Abstract: It is straightforward to treat the identity predicate in models for first order predicate logic. Truth conditions for identity formulas are straightforward. On the other hand, finding appropriate rules for identity in a sequent system or in natural deduction leaves many questions open. Identity could be treated with introduction and elimination rules in natural deduction, or left and right rules, in a sequent calculus, as is standard for familiar logical concepts. On the other hand, since identity is a predicate and identity formulas are atomic, it is possible to treat identity by way of axiomatic sequents, rather than inference rules. In this talk, I will describe this phenomenon, and explore the relationships between different formulations of rules for the identity predicate, and attempt to account for some of the distinctive virtues of each different formulation.
The talk was an online presentation for the Proof Theory Virtual Seminar
Here is the recording of the talk:
I’m Greg Restall, and this is my personal website. ¶ I am the Shelby Cullom Davis Professor of Philosophy at the University of St Andrews, and the Director of the Arché Philosophical Research Centre for Logic, Language, Metaphysics and Epistemology ¶ I like thinking about – and helping other people think about – logic and philosophy and the many different ways they can inform each other.
To receive updates from this site, subscribe to the RSS feed in your feed reader. Alternatively, follow me at @consequently@hcommons.social, where most updates are posted.