLI		DOCEIN		- P	ALIMO	ADAD	Do ≵lm	
PSE	-	PRGM	REG	PREFIX	RAN #	+ R	+H.MS	+RAD	Re≵lm	
R/S		R↓ R+	x≷y RND	CL X	ENTER	1 ≁₽	2 +H	3 ≠DEG	TEST	
			FRAC	USER	Ē	x!	ŷ,r	L.R.	Py,x	
ON	f	g	STO		R	0	•	Σ+ Σ-	+ cy, x	
HEW	VLET	T·PA	СКА	RD						

Consider the relationship between on own practices of countries of Chicutatina, and own se of digital/mechanical aids.

9.38083 (520 () 15C 10^x Log y^x % 1/x 7 DEG • • * * CHS ABS 8 RAD 9 GRD I RESULT X 2 DSE TAN EEX 4 SF 5 CF DIM (i) SIN COS SIN-1 COS -1 LBL HYP **X** x=0 SST GTO BST HYP-1 6 F? Re≹lm TEST $\begin{array}{c|c} \mathbf{0} & \mathbf{\cdot} & \mathbf{\Sigma} + & \mathbf{+} \\ \mathbf{x} & \mathbf{s} & \mathbf{\Sigma} - & \mathbf{c} \\ \mathbf{y}, \mathbf{x} \end{array}$ HEWLETT·PACKARD The calculator doesn't count things like we do. But it is really useful for calculating things, as you'd expect, given the name.

One way to do this is for the calculator to really CALCULATE to follow some process that (at some level) Corresponds to What we do ulen ve calculate.

Why is this? What do we need for a dence to be ableto do this job. Ideally, we want the calculator to not only tell

us that f(n)=m, butgne us knowledge that f(n)=m.

A Countries Structure
"the number of #F predicate

$$\#F = \#G \Leftrightarrow \exists f(F \notin G)$$

$$0 = \# \exists x(x \neq x)$$

$$1 = \# \exists x(x \neq x)$$

$$1 = \# \exists x(x = 0)$$

$$2 = \# \exists x(x = 0 \times x = 1)$$

$$\vdots$$

$$\forall x(F \times AGx) \rightarrow \#(F \vee G) = \#F + \#G$$

$$f = f = f = 0$$

$$f = f = 0$$

$$f = 0$$

$$f$$

A machine that implements

reasoning along either of these lines is doing

avillimetric

scheme 1 $\#F = \#G \Leftrightarrow \exists f(F \Leftrightarrow G)$ $0 = \# \Im_{x(x \neq x)}$ $1 = \# \lambda x(x=0)$ 2= # 7x(x=0vx=1) $\neg \exists x (F \times A G \times) \rightarrow \# F \vee G) = \# F + \# G$

Scheme 2 Sn=Sy -> n=y $\begin{array}{c} 0 \neq Sn \\ n \neq 0 \rightarrow \exists y(n-sy) \end{array}$

x+0 = x x+ sy = s(x+y)

x × 0 = 0 x × sy = x×y+ x

 $(\phi(o) \land \forall n (\phi(n) \rightarrow \phi(sn)))$ $\rightarrow \forall n \phi(n)$

Although they would differ on the details. (Is there any n where n=n+1? Jes for scheme 1 but NO fer scheme Z.)

This makes no différence (er everydag calculation, & maybe ar counting practice doesn't decide between Scheme 1 & Scheme 2.

It would be strange to say that one Scheme is correct and the other is incorrect.

Scheme 1 $\#F = \#G \Leftrightarrow \exists f(F \Leftrightarrow G)$ $0 = \# \lambda_{x}(x \neq x)$ $1 = \# \lambda_{x}(x = 0)$ $2 = \# \lambda_{x}(x = 0 \lor x = 1)$ $\neg \exists \times (F \times \wedge G \times) \rightarrow \# F \vee G) = \# F + \# G$

SCHEME 2 Sx=Sy -> x=y $\begin{array}{c} \bigcirc \neq Sn \\ n \neq 0 \rightarrow \exists y(n = sy) \end{array}$ x+0 = x x+ sy • s(x+y) x = 0 = 0 x = sy = x=y+z $\begin{array}{c} \left(\phi(0) \land \forall n (\phi(n) \rightarrow \phi(in))\right) \\ \rightarrow \forall n \phi(n) \end{array}$

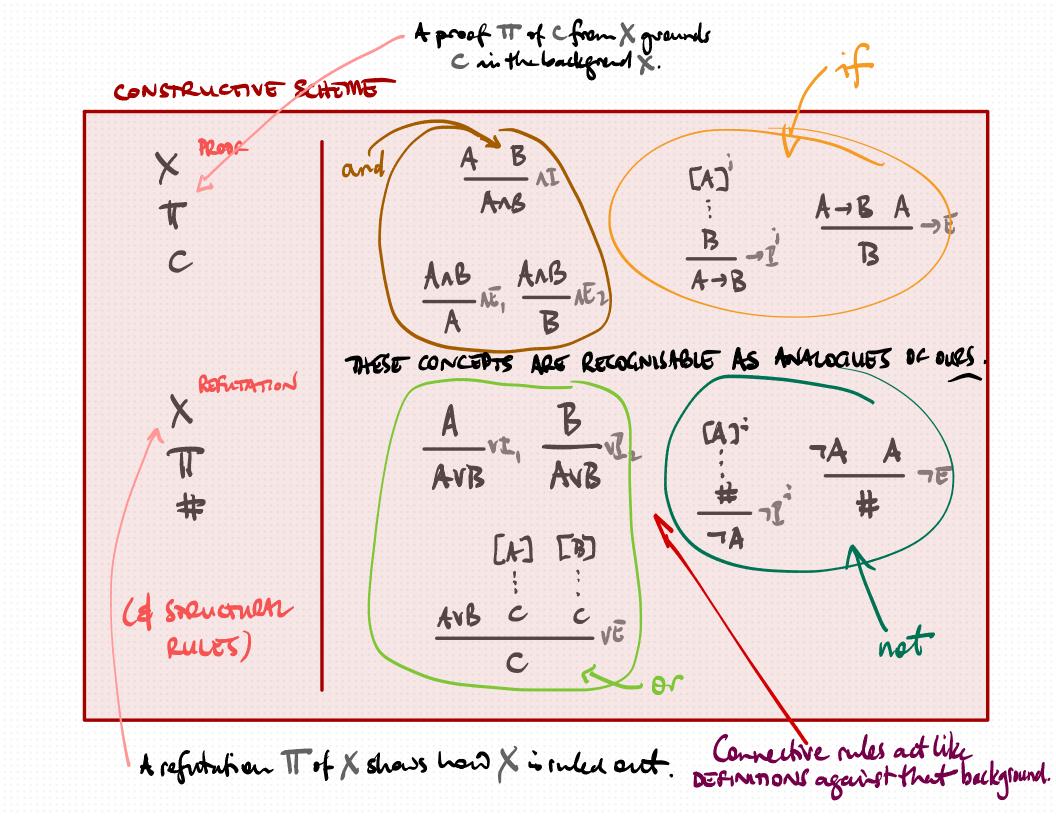
Rather, yen ceuld say that SCHEME 1 is a theory of cardinal numbers, Mile Scheme 2 is a theory of finite ordinals.

(Not that this means we have access to cardinals or ordinals independently of our counting practices.)

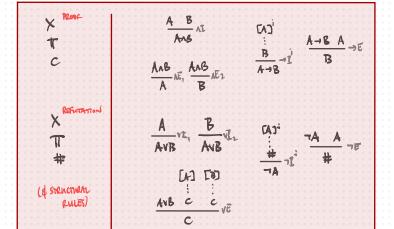
[And none of this is to take a stand on what these] numbers are, & whether cordinals are ordinals.]


THE UPSHOT

Our everyday counting practice can be explicated in different ways.


These explications can help us understand the different things we can do when we count & calculate, & to implement these practices in machines & programmes.

THE UPSHOT And if a machine implements calculation using sene procedure, then its actions may ferm pert of ar grounds fer knorledge for sene claim, in the same way that our an calculations de.


let's keepthis example in mind....

let's look at one scheme for making some aspects of this practice explicit. What goes fer our Counting & CAICULATING practices (& minders) might also go for our ASSERTING (Supposince, DENYING) & INFERRING practices (& propositions). & BELEVING, JUDGING, THINKING, but a emphasis is not an the distinctuely cognitive, mental components of judgement:

This Schemt (& nore, involving terms, as well as Types, & quantifiers, etc.) is implemented in PRODE ASSISTANTS, and is naturally found inside mathematical structures (topological spaces; cartesian closed categories) as on "internal language."

(The Scheme also has the virtue that a proof of AVB gives you a means to construct a proof of A or of B, and a proof of Fx \$\Phi(x) gives you a means to find some in along with a proof of \$\Phi(n).)

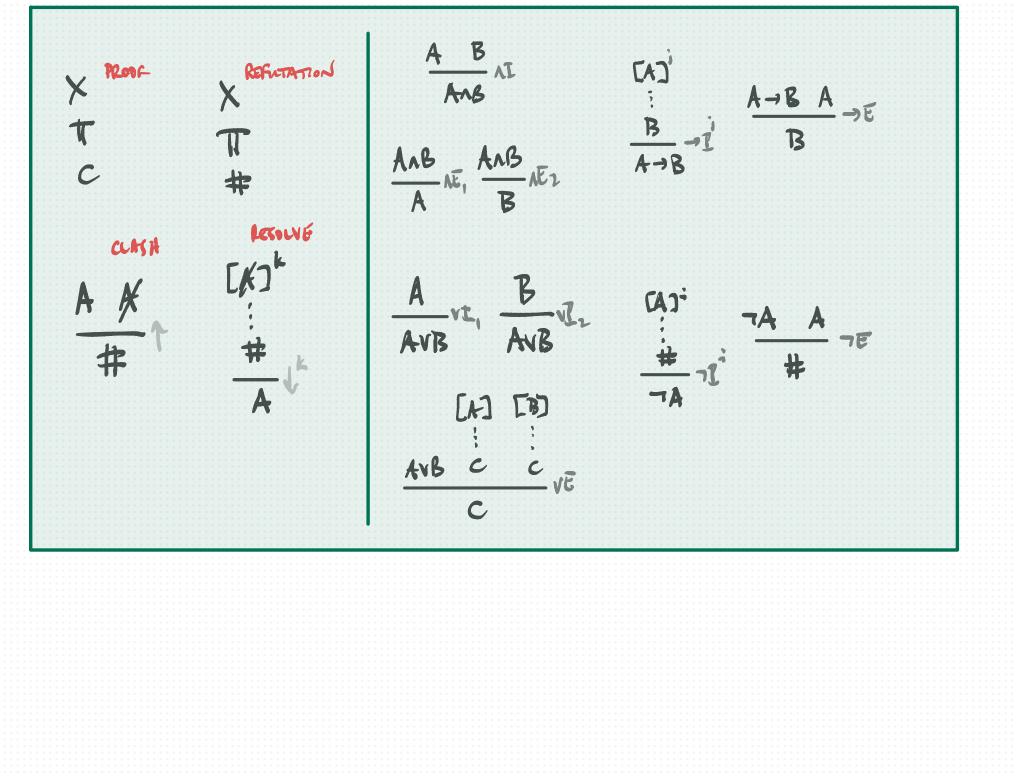
What more could be required for a practice organised in this ways to be recognised as counting as ASSEPTING, INFERING, & so on?

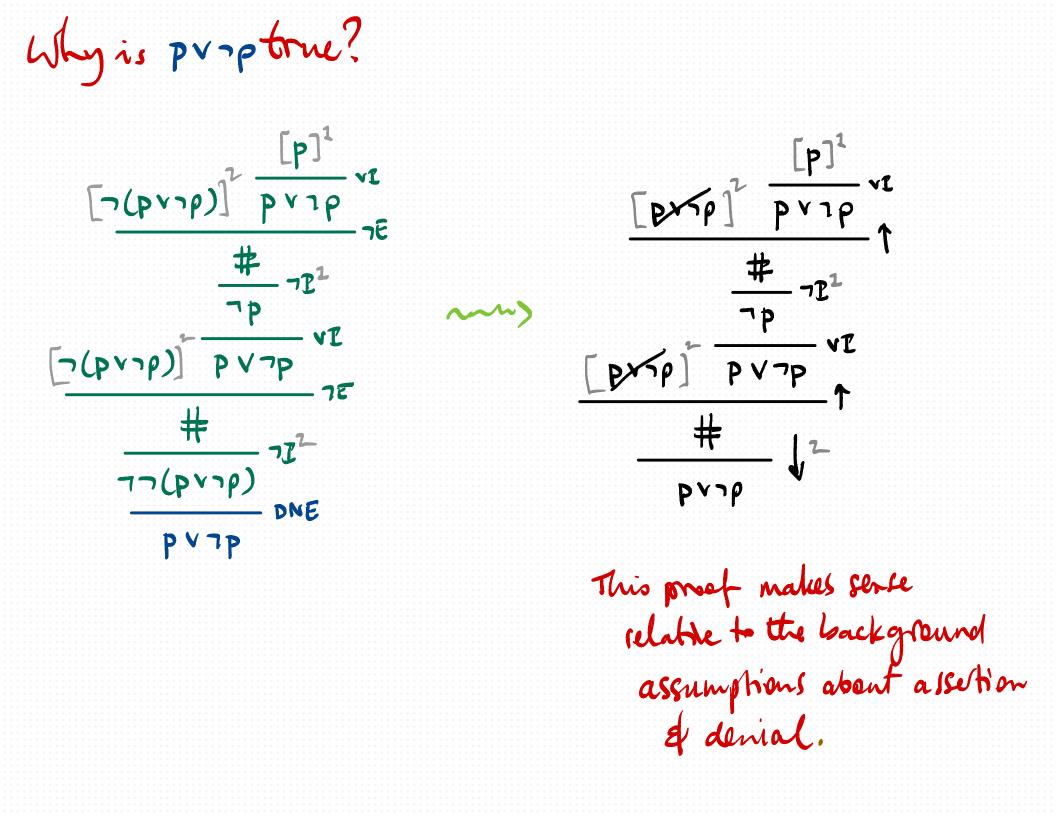
Well, maybe there is Semething missing...

DOES MUS SCHEME DO JUSTICE TO OUR USE OF DENIAL?

GADAMER ON LANGUAGE

It is unclear whether there is here a genuine disagreement between Gadamer and Davidson. It is undeniable that someone may lack a concept that others have, and that we now have many concepts that no one had three hundred years ago. New concepts are continually introduced. They cannot always be defined in the existing language, but they can be explained by means of it; a study of how we acquire concepts, such as the concept of infinity, that could not even be expressed before their introduction would be highly illuminating. It is also undeniable that we can now recognize, of certain concepts that were used in some previous age, that they were incoherent or confused. Interpretation of a text requires, not necessarily that we should be able to express the concepts it invokes, but that we should be able, in our present language, to explain them; and this includes explaining what it was to have those concepts we now regard as confused. Interpretation does not make the heavy demand on the interpreter's stock of concepts that it contain all those invoked in the text (or piece of spoken discourse) that he is interpreting: it makes only the light demand that he be able to explain those concepts, or explain what it is to have them, in his own language. Only if it is impossible to give such an explanation is the interpreter justified in denying that the text has a genuine meaning and expresses no concepts, not even incoherent ones.


Et is common usage to take "it is underiable that..." to be an intensifier. Michael Dunnett The Nature & Inture of Philosophy p.94 (2010)



[p]¹ [¬(pvnp)² [(qrvq)r] JE The unstructivist takes # 72¹ 7p it to be underiable that prop, Sina (prop) can be reduced to a contradiction, PV7P [(914)] but they do not take -זר (קריק)רד this to amount to a proof of punp.

BILATERAUSM - ASSERTION & DENIAL A --- claining, asserting, proposing, supposing 4. A --- denying A, ruling it out, setting it aside A --- A? Yes! A --- A? No!

CLASSICAL SCHEME

THE CLAIM

The CONSTRUCTIVE Scheme & the CLASSICAL Scheme are both,

to some extent, implicit in our assertaric spinferential practice

just as cardinal & ordinal conceptions of number are in our counting practice.

Botte ore recognisably informatial schemes, and both have their aces in regimenting inference & developing theories.

THE SEMANTICS & EPISTEMOLOGY of PROOF ASSISTANTS

. Men we are using hybrid Machine/human systems, it is valuable to inderstand the rules in play of the SomAnnes of the systems (both Machine of Humon). This involves not aly the operational rules (those gaverning each connectic & quantifier etc), but the structural rules governing the space of propositions. · This will constrain what a proof or disproof can mean.

CONSTRUCTIVE TABOOS

· Unprovable claims like prop, ∀×φ(x) v ∋x •φ(x),... are not taken to be false but a TABOO in intritienistic mathematics _____ something outlowded & to be availed in any properly constructive theory · We can see this as either a metatheoretic claim (unprovasitity), er as a way of expressing a notion of denial that has no object-language correlate.

AND WHAT ABOUT PLURALISM? · Nothing here settles that issue. ▷ You could accept both constructive & classical Schenes as equally legitimate. Or you could réject one or otter ors incomplete or nisquided. • But I hope that now, at least, the options of the stakes have been somewhat clarified.

