In yesterday’s Logic Seminar, Tomasz Kowalski introduced some lovely results about analytic cut and interpolation in sequent systems for bi-intuitionistic logic. After the seminar, Lloyd Humberstone, Dave Ripley, Tomasz and I got talking about various features of bi-intuitionistic logic, some of which should be more well known than they are … so I may as well post them here. Read on, if you’re into non-classical logic, algebras and frames.
The conditional in intuitionistic logic satisfies the lovely residuation principle:
The result I thought should be more well known is that the dual intuitionist subtraction can be defined if you add a de Morgan negation to intiutionst logic, and this addition is also conservative in the propositional case. A de Morgan negation is an operator
Lemma 9.35 in my substructural logic book (An Introduction to Substructural Logics) is a construction that embeds a lattice into one including a de Morgan negation. (This construction—like many results in this field—uses techniques due to Bob Meyer.) The construction is straightforward. It doesn’t quite work in the Heyting lattice case, but it’s very close to working. That construction takes the original lattice, adds a top element (if not already present) and adds an inverted copy of the structure below the original structure. This construction doesn’t preserve the bottom element (that’s no good, as we can express this in intuitionistic logic, with
However, it suggest a way to do it relatively straightforwardly, using Kripke frames.
It’s well known that in frame semantics, a de Morgan negation can be modelled using a Routley star operation. A unary function on points in the frame such that
One way to do this to any Kripke model
(In other words, we take a copy of our Kripke frame, invert it, and have all of those points come before each of the original points.)
The operation * is a Routley star on the structure, and it’s still a poset, so we have a Kripke frame. We can use * on the frame to define a de Morgan negation.
Given the original model
This construction shows how to embed the new propositions between the bottom element and anything else in the original Heyting algebra.
A dual construction could add the elements in the Kripke frame after the original elements (and then everything gets embedded just below the top element), or they could be incomparable with the objects in original frame. But as Lloyd Humberstone pointed out to me, the dual construction is not conservative, because the evaluation of formulas on the original set
However, the construction where the new points are placed before the original points, or where they are alongside (and incomparable) have no such problems. So there are at least 2 different ways to take a Kripke model for intuitionistic logic and to embed it into a structure supporting a de Morgan negation, and thus allowing the de Morgan laws to interdefine the intuitionistic conditional and dual intuitionistic subtraction. This shows that intuitionistic propositional logic is conservatively extended by a de Morgan negation, and this de Morgan negation can be used to define the weird binary connective of subtraction—all without doing damage to the underlying propositional logic.
Thanks, Tomasz, for a fun logic seminar yesterday, and for reminding me of these results. After spending over seven years concentrating on proof theory, it feels comfortable to slip back into working with algebras and frames.
I’m Greg Restall, and this is my personal website. ¶ I am the Shelby Cullom Davis Professor of Philosophy at the University of St Andrews, and the Director of the Arché Philosophical Research Centre for Logic, Language, Metaphysics and Epistemology ¶ I like thinking about – and helping other people think about – logic and philosophy and the many different ways they can inform each other.
To receive updates from this site, subscribe to the RSS feed in your feed reader. Alternatively, follow me at @consequently@hcommons.social, where most updates are posted.